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Abstract

A threshold counteris a shared data structure that assumes integer val-
ues. It provides two operations:Increment changes the current counter value
from v to v+1, while Read returns the valuebv=wc, wherev is the current
counter value andw is a fixed constant. Thus, theRead operation returns
the “approximate” value of the counter to within the constantw. Threshold
counters have many potential uses, including software barrier synchroniza-
tion.

Threshold networksare a class of distributed data structures that can
be used to construct highly-concurrent, low-contention implementations of
shared threshold counters. In this paper, we give the first proof thatany
threshold network construction of a threshold counter can be extended to
support aDecrement operation that changes the counter value fromv to
v�1.
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1 Introduction

A threshold counteris a shared data structure that assumes integer values. It pro-
vides two operations:Increment changes the current counter value fromv to
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v+1, but does not return any information, whileRead returns the valuebv=wc,
wherev is the current counter value andw is a fixed constant. Thus, theRead
operation returns the “approximate” value of the counter to within the constant
w. Threshold counters have a variety of potential uses, most obviously software
barrier synchronization (see, for example, [11, Section 4.2.5], or [6, 7]). Thresh-
old counters are interesting because they can sometimes be implemented more
efficiently than exact counters.

The most obvious way to implement a shared counter, whether threshold or
exact, is to use a single shared variable protected by a lock. However, such central-
ized data structures may become “hot-spots” for shared memory communication,
or a “sequential bottleneck” with respect to concurrency. Aspneset al.[3] devised
a class of distributed data structures, calledbalancing networks,that provides a
decentralized way to solve a variety of counter-based synchronization problems.

Balancing networks are made up of balancers. Informally, abalancer [3]
is a switching element with input wires and output wires.Tokensarrive asyn-
chronously on input wires, and are routed to successive output wires in “round-
robin” fashion. Abalancing networkis an acyclic network of balancers. A bal-
ancing network’sdepthis the length of its longest path.

Balancing networks can be used to constructcounting networks[3], which are
useful for constructing shared exact counters, andsmoothing networks[3], which
are useful for load balancing. Balancing networks can also be used to construct
threshold networks[3] and weak threshold networks[4], which provide highly-
concurrent, low-contention implementations of threshold counters. Each of these
classes of networks supports some form ofIncrement operation, implemented by
passing a token through the network.

Threshold networks are interesting because there are constructions of them
with substantially lower depth than the best known, practical construction of
counting networks. While the most practical construction of a counting network
known to date is thebitonic counting network[3, Section 3] of depth approxi-
mately log2w, there exists, in contrast, a threshold network construction of depth
logw [3, Section 5.3].

Supporting decrements in threshold and weak threshold networks would allow
them to implement decrementable threshold counters, which have many potential
practical uses. For example, one might use a decrementable threshold counter to
control memory allocation policies on a multiprocessor. A thread might increment
the counter when it allocates a block of memory, and decrement the counter when
it frees that block. The operating system might monitor the counter, requesting
additional resources if the counter’s approximate value exceeds a certain thresh-
old. In this work, we address the question of supporting decrements in threshold
and weak threshold networks.

The principal contribution of this work is the first proof thatanythreshold net-
work implementation of a threshold counter can be extended to support aDecre-
ment operation that changes the counter value fromv to v�1. We also show that
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the same is true of weak threshold network implementations under the assump-
tion that the weak threshold network is made up of balancers, calledregular, that
have the same number of input and output wires.

The extension uses a new construct called anantitoken,which was recently
introduced by Shavit and Touitou [10]. While each token that arrives at a balancer
advances the toggle and exits on the next successive output wire, an antitoken,
by contrast, sets the toggle back, and exits on the preceding wire. Informally, an
antitoken “cancels” the effect of the most recent token, and vice versa.

