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Abstract. Most complexity measures for concurrent algorithms for asynchronous shared-memory
architectures focus on process steps and memory consumption. In practice, however, performance of
multiprocessor algorithms is heavily influenced by contention, the extent to which processes access the
same location at the same time. Nevertheless, even though contention is one of the principal
considerations affecting the performance of real algorithms on real multiprocessors, there are no
formal tools for analyzing the contention of asynchronous shared-memory algorithms.

This paper introduces the first formal complexity model for contention in shared-memory
multiprocessors. We focus on the standard multiprocessor architecture in which n asynchronous
processes communicate by applying read, write, and read-modify-write operations to a shared memory.
To illustrate the utility of our model, we use it to derive two kinds of results: (1) lower bounds on
contention for well-known basic problems such as agreement and mutual exclusion, and (2) trade-offs
between the length of the critical path (maximal number of accesses to shared variables performed by
a single process in executing the algorithm) and contention for these algorithms. Furthermore, we
give the first formal contention analysis of a variety of counting networks, a class of concurrent data
structures implementing shared counters. Experiments indicate that certain counting networks
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outperform conventional single-variable counters at high levels of contention. Our analysis provides
the first formal model explaining this phenomenon.

Categories and Subject Descriptors: F.2.m [Complexity Classes]: Miscellaneous

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Contention, counting networks, mutual exclusion

1. Introduction

Most complexity measures for concurrent shared-memory algorithms focus on
process steps and memory consumption. In practice, however, performance of
programs on shared-memory multiprocessors is heavily influenced by contention,
the extent to which processes access the same location simultaneously. Because
of limitations on processor-to-memory bandwidth, performance suffers when too
many processes attempt to access the same memory location simultaneously. The
phenomenon of memory contention is well known to practitioners, and a variety
of mechanisms are used in practice to reduce contention.1 Nevertheless, even
though contention is one of the principal considerations affecting the perfor-
mance of real programs on real multiprocessors, no formal theoretical model
exists for analyzing the contention of asynchronous shared-memory algorithms.

This paper introduces a formal complexity model for contention in shared-
memory multiprocessors. This model (like all complexity models) is an abstrac-
tion of how real machines actually behave. Nevertheless, we believe it is accurate
enough to make useful comparisons, and simple enough to be tractable. To
illustrate the power of the model, we use it to derive two kinds of results: (1)
lower bounds on contention for well-known problems such as agreement and
mutual exclusion, and (2) trade-offs between the critical path (maximal number
of accesses to shared variables performed by a single process in executing the
algorithm) and contention. Informally, these trade-offs capture the notion that
one can reduce contention when concurrency is high only by paying a cost when
concurrency is low, and vice-versa. In addition, we give for the first time a formal
contention analysis of a variety of counting networks, a class of low-contention
data structures that implement highly-concurrent shared counters.2

We focus on a multiple instruction/multiple data (MIMD) architecture in
which n asynchronous processes communicate by applying read, write, and
read-modify-write operations to a shared memory. A read-modify-write operation
atomically reads a value v from a memory location, writes back f(v), where f is a
predefined function, and returns v to the caller. Nearly all modern multiproces-
sor architectures support some form of read-modify-write operation. Examples
include test-and-set, memory-to-register swap, fetch-and-add [Gottlieb et al.
1984], compare-and-swap [IBM], and load-linked/store-conditional instructions
[MIPS Computer Company; Digital Equipment Corporation 1992]. Asynchrony

1 Examples include test-and-test-and-set locks [Rudolph 1983], exponential backoff [Anderson 1990;
Metcalfe and Boggs 1976], combining networks [Gottlieb et al. 1984; Pfister and Norton 1985], and
clever algorithms for spin locks and barriers [Anderson 1990; Graunke and Thakkar 1990; Mellor-
Crummey and Scott 1990].
2 See, for example, Aspnes et al. [1991], Aharonson and Attiya [1992], Aiello et al. [1994], Busch et
al. [1994], Busch and Mavronicolas [1994], Hardavellas et al. [1993], Herlihy et al. [1992], Herlihy et
al. [1991], and Klugerman and Plaxton [1992].
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means that there is no bound on processes’ relative speeds. In modern shared-
memory multiprocessors, sources of asynchrony include page faults, cache
misses, scheduling preemption, clock skew, variation in instruction speeds, and
perhaps even processor failure.

In our model, simultaneous accesses to a single memory location are serialized.
Only one operation succeeds at a time, and other pending operations must stall.
Our measure of contention is simply the worst-case number of stalls that can
occur.

To illustrate the use of this model, we analyze contention in several fundamen-
tal shared-memory algorithms and data structures. We derive tight or, in some
cases, nearly tight asymptotic bounds on the contention produced by several
classes of counting networks studied in the literature. In each case, we show that
the contention in the counting network is indeed substantially lower than the
contention incurred by a straightforward single-variable implementation of a
shared counter. Recent experiments have shown that the bitonic counting
network substantially out-performs conventional single-variable counters at high
levels of concurrency [Herlihy et al. 1992]. This paper presents the first formal
model of this phenomenon. In addition, we show that our method can be used to
analyze the contention of any counting network satisfying certain smoothness
properties.

The consensus problem [Fischer et al. 1985] is fundamental to synchronization
without mutual exclusion and lies at the heart of the more general problem of
constructing highly concurrent data structures [Herlihy 1991]. We give the first
bounds on contention in shared-memory algorithms for consensus. The bounds
are tight: wait-free consensus has contention Q(n), where n is the number of
processes participating in the protocol. Bounds for consensus imply lower bounds
for a variety of more complex data structures and protocols. The randomized
consensus problem3 is a variation of consensus in which processes are required to
reach agreement in finite expected time (instead of finite time). Randomization
has a surprising effect: it allows contention to be traded against critical path
length. The contention c can vary from Q(n) to Q(1), but the length of the
critical path is at least (n 2 1)/c.

Next we show that n-process mutual exclusion also has an inherent trade-off
between the contention and the length of the critical path. In contrast to
consensus, mutual exclusion permits processes to wait for one another. In fact,
any solution to the mutual exclusion problem necessarily requires waiting.
Intuitively, this problem yields a weaker critical-path/contention trade-off. We
define one-shot mutual exclusion, a subproblem of mutual exclusion that must be
solved by any mutual exclusion protocol, but that does not a fortiori require
waiting, and show that for any one-shot mutual exclusion protocol with conten-
tion c the length of the critical path is at least V(log n/c).

The remainder of the paper is organized as follows. Section 2 describes our
formal model of contention. Section 3 presents our contention analysis of the
bitonic, periodic, and linearizable counting networks, and compares their conten-
tion with the straightforward single shared-variable solution. It concludes by
showing how the same methods can be used to analyze the contention of

3 See, for example, Abrahamson [1988], Aspnes [1990], Aspnes and Herlihy [1990], Aspnes and
Waarts [1992], Ben-Or [1983], Chor et al. [1987], Dwork et al. [1992], and Rabin [1983].
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balancing networks in general, provided they have certain smoothness properties.
Section 4 derives lower bounds for contention and critical-path/contention
trade-offs inherent in consensus. Section 5 analyses the critical-path/contention
trade-offs inherent in mutual exclusion. Section 6 closes with a discussion.

2. Model

We consider a multiple instruction/multiple data (MIMD) architecture in which
n asynchronous processes communicate by applying read, write, and read-modify-
write operations to a shared memory. A read-modify-write operation atomically
reads a value v from a variable, writes back f(v), where f is a predefined
function, and returns v to the caller. Asynchrony means that there is no bound on
processes’ relative speeds.