Shavit and Touitou [10] proved that antitokens implement aDecrement op-
eration for a restricted class of balancing networks called acounting tree. Sub-
sequently, Aielloet al. [2] proved that antitokens are more powerful: they can
be used to extend counting networks and smoothing networks to support decre-
ments. More generally, they identified a broad class of properties, calledbound-
edness properties,that are preserved by the introduction of antitokens; thus, if a
balancing network satisfies any arbitrary boundedness property when traversed
by tokens alone, then it continues to satisfy that same property when traversed
by tokens and antitokens. Being a threshold counter, however, is not a bounded-
ness property, so different arguments are needed to reason about the behavior of
threshold networks.

The proof techniques employed by Aielloet al.[2] were purely combinatorial,
centered around the concept of afooling pairof inputs [2, Section 3]. In this work,
we adapt and extend these techniques to encompass both threshold networks and
weak threshold networks (under the regularity assumption) within the structural
class of balancing networks whose properties are preserved by the introduction of
antitokens and decrement operations.

The rest of this paper is organized as follows. Section 2 provides a frame-
work for our discussion. Section 3 introduces the threshold property and the weak
threshold property, and establishes some simple properties. The paper’s principal
contribution, our results for threshold and weak threshold networks, appears in
Sections 4 and 5, respectively. We conclude, in Section 6, with a discussion of our
results and some open problems.

2 Framework

2.1 Notation

For any integerg� 2, x(g) denotes the vectorhx0;x1; : : : ;xg�1i
T. For any vector

x(g), denoteskx(g)k1 = ∑g�1
i=0 xi . We use0(g) to denoteh0;0; : : : ;0iT, a vector with

g zero entries; similarly, we use1(g) to denoteh1;1; : : : ;1iT, a vector withg unit
entries. Aconstant vectoris any vector of the formc1(g), for any constantc.

For any integerx and positive integerδ, denotex div δ andx mod δ the in-
teger quotient and remainder, respectively, of the division ofx by δ; note that
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Figure 1: A balancer

0 � x mod δ � δ� 1, while x = (x div δ)δ+ x mod δ. Clearly,δ dividesx if
x modδ = 0. Say thatδ dividesx(g) if δ divides each entry ofx(g).

2.2 Balancers and Balancing Networks

This section is adapted from [2, Sections 2.2 and 2.3]. Balancing networks are
constructed from acyclically wired elements, called balancers, that routetokens
andantitokensthrough the network, andwires. Balancers can have multiple input
and output wires, in the style of Aharonson and Attiya [1], Feltenet al. [5], and
Hardavellaset al. [8]. Following Shavit and Touitou [10] and Buschet al. [2],
balancers handle both tokens and antitokens. We think of a token and an antitoken
as the basic “positive” and “negative” unit, respectively, that are routed through
the balancer.

For any pair of positive integersfin and fout, an ( fin; fout)-balancer,or bal-
ancer for short, is a routing element receiving tokens and antitokens onfin input
wires, numbered 0;1; : : : ; fin� 1, and sending out tokens and antitokens tofout

output wires, numbered 0;1; : : : ; fout� 1; fin and fout are called the balancer’s
fan-inandfan-out,respectively. Aregular balancer is an( fin; fout)-balancer such
that fin = fout; that is, fan-in equals fan-out for a regular balancer.

Tokens and antitokens arrive on the balancer’s input wires at arbitrary times,
and they are output on its output wires. Roughly speaking, a balancer acts like
a “generalized”toggle,which, on a stream of input tokens and antitokens, alter-
nately forwards them to its output wires, going either down or up on each input
token and antitoken, respectively. For clarity, we assume that all tokens and anti-
tokens are distinct.

Figure 1 depicts a balancer with three input wires and five output wires,
stretched horizontally; the balancer is stretched vertically. In the left part, tokens
and antitokens are denoted with full and empty circles, respectively; the number-
ing reflects the real-time order of tokens and antitokens in an execution where
they traverse the balancer one by one (such an execution is called asequential
execution).
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For each input indexi, 0� i � fin � 1, we denote byxi the balancer input
state variablethat stands for the algebraic sum of the numbers of tokens and
antitokens that have entered on input wirei; that is,xi is the number of tokens that
have entered on input wirei minusthe number of antitokens that have entered on
input wire i. Denotex( fin) = hx0;x1; : : : ;xfin�1i

T; call x( fin) an input vector. For
each output indexj , 0� j � fout�1, we denote byyj thebalancer output state
variablethat stands for the algebraic sum of the numbers of tokens and antitokens
that have exited on output wirej ; that is,yj is the number of tokens that have
exited on output wirej minusthe number of antitokens that have exited on output
wire j . Denotey( fout) = hy0;y1; : : : ;yfout�1i

T; call y( fout) anoutput vector.
Theconfigurationof a balancer at any given time is the tuplehx( fin);y( fout)i;

roughly speaking, the configuration is the collection of its input and output state
variables. In theinitial configuration,all input and output wires are empty; that
is, in the initial configuration,x( fin) = 0( fin), andy( fout) = 0( fout).

A configuration of a balancer isquiescentif there are no tokens or antitokens
in the balancer. Note that the initial configuration is a quiescent one. The following
formal properties are required for an( fin; fout)-balancer.

1. Safety property:in any configuration, a balancer never creates either tokens
or antitokens spontaneously.

2. Liveness property:for any finite numberst of tokens anda of antitokens
that enter the balancer, the balancer reaches within a finite amount of time
a quiescent configuration wheret�e tokens anda�e antitokens have ex-
ited the network, wheree, 0� e� minft;ag, is the number of tokens and
antitokens that are “eliminated” in the balancer.

3. Step property:in any quiescent configuration, for any pair of output indices
j andk such that 0� j < k� fout�1, 0� yj �yk � 1.

From the safety and liveness properties, it follows that for any quiescent con-
figurationhx( fin);y( fout)i of a balancer,kx( fin)k1 = ky( fout)k1; that is, in a quiescent
configuration, the algebraic sum of tokens and antitokens that exited the balancer
is equal to the algebraic sum of tokens and antitokens that entered it. Note that
the equality holds even for the case where some of the tokens and antitokens are
“eliminated” in the balancer.

We are mostly interested in quiescent configurations of a balancer. For any
input vectorx( fin) to balancerb, denotey( fout) = b(x( fin)) the output vector in
the quiescent configuration thatb will reach after all tokens and antitokens that
enteredb have exited; write alsob : x( fin) ! y( fout) to denote the balancerb.

For any quiescent configurationhx( fin);y( fout)i of a balancerb : x( fin) ! y( fout),
the state of the balancerb, denoted stateb(hx( fin);y( fout)i), is defined to be
stateb(hx( fin);y( fout)i) = ky( fout)k1 mod fout ; by definition of quiescent configu-
ration, it follows that stateb(hx( fin);y( fout)i) = kx( fin)k1 mod fout : Thus, for the
sake of simplicity, we will denote stateb(x( fin)) = stateb(hx( fin);y( fout)i) :
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We remark that the state of an( fin; fout)-balancer is some integer in the set
f0;1; : : : ; fout� 1g, which captures the “position” to which it is set as a toggle
mechanism. This integer is determined by either the balancer input state variables
or the balancer output state variables in the quiescent configuration. Note that the
state of the balancer in the initial configuration is 0.

A (win;wout)-balancing networkB is a collection of interwired balancers,
where output wires are connected to input wires, havingwin designatedinput
wires,numbered 0;1; : : : ;win�1, which are not connected to output wires of bal-
ancers, havingwout designatedoutput wires,numbered 0;1; : : : ;wout�1, similarly
not connected to input wires of balancers, and containing no cycles. A balancing
network isregular if each of its interwired balancers is regular.

Tokens and antitokens arrive on the network’s input wires at arbitrary times,
and they traverse a sequence of balancers in the network in a completely asyn-
chronous way till they exit on the output wires of the network.