Informally, an invocation occurs when a process initiates a memory operation.
Once initiated, an operation is pending until the invoking process receives a
response. A process may have multiple pending operations to different shared
variables, and a variable may have multiple pending operations from different
processes. In a complexity model that does not take contention into account, a
process is “charged” only for the number of memory operations it invokes. To
capture the effects of contention, however, we need to assign a cost for
simultaneous accesses to the same variable. Suppose processes P and Q both
have pending operations for variable x. If Q receives a response for x before P,
then we will also “charge” P for Q’s response. This definition is intended to
capture the notion that accesses to x are serialized at some level, and that any
response to Q represents a delay for P.4

Formally, an execution is a finite or infinite sequence of invocation and response
events. Each event is labeled with a process name and a variable in shared
memory. An invocation event has the form ^P inv x&, and a response event ^P res
x&, where P is a process id and x a shared variable. A response matches an
invocation if their process and variable names agree. An operation in an
execution is a pair consisting of an invocation and the next matching response.5 If
the matching response does not exist we say that the operation is pending. An
execution is well-formed if every response event matches a unique preceding
invocation event. All executions considered in this paper are assumed to be well
formed.

Definition 2.1. An operation’s contention cost in an execution is the number of
response events from the same variable that occur after the operation’s invoca-
tion, up to but not including the matching response (if it exists). A process’s
contention cost in an execution is the sum of the contention costs of its
operations. An execution’s contention cost is the sum over all processes of the
process’s contention cost.

Definition 2.2. An operation’s overall cost is one plus its contention cost. A
process’s overall cost in an execution is the sum of the overall costs of its

4 A modified model would be required for architectures with hardware combining [Gottlieb et al.
1984]. See Section 6 for possible extensions of our model.
5 This formal notion of an operation in an execution should not be confused with the informal notion
of a memory operation such as read or write.
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operations. An execution’s overall cost is the sum over all processes of the
process’s overall cost.

For example, consider the following execution.

P

Q

R

P

Q

RMW

RMW

RMW

Ok

Ok

x

x

x

x

x.

(1)

Here, processes P, Q, and R issue concurrent read-modify-write operations to
variable x, and P and Q receive responses. P’s response is first, so it has
contention cost 0 and overall cost 1. Q is charged one unit of contention cost for
P’s response, so it has contention cost 1 and overall cost 2. R is charged one unit
contention cost for P’s response, and one unit contention cost for Q’s response,
so it has contention cost 2 and overall cost 3. The contention cost of the
execution is 3 and its overall cost is 6.

An n-process protocol is a program for solving a task in which up to n processes
may participate.

Definition 2.3. The contention of an n-process protocol is the worst case, over
all executions of the protocol, of the ratio of the execution’s contention cost
divided by n.

For example, consider the protocol 3 in which n processes apply a single
read-modify-write operation to variable ,. It is not hard to see that 3 has
contention Q(n): if all processes execute invocations, then the first response
charges one unit of contention cost to all remaining n 2 1 processes, the second
to all the remaining n 2 2, and so on.

A protocol’s performance may also be limited by conflicts at certain widely-
shared memory locations, often called hot spots [Pfister and Norton 1985].

Definition 2.4. A protocol’s hot-spot contention is the maximal number of
pending operations for any variable in any execution.

Roughly speaking, hot-spot contention measures the contribution of an indi-
vidual variable to the overall contention of the protocol. For example, the
protocol 3 described above has hot-spot contention n.

It is also interesting to consider computations that need not terminate.
Informally, a concurrent object is a data structure shared by n processes. A
concurrent object is an instance of an abstract data type, having a concrete
representation (typically occupying multiple memory locations), and providing a
set of operations (typically invoking multiple memory operations). Unlike proto-
cols, objects may be long-lived: in an infinite execution, a process may apply an
unbounded number of operations to an object. We sometimes refer to object
operations and memory operations to distinguish between the primitive operations
provided by the memory, and the composite operations provided by objects.

Formally, we model an object operation in an execution as a set of memory
operations.
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Definition 2.5. An object’s contention in a finite execution is the contention
cost of that execution divided by the number of object operations completed. Its
contention in an infinite execution is the limit of its contention in the finite
prefixes. An object’s amortized contention is the maximal contention for any
infinite execution.

Definition 2.6. An object’s cost in a finite execution is the overall cost of that
execution divided by the number of object operations completed. Its cost in an
infinite execution is the limit of its cost in the finite prefixes. An object’s amortized
cost is the maximal cost for any infinite execution.

For example, consider an object implemented by a single variable, having
operations implemented by a single read-modify-write operation. In the worst-
case execution, all n processes have pending operations, and as soon as a process
receives a response it immediately issues another invocation. An execution of
length k has contention cost (n 2 1) z k (overall cost n z k), and completes k
object operations, so this object has amortized contention at least n 2 1
(amortized cost at least n). This bound on contention is easily seen to be tight, so
the amortized contention of a read-modify-write operation in our model is Q(n),
implying that the performance of read-modify-write operations degrades linearly
with the degree of concurrency, behavior roughly consistent with experimental
observation [Anderson 1990].

Definition 2.7. The critical path length of a protocol is the maximal number of
memory operations performed by any single process in any protocol execution.

In our discussions, it is sometimes convenient to treat contention analysis as a
game between the set of processes and an adversary scheduler that seeks to
maximize contention.

3. Counting Networks

Many fundamental multiprocessor coordination problems can be expressed as
counting problems: processes collectively assign themselves successive values
from a given range, such as addresses in memory or destinations on an
interconnection network. Applications include implementing a shared counter,
load balancing, and barrier synchronization. Counting networks are a class of
concurrent data structures that can be used to count.

In this section, we give a formal contention analysis of several counting
networks. First, we show that the amortized contention of the bitonic counting
network [Aspnes et al. 1991] is much lower than the conventional solution in
which all n processes increment a single shared variable using a read-modify-
write operation. This model is consistent with experimental results showing that
counting networks perform better than single-variable counters at high levels of
concurrency [Herlihy et al. 1992]. We also give tight bounds for contention in
linearizable counting networks [Herlihy et al. 1991], an extension of the standard
counting networks in which the order of the values assigned reflects the real-time
order of the assignment operations. We also give nearly tight bounds for the
periodic counting network [Aspnes et al. 1991], and show how our methods can
be used to analyze the contention of balancing networks in general, provided
they have certain smoothness properties. Finally, we show how any counting

784 C. DWORK ET AL.



network can be transformed into a low-contention network by prepending a
certain filter network.

3.1. BRIEF REVIEW. This section gives a brief informal review of counting
networks. For more details, see Aspnes et al. [1991].

A counting network, like a sorting network [Cormen et al. 1990], is a directed
graph whose nodes are simple computing elements called balancers, and whose
edges are called wires. Each token (input item) enters on an input wire, traverses
a sequence of balancers, and leaves on an output wire. Unlike a sorting network,
tokens can enter a counting network at arbitrary times, they may be distributed
unevenly among the input wires, and they propagate through the network
asynchronously.

A balancer can be viewed as a computing element with two input wires and two
output wires, referred to as the upper and lower wires. Informally, a balancer is a
toggle, sending input tokens alternately to the upper and lower wires.

A balancing network of width w is a collection of balancers, where output wires
are connected to input wires, having w designated input wires x0, x1, . . , xw21
(which are not connected to output wires of balancers), w designated output
wires y0, y1, . . , yw21 (also unconnected), and containing no cycles. (We will
abuse this notation and use xi( yi) both as the name of the ith input (output) wire
and a count of the number of tokens received on the wire.) The safety and
liveness of the network follow naturally from the above network definition and
the properties of balancers, namely, that balancers do not create tokens: ¥ i50

w21 xi

$ ¥ i50
w21 yi, and for any finite sequence of m input tokens, within finite time the

network reaches a quiescent state, that is, one in which ¥ i50
w21 yi 5 m.