For each input indexi, 0� i �win�1, we denote byxi thenetwork input state
variablethat stands for the algebraic sum of the numbers of tokens and antitokens
that have entered on input wirei; that is,xi is the difference of the number of
tokens that have entered on input wirei minusthe number of antitokens that have
entered on input wirei. Denotex(win) = hx0;x1; : : : ;xwin�1i

T; call x(win) an input
vector. For each output indexj , 0� j � fout� 1, we denote byyj thenetwork
output state variablethat stands for the algebraic sum of the numbers of tokens
and antitokens that have exited on output wirej ; that is,yj is the number of
tokens that have exited on output wirej minus the number of antitokens that
have exited on output wirej . Denotey(wout) = hy0;y1; : : : ;ywout�1i

T; call y(wout) an
output vector.

Theconfigurationof a network at any given time is the tuple of configurations
of its individual balancers. In theinitial configuration,all input and output wires
of balancers are empty. The safety and liveness property for a balancing network
follow naturally from those of its balancers. Thus, a balancing network eventually
reaches aquiescent configurationin which all tokens and antitokens that entered
the network have either exited the network or pairwise “eliminated” themselves.
In any quiescent configuration ofB we havekx(win)k1 = ky(wout)k1; that is, in a
quiescent configuration, the algebraic sum of tokens and antitokens that exited the
network is equal to the algebraic sum of tokens and antitokens that entered it.

Naturally, we are interested in quiescent configurations of a network. For any
quiescent configuration of a networkB with corresponding input and output vec-
tors x(win) andy(wout), respectively, thestateof B, denoted stateB(x(win)), is de-
fined to be the collection of the states of its individual balancers. We remark that
we have specifiedx(win) as the single argument of stateB , sincex(win) uniquely
determines all input and output vectors of balancers ofB, which are used for
defining the states of the individual balancers. Note that the state of the network
in its initial configuration is a collection of 0’s. For any input vectorx(win), de-
notey(wout) = B(x(win)) the output vector in the quiescent configuration thatB
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will reach after all tokens and antitokens that enteredB have exited; write also
B : x(win) ! y(wout) to denote the networkB. Clearly,B(0(win)) = 0(wout).

2.3 Boundedness Properties

Boundedness properties were introduced by Aielloet al. [2]. Our presentation
summarizes [2, Section 2.4]. Fix throughout any integerg� 2.

For any integerK � 1, theK-smoothing property[1, 3] is defined to be the set
of all vectorsy(g) such that for any entriesyj andyk of y(g), where 0� j ;k� g�1,
jyj �ykj � K; any vectory(g) in theK-smoothing property is aK-smooth vector.
A smoothing propertyis aK-smoothing property, for some integerK � 1.

A boundedness property[2, Section 2.4] is any subset of some smoothing
property, that is closed under addition with a constant vector. Thus, a bound-
edness property is a strict generalization of the smoothing property, since any
smoothing property is trivially a boundedness property. Since there are infinitely
many smoothing properties, there are infinitely many boundedness properties as
well.

Thestep property[3] is defined to be the set of all vectorsy(g) such that for any
entriesyj andyk of y(g), where 0� j < k� g�1, 0� yj �yk � 1; any vectory(g)

in the step property is astep vector. An equivalent definition of a step vectory(g)

given in [3] requires that for each indexj , 0� j � g�1, yj = d(ky(g)k1� j)=ge.
Note that any step vector is 1-smooth (but not vice versa); hence. the step property
is a (proper) subset of the 1-smoothing property, which is trivially closed under
addition with a step vector. It follows that the step property is a boundedness
property.

Say thata vectory(g) has the (boundedness) propertyΠ if y(g) 2 Π. Say that
a balancing networkB : x(win) ! y(wout) has the (boundedness) propertyΠ if for
every input vectorx(win), B(x(win)) 2 Π. A counting network[3] is a balancing
network that has the step property. Similarly, aK-smoothing network[1, 3] is a
balancing network that has theK-smoothing property. The main result of Aiello
et al. [2] establishes that allowing negative inputs does not spoil the boundedness
property of a balancing network.

Theorem 1 (Aiello et al. [2]) Fix any boundedness propertyΠ and a balancing
networkB : x(win) ! y(wout) such thaty(wout) has the boundedness propertyΠ
wheneverx(win) is a non-negativevector. Then,B has the boundedness property
Π.

2.4 Fooling Pairs

Our presentation follows [2, Section 3]. Say that input vectorsx( fin)
1 and x( fin)

2

are afooling pair to balancer b: x( fin) ! y( fout) [2, Section 3] if stateb(x
( fin)
1 ) =
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stateb(x
( fin)
2 ); roughly speaking, a fooling pair “drives” the balancer to identical

states in the two corresponding quiescent configurations. The concept of a fooling
pair can be extended from a single balancer to a network in the natural way. Say
that input vectorsx(win)

1 andx(win)
2 area fooling pair to networkB : x(win) ! y(wout)

if for each balancerb of B, the input vectors ofb in quiescent configurations

corresponding tox(win)
1 andx(win)

2 , respectively, are a fooling pair tob; roughly
speaking, a fooling pair “drives” all balancers of the network to identical states in
the two corresponding quiescent configurations.

The next result relates the output vectors of any balancing network on certain
combinations of a fooling pair of input vectors.

Lemma 1 (Aiello et al. [2]) Consider a balancing networkB : x(win) ! y(wout).

Take any inputvectorsx(win)
1 andx(win)

2 that are a fooling pair to networkB. Then,

for any inputvector x(win), B(x(win)
1 + x(win))�B(x(win)

1 ) = B(x(win)
2 + x(win))�

B(x(win)
2 ) :

We continue to survey some further combinatorial properties of fooling pairs
that we will use in our later proofs. Say thatx(win) is a null vector to network
B : x(win) ! y(wout) [2, Section 3] if the vectorsx(win) and0(win) are a fooling pair
to B. Intuitively, a null vector “hides” itself from the networkB in the sense that
it does not alter the state ofB while traversing it. The next claim determines the
output of a balancing network on any non-negative multiple of a null vector.

Lemma 2 (Aiello et al. [2]) Consider a balancing networkB : x(win) ! y(wout).
Take any vectorx(win) that is null toB. Then, for any integer k� 0, B(kx(win)) =
kB(x(win)) :

For any balancing networkB, denoteWout(B), the product of the fan-outs
of balancers ofB. The next claim establishes a sufficient condition involving
Wout(B) for a vector to be null toB.

Lemma 3 (Aiello et al. [2]) Consider a balancing networkB : x(win) ! y(wout).
Assume that Wout(B) dividesx(win). Then,x(win) is a null vector toB.

3 The Threshold Property and the Weak Threshold
Property

In this section, we introduce the threshold property and the weak threshold prop-
erty; we prove several simple properties of them. Fix throughout any integer
wout � 2.

Say that a vectory(wout) is athreshold vector[3] if ywout�1= bky(wout)k1=woutc.
The threshold propertyis the set of all threshold vectorsy(wout). It is straightfor-
ward to see that adding a constant vector to a threshold vector yields another
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threshold vector; thus, the threshold property is closed under addition with a con-
stant vector. Moreover, take any step vectory(wout); thus, by equivalent definition
of step vector,ywout�1= dk(y(wout)�(wout�1))k1=woute. A straightforward calcu-
lation reveals thatywout�1 = bky(wout)k1=woutc. Hence,y(wout) is a threshold vector.
It follows that the step property is a subset of the threshold property.

Say that a vectory(wout) is a weak threshold vector[4] if there is some out-
put index j , possibly j 6= wout� 1, such thatyj = bky(wout)k1=woutc. The weak
threshold propertyis the set of all weak threshold vectorsy(wout). As for the case
of threshold vectors, it is straightforward to see that adding a constant vector to
a weak threshold vector yields another weak threshold vector; thus, the threshold
property is closed under addition with a constant vector. Moreover, the threshold
property is a (proper) subset of the weak threshold property.

We start by showing that the threshold property is not a boundedness property
in all non-trivial cases.