The depth of a balancing network is the maximal depth of any wire, where the
depth of a wire is defined as 0 for a network input wire, and 1 1 maxi[{0,1} depth
( xi) for the output wires of a balancer having input wires xi, i [ {0, 1}. A layer
of depth d is defined as the set of balancers at depth d.

A counting network of width w is a balancing network whose outputs y0, . . ,
yw21 have the step property in quiescent states: 0 # yi 2 yj # 1 for any i , j.

The bitonic counting network [Aspnes et al. 1991] is a specific counting
network that is isomorphic to Batcher’s bitonic sorting network [Batcher 1968]. It
is constructed recursively as follows: to construct a bitonic network of width 2k,
one first constructs two separate bitonic networks of width k each and then
merges their two output sequences using a width 2k balancing network called a
merger. Each layer of the merger consists of k balancers. Its first layer consists of
balancers b1, . . . , bk such that the input wires of bi are the ith and k 2 i 1 1th
output wires of the above first and second counting networks of width k,
respectively. (Other details of the structure of the merger are not used here and
hence omitted from the description.) The merger guarantees the step property
on its outputs in a quiescent state, provided each of its input sequences has the
step property. This construction gives a counting network consisting of O(log2 w)
layers, each consisting of w/ 2 balancers. Note that a single balancer is both a
merger and a counter of width 2.

In a MIMD shared-memory multiprocessor, a balancing network is imple-
mented as a data structure in memory. Balancers are records, wires are pointers
from one record to another, and each balancer’s state is a bit. Tokens generated
by process P enter the network on input wire P mod w, and each process
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shepherds at most one token through the network at a time. A process traverses
the network by atomically complementing the balancer state (a read-modify-write
operation) and using the return value to choose which pointer to follow.
Contention arises when multiple processes concurrently visit the same balancer.

As reported elsewhere [Aspnes et al. 1991; Herlihy et al. 1992], in experiments
the bitonic counting network proved to be substantially more scalable than
conventional single-variable techniques such as spin locks, queue locks, or
read-modify-write operations. It has roughly the same performance as a software
combining tree [Goodman et al. 1989], which is also a low-contention data
structure (although not wait-free). It has been observed experimentally that some
of this performance difference can be attributed to contention, and some to the
serializing effect of locks [Herlihy et al. 1992].

3.2. CONTENTION IN THE BITONIC COUNTING NETWORK. In this section, we
show tight asymptotic bounds for amortized contention in the bitonic network. In
particular, we show that for a bitonic network of width w with n concurrent
processes, the amortized contention of a layer is Q(n/w). In other words, when
m tokens traverse this layer, the worst-case contention cost divided by m, goes to
Q(n/w) when m goes to infinity. Since a token traverses exactly Q(log2w) layers
when it traverses the network, the amortized contention of the entire network
is at most O((n/w)log2w). (That is, the worst case contention cost of an
execution in which m tokens traverse the network, divided by m, approaches
O((n/w)log2w) as m goes to infinity.) In a separate argument, we display an
execution with amortized contention V((n/w)log2w), so the bounds are tight.

The overall cost of the bitonic counting network can now be compared with
that of the single-variable solution. In a single-variable counter, up to n processes
may be performing concurrent increments, so one increment has contention cost
Q(n) and overall cost Q(n). The amortized cost of traversing the network is the
sum of the number of shared variables a process has to access and the amortized
contention. Thus, in the bitonic counting network, our amortized contention
analysis shows that the amortized cost is Q((n/w)log2w). This cost is minimized
when w 5 n, yielding Q(log2n).

Notice that the temporary contention of a layer may be quite high. It is always
possible to accumulate all n concurrent processes on one balancer. For example,
take a bitonic network with eight input wires and eight processes. Let eight
tokens traverse it. Two of them must arrive at the rightmost upper balancer; halt
them and let the others exit the network. Next re-enter the other six processes.
Two of them will reach the contended balancer; halt these two and let the others
exit. Now we have accumulated four tokens at one balancer. We can continue in
this fashion until all n processes contend for the same balancer, thereby reaching
contention of V(n) at that layer. In fact, temporary contention of V(n) can
similarly be created for any counting network. Nevertheless, the amortized
contention remains low. The intuition, which must be proved, is that if the
adversary creates locally high contention, it must have let many tokens traverse
the network at relatively little contention, yielding a low amortized contention.

Henceforth, we consider a bitonic network of width w with n concurrent
processes. We will show that the amortized contention of a layer is O(n/w).
Since the number of layers is O(log2w) the bound of O((n/w)log2w) follows.
Recall that on its way through a network of width w, a token first passes through
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a counting network Cw/ 2 of width w/ 2, and then through a merger Mw of width
w. If we continue to unwind the recursive construction of Cw/ 2, and recall that
C2 5 M2 consists of a single balancer, we see that the token passes sequentially
through a series of log w mergers M2, M4, M8, . . . , Mw. It therefore suffices to
show that, for any 2 # k # w, where k is a power of 2, and any layer , of Mk, a
token incurs “on average” contention cost at most O(n/w) as it passes through a
balancer at layer , of Mk.

More specifically, for any merger Mk in the recursive construction, and any
layer , of Mk, we argue as follows. By construction, the number of balancers in
layer , is k/ 2. We define nk 5 k(n/w), and partition the tokens arriving at layer
,, over the lifetime of the system, into generations of size k. We will show
(Lemma 3.2.4) that roughly speaking, as a group, each generation of tokens at
layer , causes contention cost O(nk) to all generations combined. It then follows
that an average generation is charged cost O(nk). (If 10 people each throw 5
balls into the air, and all the balls are caught, then the average person catches 5
balls.) Dividing by the number of tokens in a generation, it follows that the
average token passing through , is charged cost O((nk/k)) 5 O(n/w).

A layer , of Mk of Ck has the balancer i-smoothness property if for every pair of
balancers b, b9 in ,, when Ck is in a quiescent state, the absolute value of the
difference between the total number of tokens that have passed through b and
the total number of tokens that have passed through b9 is bounded by i. A layer
, of a balancing network has the input wire i-smoothness property if for any two
wires w and w9, inputs to layer ,, when the network is in a quiescent state the
total number of tokens that have arrived at level , on wire w and the total
number of tokens that have arrived at level , on wire w9 differ by at most i. The
output wire balancing property is defined analogously.

LEMMA 3.2.1. Fix a network Ck in the recursive construction of Cw, and let Mk

be the merger of Ck. Then every layer , of Mk has the balancer 2-smoothness
property.

PROOF. We split the proof into two cases, according to whether , is the first
layer of Mk or is a later layer.

CLAIM 3.2.2. The first layer of Mk has the balancer 1-smoothness property.

PROOF. Let b and b9 be any two balancers of layer ,. Since , is the first layer
of Mk, both b and b9 have one input wire from the upper Ck/ 2 and one from the
lower Ck/ 2 (see description of the merger in Section 3.1). When Ck is in a
quiescent state, all the enclosed subnetworks are quiescent, so in particular both
copies of Ck/ 2 are in a quiescent state and therefore their outputs enjoy the step
property. Without loss of generality, let the upper input wire of b be higher than
(have smaller index than) the upper input wire of b9. By the construction of Mk,
this means that the lower input wire of b is lower than (has greater index than)
the lower input wire of b9. Let x and y denote the total number of tokens that
entered b on its upper and lower input wires, respectively. Similarly, let z and w
denote the number of tokens that entered b9 on its upper and lower input wires,
respectively. Since the upper input wires come from the upper copy of Ck/ 2 we
have by the step property that x $ z $ x 2 1; similarly, by the step property of
the lower copy of Ck/ 2, w $ y $ w 2 1. The total number of tokens that pass
through b is x 1 y, while the total passing through b9 is z 1 w. From the
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inequalities, we get x 1 y $ z 1 w 2 1 and z 1 w $ ( x 2 1) 1 y, from which
we get a maximum difference of 1, so the claim holds. e

Since the balancers at the first layer of Mk have the 1-smoothness property, the
output wires at the first layer have the output-wire 1-smoothness property.
(Because, consider any two balancers b and b9, through which, respectively, c
and c 2 1 tokens have passed. Then the number of tokens leaving b on the
upper output wire is c/ 2, while the number of tokens that have left on the
lower output wire of b9 is (c 2 1)/ 2, which differ by at most 1.) Moreover,
since the output wires of the first layer are precisely the input wires to the second
layer, we have that layer 2 of Mk has the input wire 1-smoothness property. In
general, if layer , has the input wire 1-smoothness property then it has the
balancer 2-smoothness property. The lemma thus follows from the following
claim.

CLAIM 3.2.3. In any balancing network, if layer , has the input wire 1-smooth-
ness property, then so does layer , 1 1.

PROOF. Let b and b9 be arbitrary balancers in layer ,. Let b receive x0 and x1
input tokens on its upper and lower input wires, respectively. Similarly, let b9
receive x90 and x91 tokens on its input wires. The maximum number of tokens
leaving on one of b’s output wires is at most max{ x0, x1}, while the minimum
number of tokens leaving on one of b9’s output wires is a least min{ x90, x91}. But
since layer , has the input wire 1-smoothness property, max{ x0, x1} 2 min{ x90,
x91} # 1, so layer , has the output wire 1-smoothness property. Since the output
wires of layer , are the input wires of layer , 1 1, the claim follows. e

This completes the proof of the Lemma. e

Let Mk be as in the Lemma, and let b be a balancer in layer , of Mk. We say
that a token belongs to the gth generation of tokens arriving at b if it is either the
(2g 2 1)th or the (2g)th token to arrive at b. The gth generation of , is the set
of gth generation tokens of the balancers in layer ,. Note that the gth generation
of , has k tokens.

We say that by time t, the gth generation has completed its arrival at , if for
each balancer bi in ,, both tokens of the gth generation have already arrived by
that time. Finally, we say that at time t there are f tokens of the gth generation
missing at layer , if by time t exactly k 2 f tokens of generation g have arrived at
,.

FACT 1. Let Ck be in a quiescent state, and let g be the maximum generation
such that some balancer b in layer , of Mk has received at least one generation g
token. Then all balancers in , have received at least one generation g 2 1 token.

PROOF. Let c be the number of tokens that have arrived at b. By Lemma
3.2.1, layer , has the balancer 2-smoothness property, so every other balancer b9
has received at least c 2 2 tokens. If c 5 2g, then b has received both its
generation g tokens and hence every other balancer b9 has received at least 2g 2
2 5 2( g 2 1) tokens, and has therefore completed generation g 2 1. If c 5
2g 2 1 then every other balancer in , has received at least c 2 2 5 2( g 2 1) 2
1 tokens. Thus, in either case, every balancer in , has received at least one
generation g 2 1 token. e
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Recall that nk 5 k(n/w). Note that nk is the maximum number of concurrent
tokens that can be traversing Ck at any time.

FACT 2. Let t be the time at which the first gth generation token arrives at ,.
Then the number of tokens of generations strictly less than g 2 1 stuck at ,, plus the
number of tokens of generations strictly less than g 2 1 still missing from layer ,, is
at most nk.

PROOF. Run the network to quiescence from its state at time t. Let g9 be the
maximum generation such that some balancer in layer , has received at least one
generation g9 token. Clearly, g9 $ g. By Fact 1, every balancer has received at
least one token from generation g9 2 1 $ g 2 1. Thus, Fact 2 follows
immediately from the fact that at most nk tokens (the maximum number of
tokens in Ck at any time) were involved in moving Ck to a quiescent state. e

Recall that the number of tokens in the gth generation at , is exactly k. As
described above, to complete the proof it is enough to show that the contention
cost charged in layer , of Mk due to the gth generation is O(nk), since from this
it follows that the average contention cost (over all generations) incurred by a
generation is O(nk), and therefore that the average token incurs contention cost
O(nk/k) 5 O(n/w) at each layer (because a token passes through just one
balancer at layer ,).

When a token leaves a balancer, it causes a charge of unit contention cost to
all other tokens waiting at this balancer. By contention charged at layer , between
generations g and g9, we refer to the contention costs incurred by tokens of
generation g9 waiting at a balancer of layer , when a token of generation g leaves
the balancer, and to the contention costs incurred by tokens of generation g
waiting at a balancer of layer , when a token of generation g9 leaves the
balancer. To complete the proof we show:

LEMMA 3.2.4. Consider the gth generation of tokens arriving at layer , of Mk.
The maximal contention charged between this generation and generations less than
or equal to g at this layer is at most 5nk.

PROOF. Consider the first token of generation g to arrive at ,. Say it arrives at
time t. By Fact 2, the total number of tokens of generations less than g 2 1 stuck
at , or missing from , is at most nk. A generation g token can encounter (and
hence cause a charge of contention cost or incur a charge) (1) these tokens of
generation less than g 2 1, (2) generation g 2 1 tokens, and (3) generation g
tokens. There are at most nk tokens of type (1), and at most wk each of types (2)
and (3). The contention cost charged between each token of generation g and
tokens of generations less than or equal to g 2 1 is at most the number of tokens
of these generations that this token encounters at its balancer. Each token of
generation less than or equal to g 2 1 can be encountered by up to two tokens of
generation g, for a sum of 2(nk 1 wk) contention cost. Of the at most two
generation g tokens at any balancer, at most one can cause a charge of
contention cost to the other, for a sum of wk contention cost over the entire
layer. Summing, we get 2nk, 2wk, and wk for contention costs of type (1), (2),
and (3), respectively, for a total contention cost of at most 5nk. e

We have shown that the amortized contention of a token at any layer is
O(n/w). Amortized contention of V(n/w) is easily seen to occur in an execution
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where on each balancer we have 2n/w tokens proceeding in lock step. We have
therefore proved the following theorem.

THEOREM 3.2.5. The amortized contention of a layer of bitonic network of
width w and concurrency n is Q(n/w).

COROLLARY 3.2.6. The amortized contention of the bitonic network of width w
and concurrency n is Q(n/w log2w).

3.3. CONTENTION IN LINEARIZABLE COUNTING NETWORKS. In this section, we
observe that the amortized contention of a layer of the folded linearizable
counting network of width w [Herlihy et al. 1991] is also Q(n/w). More
specifically, a linearizable counting network is a counting network in which the
order of the values assigned to processes is consistent with the real-time order of
the execution. For example, if process P is assigned a value (leaves the counting
network) before process Q requests one (enters the counting network), then
process P’s value must be less than Q’s. Linearizable counting lies at the heart of
a number of basic problems, such as concurrent time-stamp generation, concur-
rent implementations of shared counters, FIFO buffers, snapshots, and similar
data structures (e.g., [Dwork and Waarts 1993; Ellis and Olson 1988; Gottlieb et
al. 1983]).