Proposition 1 The threshold property is not a boundedness property if and only
if wout > 2.

Proof. Suppose first thatwout = 2. We will show that the threshold property is
identical to the step property in this case, which is a boundedness property.

Since the step property is a subset of the threshold property, it remains to show
that the threshold property is a subset of the step property. Take any threshold
vectory(2); so,y1 = b(y0+y1)=2c. There are two cases to consider. Ify0+y1 is
even, theny1 = (y0+ y1)=2, or y0 � y1 = 0. If y0+ y1 is odd, theny1 = (y0 +
y1�1)=2, ory0�y1 = 1. It follows that in all cases 0� y0�y1 � 1; hence,y(2)

is a step vector, so that the threshold property is a subset of the step property. It
follows that the threshold property is identical to the step property forwout = 2.
Since the step property is a boundedness property, it follows that the threshold
property is a boundedness property forwout = 2, as needed.

Suppose now thatwout > 2. Assume, by way of contradiction, that the thresh-
old property is a boundedness property. By definition of boundedness property,
this implies that the threshold property is a subset of theK-smoothing property
for some integerK � 1. Consider the threshold vectory(wout) with ywout�1=K+1,
ywout�2 = (K + 1)(wout� 1), andyl = 0 for 0� l < wout� 2. Since the thresh-
old property is a subset of theK-smoothing property, it follows thaty(wout) is K-
smooth. However,jywout�2�ywout�1j= j(K+1)(wout�2)j= (K+1)(wout�2)�
K+1, sincewout > 2. A contradiction. 2

Likewise, we can prove an identical fact for the weak threshold property.

Proposition 2 The weak threshold property is not a boundedness property if and
only if wout > 2.

Propositions 1 and 2 imply that Theorem 1 does not apply a fortiori to either
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threshold networks or weak threshold networks. Hence, in order to show that al-
lowing negative inputs does not spoil either threshold networks or weak threshold
networks, different arguments are needed. In the rest of this section, we prepare
such arguments.

Say that a vectory(wout) is a saturated vectorif ywout�1 = ky(wout)k1=wout.
Clearly, any saturated vector is a threshold vector, but not vice versa. We can
easily show the following property of saturated vectors.

Proposition 3 Consider a saturated vectory(wout). Then,ỹ(wout) = �y(wout) is a
saturated vector.

We continue to show another closure property of the threshold property; more
specifically, we prove that the threshold property is closed under addition with a
saturated vector.

Proposition 4 Consider a threshold vectory(wout) and a saturated vector̃y(wout).
Then,y(wout)+ ỹ(wout) is a threshold vector.

Proof. Clearly,

ywout�1+ eywout�1 =

$
ky(wout)k1

wout

%
+
kỹ(wout)k1

wout

(sincey(wout) is threshold and̃y(wout) is saturated)

=

$
ky(wout)k1

wout
+
kỹ(wout)k1

wout

%

=

$
ky(wout)+ ỹ(wout)k1

wout

%
;

so thaty(wout)+ ỹ(wout) is a threshold vector, as needed. 2

By Proposition3, the following is an immediate consequence of Proposition 4.

Corollary 1 Consider a threshold vectory(wout), and a saturated vector̃y(wout).
Then,y(wout)� ỹ(wout) is a threshold vector.

Say that a vectory(wout) is aweak saturated vectorif there is some output index
j , possibly j 6= wout� 1, such thatyj = ky(wout)k1=wout. Clearly, any saturated
vector is a weak saturated vector, but not vice versa.

The threshold property and the weak threshold property give rise to corre-
sponding networks in the natural way. Athreshold network[3] is a balancing
networkB : x(win) ! y(wout) that has the threshold property. Roughly speaking, a
threshold network detects input “chunks” of sizewout on the output wirewout�1,
called thethreshold wire.
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A weak threshold network[4] is a balancing networkB : x(win) ! y(wout) that
has the weak threshold property. Thus, like threshold networks, weak threshold
networks detect, on each input vectorx(win), input “chunks” of sizewout on some
output wire j = j(x(win)), 0 � j � win � 1, called thethreshold wire for input
x(win). However, unlike threshold networks, it is possible that threshold wires for
different input vectors be different.