There is no linearizable counting network with finite width [Herlihy et al.
1991], although linearizable counting constructions based on counting networks
are known [Herlihy et al. 1991]. The overall structure is to have tokens first pass
through an ordinary (nonlinearizable) counting network and then use the
resulting value (the value returned by the counter) to select an input wire into an
infinite-width linearizer. Thus, if implemented directly in terms of balancers,
these networks would have infinite size. However the infinite linearizers can be
“folded” onto finite data structures. The folded network is a width w by depth d
array of multibalancers. For this section only, let us define layer j of the linearizer
to be the set of balancers with lower input wire of depth j. Let ci, j denote a
multibalancer in the folded network whose upper input wire is wire i and whose
layer is j; similarly, let bi, j denote a balancer in the infinite network whose upper
input wire is i and whose layer is j. Then the folded network simulates the
original network by simply having ci, j simulate balancers bi, j, bi1w, j, bi12w, j and
so on. Like a balancer, a multibalancer can also be represented as a record with
toggle, upper, and lower fields. The upper and lower fields are still pointers to the
neighboring multibalancers or counters, but the toggle component is more
complex, since it encodes the toggle states of an infinite number of balancers.

Note that, since each balancer in the infinite linearizer is traversed by only two
tokens, the linearizer in the infinite construction does not have high contention.
However, the folding of the network introduces contention since tokens passing
through different balancers in the original network may end up passing through
the same multibalancer in the folded network. Here, we will argue that this
contention is low.

Only two points in the construction of the linearizable counting networks of
Herlihy et al. [1991] are necessary for the contention analysis. First, since the
input to the linearizer is the output of a counting network, each layer of the
folded linearizer has the input wire 1-smoothness property. Second, the tokens at
a balancer may be partitioned into generations as follows: Intuitively, we view
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each “wave” of tokens leaving the nonlinearizable counting network as a
generation of inputs to the infinite linearizer. Thus, the first generation of tokens
to enter layer 1 of the infinite linearizer is the set of tokens entering at wires 1 to
w of the infinite linearizer, the next generation of tokens to enter layer 1 is the
set of tokens arriving at wires w 1 1, . . . , 2w, and so on. In general, the gth
generation to enter a layer of the infinite network is the set of tokens entering
the layer on wires ( g 2 1)w 1 1, . . . , gw. In the case of the folded network,
this translates as follows: a token arriving at a multibalancer ci, j belongs to
generation g of layer j if the multibalancer simulates balancer b( g21)w1i, j for this
token. The above two facts immediately imply that generation g tokens encoun-
ter at most n tokens from previous generations (because the number of tokens of
generations at most g 2 1 missing or stuck at any time can be at most n, the
upper bound on the concurrency), and at most w tokens from their own
generation (because a generation contains at most w tokens by definition). Thus,
Lemma 3.2.4 can be employed to show that the amortized contention of one
layer of the folded network is O(n/w).

Again, amortized contention of V(n/w) per layer occurs in an execution in
which all n processes proceed in lock step, and hence the above bound is tight.

3.4. CONTENTION IN OTHER COUNTING NETWORKS. First, observe that the
techniques used to analyze the contention in the bitonic and linearizable
counting networks consist of three main ideas:

(1) Determine sequences of balancers in the network such that each sequence
has the balancer k-smoothness property for some k.

(2) Partition the tokens entering each substructure into generations.
(3) Compute the contention charged between a generation and its previous

generations using the fact that at each substructure, tokens from generation
g encounter at most m tokens from generations smaller than g 2 k/ 2,
where m is the number of concurrent processes that can enter the substruc-
ture.

For example, consider the periodic counting network [Aspnes et al. 1991]. It is
isomorphic to the balanced periodic sorting network [Dowd et al. 1989]. In
particular, a periodic network of width w consists of a sequence of log w identical
subnetworks each of which is of depth log w and called Block[w]. An easy
induction on the depth of the layer shows that each block has the output wire log
w-smoothness property. Consequently, Claim 3.2.3 implies that each layer of
depth greater than log w has the input wire log w-smoothness property. Almost
identical reasoning to that of Section 3.2 immediately shows that the amortized
contention of each layer of the periodic counting network is at most O(n/w 1
log w). (To compute the above we need to distinguish between the first block
and the later blocks.) Hence the amortized contention of the complete periodic
network is O((n/w)log2w 1 log3w) which is minimized when w 5 n, yielding
O(log3w).

In general, given a balancing network with certain smoothness properties, one
can use the above method to analyze the network’s contention. For example,

THEOREM 3.4.1. Let R be a balancing network of width w and depth d with w/2
balancers at each layer. Assume that the set of all balancers in R have the balancer
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k-smoothness property for some k. Then the amortized contention of R is
O(((n/w) 1 k)d).

PROOF. Analogously to the proof of Fact 2, it follows:

CLAIM 3.4.2. Let t be the time at which the first gth generation token arrives at
layer ,. Then the number of tokens of generations strictly less than g 2 k/2 stuck at
,, plus the number of tokens of generations strictly less than g 2 k/2 still missing
from ,, is at most n.

The above claim implies that each token of generation g can encounter at most
n 1 k/ 2w tokens of generations less than g. Analogously to the proof of
Lemma 3.2.4, it thus follows that the maximal contention charged at layer ,
between generation g and generations less than or equal to g is at most O(n 1
kw/ 2). Since each generation consists of w tokens, the above implies that the
amortized contention of a layer is O((n/w) 1 (k/ 2)). Thus the amortized
contention of the complete network is O(d((n/w) 1 (k/ 2))). e

The smoothness property stated in Theorem 3.4.1 holds with k 5 O(log w)
[Aiello et al. 1994] for all known optimal counting networks constructions
[Klugerman and Plaxton 1992; Aiello et al. 1994], yielding that all known optimal
constructions have amortized contention of O(((n/w) 1 log w)log n) (since
their depth is O(log n)), which is O(log2 w) for w 5 n. It is not known whether
such a smoothness property, or any other, holds for counting networks in
general. Hence, while it follows from the above method that known constructions
have low amortized contention, one must await a better understanding of the
deep structure of counting networks, before finding whether counting networks
in general have low amortized contention.

Nevertheless, we can transform any counting network of unknown structure,
whatever its contention, into a low contention network as follows: The above
Block[w] has the output wire log w-smoothness property. Thus, we can transform
any counting network to have low contention by filtering its inputs through
Block[w].

4. Consensus

In this section, we give lower bounds for hot-spot contention in wait-free
consensus, as well as a critical-path/contention trade-off inherent in randomized
consensus.

Consensus is fundamental to synchronization without mutual exclusion and
hence lies at the heart of the more general problem of constructing highly
concurrent data structures [Herlihy 1991]. Thus the bounds and trade-offs
derived here imply bounds and trade-offs for a variety of more complex data
structures and protocols.

The consensus task [Dolev et al. 1987; Dwork et al. 1988; Fischer et al. 1985] is
a decision problem in which each of n asynchronous processes starts with an
input value 0 or 1 (not known to the others), and runs until it chooses a decision
value and halts. The protocol must be consistent: no two processes choose
different decision values; and valid: the decision value is some process’s input
value. A consensus protocol is wait-free if each process decides after applying a
finite number of memory operations, and it is randomized wait-free if each
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process decides after applying a finite expected number of memory operations,
where interleavings and failures are chosen by an adversary scheduler. (Note that
this requirement implies that the protocol terminates with probability one.)
Randomized consensus is a Las Vegas algorithm: if processes choose, they never
choose distinct values.

It is well known that there is no wait-free consensus protocol if processes
communicate only by reading and writing shared variables [Dolev et al. 1987;
Loui and Abu-Amara 1987]. Fortunately, however, most modern architectures
provide some form of read-modify-write operation. In Section 4.1, we show that
even when read-modify-write operations are available, wait-free consensus has
inherently high hot-spot contention.

By contrast, randomized wait-free consensus does not require read-modify-
write operations.6 In Section 4.2, we show that randomized wait-free consensus
does not have inherently high hot-spot contention, but there is an inherent
trade-off between hot-spot contention and critical path length, even for protocols
that use read-modify-write operations.

4.1. WAIT-FREE CONSENSUS. In this section, we show that wait-free n-process
consensus has contention Q(n).

For the upper bound, simply initialize a memory location to the distinguished
value ', and have each process execute compare-and-swap(location,',input).
We now show that any wait-free n-process consensus protocol has contention
V(n).

LEMMA 4.1.1. An n-process protocol with hot-spot contention c has contention
at least V(c2/n).

PROOF. If c operations are pending, then the first response charges unit
contention cost to all other c 2 1 processes, the next to the remaining c 2 2
processes, and so on. The total contention cost is V(c2). Dividing by n to obtain
an average per process contention cost yields V(c2/n). e

COROLLARY 4.1.2. An n-process protocol with hot-spot contention n has con-
tention at least V(n).

We show that any wait-free consensus protocol has hot-spot contention V(n)
by showing that the adversary can force all n processes simultaneously to access a
single shared variable. Using a technique introduced by Fischer et al. [1985], we
construct a system configuration from which both 0 and 1 are still possible
decisions but from which any step by any process will determine the outcome.
Symmetry and commutativity conditions then imply that all processes must be
about to apply an operation to the same shared variable.

Following Fischer et al. [1985], a system configuration is bivalent if either
decision value is still possible, that is, the current execution can be extended to
yield different decision values. Otherwise, it is univalent. An x-valent configura-
tion, for x [ {0, 1}, is a univalent configuration with eventual decision value x.
A decision step is an operation that carries a protocol from a bivalent to a

6 See, for example, Abrahamson [1988], Aspnes [1990], Aspnes and Herlihy [1990], Aspnes and
Waarts [1992], Chor et al. [1987], and Dwork et al. [1992].
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univalent configuration. The following lemma was first proved in Fischer et al.
[1985].

LEMMA 4.1.3. For every consensus protocol there exists a bivalent initial config-
uration.

THEOREM 4.1.4. Any wait-free n-process consensus protocol has hot-spot con-
tention V(n) and contention V(n).

PROOF. Consider the following scenario. By Lemma 4.1.3, there exists a
bivalent initial configuration. Beginning with the system in this configuration,
construct an execution by repeatedly choosing any process that is not about to
take a decision step, and allow that process to execute a complete operation
(invocation/response pair). This execution cannot proceed forever, since the
protocol is wait-free, so eventually the protocol must enter a configuration where
each process is about to execute an operation that will carry the protocol to a
univalent configuration. Since the protocol is still in a bivalent configuration,
there exist processes P0 and P1 about to carry the system to 0-valent and 1-valent
configurations, respectively. Suppose P0 is about to apply an operation to
variable v0, and P1 to v1. We first observe that if Q is any process about to carry
the system to a 1-valent configuration, then it must be about to apply a
read-modify-write operation to v0, for otherwise the 0-valent state in which P0’s
operation precedes Q’s operation is indistinguishable from the 1-valent state in
which Q’s operation precedes P0’s. By a symmetric argument, if R is about to
carry the system to a 0-valent configuration, then it must be about to apply an
operation to v1. Together, these observations show that v0 and v1 cannot be
distinct. If all processes issue their invocations in this configuration, then the
execution has hot-spot contention V(n). Applying Corollary 4.1.2 yields that also
the contention is V(n). e

Observe that the proof of Theorem 4.1.1 uses the requirement that the
protocol be wait-free to construct the critical bivalent configuration from which
any step would bring the system to univalence. Randomized consensus, however,
is not wait-free, and so we cannot apply this proof to obtain lower bounds for the
randomized problem. We address randomized consensus in Section 4.2.

A concurrent object X solves n-process consensus if there exists a consensus
protocol in which the n processes communicate by applying operations to a
shared X. A wait-free implementation of a concurrent data object is one that
guarantees that any process can complete any operation in a finite number of
steps, regardless of the execution speeds of the other processes. Theorem 4.1.1
implies that any wait-free implementation of an object that solves n-process
consensus has high contention. This result implies, for example, that wait-free
implementations of the fetch-and-add, compare-and-swap and the load-linked/
store-conditional operations in terms of any other primitive must have high
contention.

4.2. RANDOMIZED WAIT-FREE CONSENSUS. In this section, we show that
randomized wait-free consensus need not have Q(n) hot-spot contention. In-
deed, we can construct randomized consensus protocols with O(1) hot-spot
contention. Nevertheless, a reduction in hot-spot contention incurs a cost in the
length of the protocol’s critical path. We will demonstrate a trade-off between a
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protocol’s hot-spot contention and the length of its critical path. Note that the
contention of a randomized consensus protocol may be unbounded, since
execution lengths may be unbounded, but that high-contention executions, like
long executions, are increasingly unlikely.

First we observe that randomized consensus is possible with hot-spot conten-
tion independent of the number of processes. The randomized consensus
protocols in the literature6 were motivated by a desire to solve consensus without
read-modify-write operations, so processes in these protocols communicate by
applying read and write operations to shared variables. Moreover, in each of
these protocols, a shared variable may be written by only one process, but may be
read by multiple processes. Such a variable is called a single-writer multi-reader
atomic register. Any multi-reader variable may cause high hot-spot contention.
However, there are well-known ways to implement single-writer multi-reader
atomic registers from single-writer single-reader atomic registers [Li et al. 1989;
Singh et al. 1987] (a single-reader register can be read by at most one process).
Therefore, one can achieve randomized consensus with low hot-spot contention
simply by taking any of the multi-reader protocols and replacing each register by
a single-reader implementation, yielding a randomized consensus protocol with
O(1) hot-spot contention.7 Each read operation in the original protocol is now
implemented by V(n) reads, so the reduction in contention is accompanied by an
increase in the length of the critical path. In general, however, we will show that
the trade-off between hot-spot contention and critical path length holds even if
the protocol uses read-modify-write operations.

To analyze contention, it is convenient to treat randomized executions as if
they were nondeterministic, where each nondeterministic choice represents a
step taken with nonzero probability. The next lemma is immediate.

LEMMA 4.2.1. If some finite nondeterministic execution starting from configura-
tion s leaves the system in configuration s9, then an adversary starting in s can reach
s9 with nonzero probability.

A solo execution by P is one in which only P takes steps.

LEMMA 4.2.2. If some finite nondeterministic execution leaves the system in
configuration s, then process P must decide in some solo execution from s.

PROOF. Suppose not. By Lemma 4.2.1, an adversary can force the system to s
with nonzero probability. Once in s, the adversary can prevent the protocol from
terminating by failing all processes but P. e

THEOREM 4.2.3. Consider any randomized consensus protocol. Let , be the
minimum number of distinct variables any process accesses in any execution in
which it reaches a decision before any other process takes a step. If the protocol has
hot-spot contention c, then , $ (n 2 1)/c.

PROOF. Consider a configuration where P1 has initial value 0, and the
remaining processes P2, . . . , Pn have initial value 1. Let E be any execution in

7 Together with the proof of Theorem 4.1.4, similar reasoning gives a simple proof that in general a
many-process RMW register cannot be constructed from few-process RMW registers. This is because
any protocol using only few-process RMW registers has low hot-spot contention, while a many-
process RMW register can be used to solve consensus, which has high hot-spot contention.
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which P1 decides before any of the others takes a step (because the protocol is
nondeterministic, there may be many such executions). Let P1’s preferred path be
the sequence of variables it accesses in E, without repetition. Thus, if P1 applies
operations to v, v9, and then v again, the preferred path is v, v9. Let P1’s
preferred path be v1, v2, . . . , v,. We claim that , $ (n 2 1)/c. Observe that P1
must decide 0 in E.