4 Threshold Networks

In this section, we establish that the threshold property is preserved by the intro-
duction of antitokens. We start by proving a technical claim.

Proposition 5 Take a threshold networkB : x(win) ! y(wout). Assume that Wout(B)
dividesx(win). Then,y(wout) is a saturated vector.

Proof. SinceWout(B) dividesx(win), Lemma 3 implies thatx(win) is a null vector to
networkB. Thus, by Lemma 2,B(woutx(win))=woutB(x(win))=wouty(wout). Since
B is a threshold network, it follows thatwouty(wout) is a threshold vector. By defi-
nition of threshold vector, this implies thatwoutywout�1 = bwoutky(wout)k1=woutc =

ky(wout)k1; hence,ywout�1 = ky(wout)k1=wout. By definition of saturated vector, this
implies thaty(wout) is a saturated vector, as needed. 2

Proposition 5 provides a sufficient condition on the input vector of a thresh-
old network, which involves structural parameters of the network itself, for the
corresponding output vector to be a saturated vector. Thus, Proposition 5 is rem-
iniscent, in both its statement and proof, to [2, Proposition 4.1], which provides
a corresponding sufficient condition for the output vector of a balancing network
that has any boundedness property to be a constant vector. Hence, Proposition 5
establishes an analogy between constant vectors with respect to a network that
has any boundedness property, and saturated vectors with respect to a threshold
network. We continue with using Proposition 5 to show our equivalence result for
threshold networks.

Theorem 2 (Threshold networks support decrements)Take a balancing net-
work B : x(win) ! y(wout) such thaty(wout) is a threshold vector wheneverx(win)

is a non-negativevector. Then,B is a threshold network.

Proof. Consider any arbitrary input vectorx(win). We will show thatB(x(win)) is
a threshold vector.

Construct fromx(win) an input vector̃x(win) such that for each indexi, 0� i �
win�1, exi is the least multiple ofWout(B) such thatexi +xi � 0. Clearly,Wout(B)
dividesx̃(win). By Proposition5,B(x̃(win)) is a saturated vector, while by Lemma 3,
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x̃(win) is a null vector to networkB. We apply Lemma 1 with̃x(win) for x(win)
1 , 0(win)

for x(win)
2 , andx(win) for x(win); we obtain that

B(x̃(win)+x(win)) = B(x(win))+B(x̃(win))�B(0(win))

= B(x(win))+B(x̃(win)) ;

so thatB(x(win)) = B(x̃(win)+x(win))�B(x̃(win)).
Sincex̃(win)+x(win) is a non-negative input vector, it follows, by assumption

on B, thatB(x̃(win)+ x(win)) is a threshold vector. SinceB(x̃(win)) is a saturated
vector, Corollary 1 implies thatB(x(win)) is a threshold vector, as needed. 2

The proof of Theorem 2 used Lemmas 1 and 3, which, however, hold for
anybalancing network; it used Corollary 1, which determines a special class of
vectors, namely, the saturated vectors, to provide closure under subtraction to
the threshold property; finally, it used Proposition 5, which provides a sufficient
condition for the output of a threshold network to be a saturated vector. We remark
that the general structure of the proof of Theorem 2 closely follows the one of [2,
Theorem 4.2] (quoted as Theorem 1 in this paper).

5 Weak Threshold Networks

In this section, we establish that the weak threshold property is preserved by the
introduction of antitokens, under some technical assumption on the structure of
weak threshold networks.

There is a difficulty when we try to extend the proof Theorem 2 to weak
threshold networks. Specifically, the analog of Corollary 1 for weak threshold
vectors and (weak) saturated vectors does not hold in general. For example, for
the weak threshold vectory(3)= h9;4;1i(T) and the (weak) saturated vectorỹ(3) =
h2;3;1i(T) we have thaty(3)� ỹ(3) is not a weak threshold vector. Therefore, some
additional care is needed in extending the proof of Theorem 2 (which relies on
Corollary 1) to weak threshold networks.