We now inductively construct another execution F. F1 is the empty execution.
For 1 , i # n, let si21 be the system configuration at the end of Fi21. Lemma
6 implies that there exists a solo execution by Pi, starting from si21, in which
either (1) Pi decides a value before applying any operations to variables in P1’s
preferred path, or (2) Pi invokes an operation on a variable in P1’s preferred
path. We claim that (1) is impossible. If Pi decides a value, it must choose 1,
since P1 has taken no steps, and all processes that have taken steps have initial
value 1. Moreover, if Pi chooses 1 in some execution, then it does so with
nonzero probability starting from si21. After Pi decides, P1 may execute the
same steps as in E with nonzero probability, choosing 0. It follows that the
adversary can cause the processes to disagree with nonzero probability.

After executing Fn 5 F, the processes P2, . . . , Pn have each invoked an
operation on some variable in P1’s critical path. If ci processes are about to apply
an operation to vi, then ¥ i51

, ci $ n 2 1, implying that some ci $ (n 2 1)/,,
and since c $ ci, it follows that , $ (n 2 1)/c. e

5. Mutual Exclusion

In this section, we study contention in solutions to the mutual exclusion problem.
In this problem, processes must repeatedly access a critical section in such a way
that at any given time there is at most one process in the critical section. A
solution must satisfy the following liveness property, referred in the sequel by
weak liveness: in any execution of the protocol in which no process crashes, if any
process tries to enter the critical section then eventually some process succeeds
in doing so.

Like consensus, mutual exclusion is an abstraction of many synchronization
problems. The most common example of the need for mutual exclusion in real
systems is resource allocation. In contrast to consensus, however, mutual exclu-
sion is not required to be wait-free, or even randomized wait-free. If a process
fails, or is delayed for a long time, then non-faulty processes will either be halted
or delayed. Note that lower bounds on contention and critical-path/contention
trade-off previously derived for consensus do not hold for mutual exclusion. For
example, a c-ary tournament tree clearly satisfies the weak liveness condition
with at most logc n accesses to shared variables for any single process (in other
words, with hot-spot contention c and critical path length logc n), thereby
violating the bounds for consensus obtained in Theorems 4.1.4 and 4.2.3.

Many mutual exclusion algorithms cause processes to incur an unbounded
number of memory accesses due to spinning on remote variables. A great deal of
work has been done in designing algorithms to reduce the number of remote
operations,8 principally by finding ways to substitute local spinning for remote

8 See, for example, Anderson [1990], Graunke and Thakkar [1990], Mellor-Crummey and Scott
[1990], and Yang and Anderson [1993].
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spinning. However, independent of the issue of local versus remote spinning,
there is still an inherent synchronization that must be performed by any mutual
exclusion algorithm. We analyze the contention costs of this inherent synchroni-
zation. Our principal result is a critical path length versus hot-spot contention
trade-off for the one-shot mutual exclusion problem.

Informally, one-shot mutual exclusion allows exactly one of a number of initially
competing processes to enter the critical section, with no requirements of the
other processes. Clearly any lower bounds for the one-shot problem apply to
mutual exclusion each time the latter is started from scratch. A protocol for the
one-shot problem clearly satisfies the weak liveness condition; however, unlike
the case for the general mutual exclusion problem, the one-shot problem can be
solved (through a tournament tree) without waiting. Thus, a lower bound here is
in a sense a lower bound on achieving the weak liveness condition for mutual
exclusion, allowing us to sidestep issues such as how waiting is implemented.

First we show, for any one-shot mutual exclusion protocol with critical path
length , and hot-spot contention c, that , [ V(log n/c).

Our proof relies on the fact that V(log n) is a lower bound on the time
required to compute the logical OR of n values on the CREW PRAM9 [Cook et
al. 1986], independent of the total number N of processes participating in the
computation. The key idea is roughly that a CREW PRAM can simulate a
protocol whose hot-spot contention is c so that each time c processes access the
same shared variable in an execution of the original protocol, they will access it
one by one in c steps in the corresponding execution of the CREW PRAM.

The structure of the argument is as follows. The first step argues that for a
CREW PRAM, any protocol for one-shot mutual exclusion yields, with one
additional step, a protocol for OR. This step uses the mutual exclusion property.

In the second step, we show how to construct a one-shot mutual exclusion
protocol for the CREW PRAM that takes at most O(c,) rounds, from any
asynchronous protocol for one-shot mutual exclusion with hot-spot contention c
and critical path length ,. The second step proceeds as follows. First, we say that
a specific execution of an asynchronous protocol is synchronous if it can be
viewed as if it takes steps in synchronous rounds during which each process that
has not yet halted accesses one shared variable and processes accessing the same
shared variable (at the same round) succeed (receive responses) in increasing
order of process ID. Observe that each input determines exactly one synchronous
execution. To complete the second step, given an asynchronous one-shot mutual
exclusion protocol !, we show how to construct a CREW PRAM protocol each
of whose executions simulates the synchronous execution of ! that has the same
input. Moreover, each round of the synchronous execution of ! will be simulated
by the corresponding execution of the CREW PRAM using no more than c
rounds. Clearly, the resulting CREW PRAM protocol takes no more than c,9
rounds, where ,9 is the maximum number of rounds of the simulated synchro-
nous protocol. On the other hand, the latter is no larger than !’s critical path
length because for each synchronous execution of !, some process must take a
step, and hence access a shared variable, in each round.

9 Concurrent read/exclusive write parallel random access machines. Note that PRAM’s are synchro-
nous, and can perform an unlimited amount of local computation in a step.
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Combining the two above steps we get that given a protocol ! that achieves
one-shot mutual exclusion among n processes with hot-spot contention c and
critical path length ,, we can construct a CREW PRAM protocol that computes
the OR of n values in O(c,) rounds. Since V(log n) rounds are necessary for a
CREW PRAM to compute the OR of n values, we have , [ V(log n/c).

Definition 5.1. One-shot mutual exclusion on n processes is defined as follows:
There are any number N $ n of processes. There are n Boolean input variables
x1, . . . , xn. (These variables can be either in shared memory locations 1 through
n, respectively, or for 1 # i # n, xi can be local to pi. Our results apply to either
version of the problem). Let R be the set of indices i such that xi 5 1. At the end
of each execution of the protocol in which no process crashes, there is a unique
i [ R, such that pi is a winner (i.e., pi is in a special win state). If R is empty,
then there is no winner.

The next lemma shows that given a one-shot mutual exclusion protocol for the
CREW PRAM, we can get with one additional step a protocol for OR.

LEMMA 5.2. Let S be a CREW PRAM protocol for one-shot mutual exclusion
on n inputs, running in time s(n). We place no bound on the number of processes,
but the mutual exclusion is among p1, . . . , pn. Then there is a CREW PRAM
protocol for logical OR on n inputs running in time s(n) 1 1.

PROOF. The protocol for OR is as follows. Let result be a special memory cell
that is not used by protocol 6 on any input and is initialized to zero. On inputs
x1, . . . , xn run 6( x1, . . . , xn). Let process i be the winner, if one exists. Then at
step s(n) 1 1 process i writes a “1” into memory location result. Note that the
mutual exclusion property implies that there is at most one winner and hence the
exclusive write requirement of CREW PRAM is not violated.