We have only been able to extend Theorem 2 to the case ofregular weak
threshold networks, namely weak threshold networks such that each of their bal-
ancers has the same fan-in and fan-out. We will need a simple technical claim
which has been shown by Herlihyet al [9, Lemma 4.1] for networks consisting of
balancers with fan-in and fan-out equal to two, and which, apparently, holds for
any regular balancing network.

Lemma 4 (Herlihy et al. [9]) Take a regular balancing networkB : x(win) !
y(wout). Then, for any integer c> 0, B(c1(win)) = c 1(wout).

Roughly speaking, Lemma 4 asserts that if exactlyc tokens enter on each
input wire, then exactlyc tokens will exit from each output wire. We are now
ready to show that regular weak threshold networks support decrements.
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Theorem 3 (Regular weak threshold networks support decrements)Take a
regular balancing networkB : x(win) ! y(wout) such thaty(wout) is a weak threshold
vector wheneverx(win) is a non-negativevector. Then,B is a weak threshold
network.

Proof. Consider any arbitrary input vectorx(win). We will show thatB(x(win)) is
a weak threshold vector.

Construct fromx(win) a constant input vector̃x(win) = c1(win), wherec is the
least multiple ofWout(B) such that for each indexi, 0� i � win� 1, c+ xi � 0.
(Alternatively,c is themaximumx̃i , 0� i � win�1, where ˜xi is the least multiple
of Wout(B) such that ˜xi + xi � 0.) Clearly,Wout(B) dividesx̃(win). By Lemma 3,

x̃(win) is a null vector to networkB. We apply Lemma 1 with̃x(win) for x(win)
1 , 0(win)

for x(win)
2 , andx(win) for x(win); we obtain that

B(x̃(win)+x(win)) = B(x(win))+B(x̃(win))�B(0(win))

= B(x(win))+B(x̃(win)) ;

so thatB(x(win)) = B(x̃(win)+x(win))�B(x̃(win)).
Sincex̃(win) = c1(win), it follows by Lemma 4 thatB(x̃(win)) = c1(wout). Since

x̃(win) + x(win) is a non-negative input vector, it follows, by assumption onB,
thatB(x̃(win)+x(win)) is a weak threshold vector. Letj be the threshold wire for
B(x̃(win)+x(win)). SinceB(x̃(win)) = c1(wout), B(x̃(win)) j = c so that

B(x(win)) j = B(x̃(win)+x(win)) j �B(x̃(win)) j

= B(x̃(win)+x(win)) j �c

=

$
kx̃(win)+x(win)k1

wout

%
�c

(sinceB(x̃(win)+x(win)) is weak threshold)

=

$
kx̃(win)k1+kx(win)k1

wout

%
�c

=

$
cwout+kx(win)k1

wout

%
�c

(by definition ofx̃(win))

= c+

$
kx(win)k1

wout

%
�c

=

$
kx(win)k1

wout

%
:
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It follows thatB(x(win)) is a weak threshold vector, as needed. 2

6 Conclusion

We have shown that any balancing network that satisfies the threshold property
on all non-negative input vectors, it will also satisfy it for any arbitrary input vec-
tor. We have also shown a corresponding fact for the weak threshold property,
assuming that the network is regular. It would be interesting to see whether or not
the regularity assumption can be dropped for weak threshold networks. Our re-
sults imply that, in designing and verifying threshold and (regular) weak threshold
networks, it is possible to restrict attention to non-negative input vectors, which
conveniences design and simplifies proofs.

Our proofs have built on the combinatorial techniques introduced in [2]. It
would still be interesting to find further applications of these techniques to other
classes of balancing networks. The major problem still left open by our work is
to formally characterize all properties of balancing networks that are preserved
under the introduction of decrement operations via antitokens.
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