Since by assumption result is initialized to zero we have that result will have
value 1 if and only if there is a winner to the one-shot mutual exclusion. The
definition of one-shot mutual exclusion implies that there is a winner if and only
if at least one process started with 1 and hence this PRAM protocol correctly
computes the OR. e

Next we show that given an asynchronous one-shot mutual exclusion protocol
with hot-spot contention c and critical path length ,, we can construct a one-shot
mutual exclusion protocol for the CREW PRAM that takes O(c,) rounds.

LEMMA 5.3. Let ! be any protocol on n inputs running on an asynchronous
shared-memory machine, with hot-spot contention at most c, with critical path
length ,, requiring at most N processes, and requiring at most m(n) $ n shared
variables. Then there exists a protocol for the synchronous CREW PRAM that
requires at most N 1 m(n)(c

N) processes and runs in time at most O(c,).

PROOF. We have observed that there is exactly one synchronous execution of
! for each value of the inputs. Therefore, it is enough to construct a CREW
PRAM protocol 6 that will simulate executions of ! in a step-by-step fashion
such that each execution of 6 with inputs I will have as its corresponding
execution of ! the synchronous execution of A with inputs I.

6 is constructed as follows: It has a special set of simulating processes P1, . . . ,
PN whose job is principally to simulate, one for one, the processes of !. For
clarity, the processes of 6 will always be denoted by uppercase letters, while
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those of ! will be denoted by lowercase letters. The additional m(n)(c
N) auxiliary

processes are dedicated to resolving write conflicts at the m(n) shared variables
of A. Hence, the auxiliary processes are split into m(n) groups, one for each of
the m(n) shared variables v of ! and denote by Gv the group dedicated to
location v.

We let M[1 : m(n)] denote the first m(n) locations of the PRAM’s shared
memory. After each round s of the simulation, for each 1 # v # m(n), M[v]
contains precisely the value of shared variable v after s rounds of the correspond-
ing synchronous execution of A. We define three additional arrays in the
PRAM’s shared memory: LOC[1 : N], INDEX[1 : N], and FLAG[1 : m(n)].
Roughly speaking, when a simulating process Pi wishes to simulate an access by
pi to a shared variable v of A, it writes the location v into the cell LOC[i]. The
INDEX array is used to tell process Pi wishing to access M[v] in a given
simulating round, its index among the set of processes that will access M[v] at
this round. The FLAG array is used in determining, for each shared variable v
and each round in the synchronous execution of A, the unique d-tuple of
processes, for some 0 # d # c, that attempt to access v concurrently in the given
round.

All shared variables except possibly the first n cells of memory, are initialized
to zero. If the inputs to A are initially in shared memory, then we assume they
are initially in the shared memory of S. If the inputs to A are initially known to
the processes of A, then we assume they are initially known to the corresponding
processes of S.

Each Pi has a special component of its state containing a simulated state of pi.
We prove inductively that for each Pi, 1 # i # N, this special component of the
state of Pi is the same after s $ 0 simulation rounds as the state of pi after s
rounds of the corresponding synchronous execution of A; and that for each 1 #
v # m(n), M[v] contains after s simulation rounds the contents of v after s
synchronous rounds in the corresponding synchronous execution of A. By proper
initialization the result clearly holds for s 5 0. We now show it holds for s 1 1,
assuming it holds for s.

Round s 1 1 is simulated as follows: First, Pi writes into LOC[i], the location
(shared variable) that pi accesses in round s 1 1 of the corresponding
synchronous execution of A. This takes one PRAM step.

Recall that initially LOC is all zeros. If in the simulation of some round, Pi

writes a location into LOC[i], then at the end of the simulation of this round Pi

will set LOC[i] back to zero. Thus, once the simulated pi has terminated, Pi can
terminate as well, and LOC[i] will have the correct “location” (i.e., the null
location) for all subsequent rounds of the simulation.

Let v be any shared variable. Since A has maximum hot-spot contention c, at
most c processes have written v into the array LOC. Each of the (c

N) processes P
in Gv is assigned a set R of c cells of LOC to examine, to see which subset of the
corresponding c processes of A would attempt to access v in round s 1 1 of the
corresponding synchronous execution of A. Let 7 denote the set of all size c
subsets of indices into array LOC. Let us impose an ordering on the elements of
7 by first listing, for each R [ 7, the elements of R in increasing order, and
then ordering each pair of lists lexicographically. Note that for every set R9 of
1 # j # c indices of LOC there is a (lexicographically) smallest element R of 7
containing R9. Each process P [ Gv proceeds as follows.
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P has a private variable tP, initially zero. Let R 5 {R1, . . . , Rc} be the set of
indices in LOC for which P is responsible. P reads LOC[Rj], 1 # j # c. Let R9
be the maximal subset of R such that LOC[Ri] 5 v for all Ri [ R9. If R9 is
nonempty, and R is the smallest element of 7 containing R9, then P sets tP 5
uR9 u. This takes a total of c PRAM steps.

During the next c steps P executes the following loop and resets tP to zero:

Do j: 5 c to 1;

If tP 5 j ` FLAG@v# 5 0

then FLAG@v#: 5 1 fi od

tP: 5 0

The loop requires c PRAM steps (recall that tP is private). If P set FLAG[v] :5
1 during the execution of the loop, then we say that P has found the write set for
v and that P is the leader of Gv for the current round of the simulation.

If no write set is found there is nothing for the members of Gv to do until the
simulation of the next round. Otherwise, the leader of Gv sorts the members of
the write-set in increasing order of process id, and writes i’s index in this sorted
list into INDEX[i]. This takes c PRAM steps.

In the next step, for each v the leader of Gv sets FLAG[v] :5 0, and for each
i process Pi resets LOC[i] :5 0. In the last c PRAM steps but one in the
simulation of round s 1 1, each Pi simulates pi’s access to v in order, according
to INDEX[i]. Finally, in the last PRAM step of the simulation each Pi sets
INDEX[i] :5 0. e

THEOREM 5.4. Let ! be any protocol for one-shot mutual exclusion, and let c
be its hot-spot contention and , the length of its critical path. Then , [ V(log n/c).

PROOF. Combining Lemmas 5.2 and 5.3, we get that given a protocol ! that
achieves one-shot mutual exclusion among n processes with hot-spot contention
c and critical path length , we can construct a CREW PRAM protocol that
computes the logical OR of n values in O(c,) rounds. The theorem now follows
from the fact that V(log n) rounds are necessary for a CREW PRAM to
compute the logical OR of n values, independent of the number of processes that
participate in the computation [Cook et al. 1986]. e

We complete our analysis of mutual exclusion by showing that any execution of
one-shot mutual exclusion charges contention cost at least V(n), and hence the
contention of one-shot mutual exclusion is V(1). Note that the latter does not
follow from the above trade-off.

THEOREM 5.5. One-shot mutual exclusion among n processes has contention
Q(1).

PROOF. It is enough to show that for each set of k processes where 1 # k #
n, there is an execution with contention cost at least k 2 1 and exactly one of
the participating processes enters the critical section. The proof proceeds by
induction on k. The base case of k 5 1 is trivial. Assume the claim holds for k
and we will show it holds for k 1 1. Consider a set of k 1 1 processes, P1, . . . ,
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Pk11. By the inductive hypothesis, there is an execution E of processes P1, . . . ,
Pk in which they incur contention cost k 2 1 and exactly one of them enters the
critical section. Run process Pk11 alone until it is about to access one of the
variables, say v, accessed in execution E. Note that it must do this, since
otherwise none of the k 1 1 processes P1, . . . , Pk11 can distinguish between E
and execution E9 in which Pk11 runs in isolation until completion. But in E9,
Pk11 enters the critical section, while in E it cannot do it since one of P1, . . . ,
Pk enters it. Temporarily suspend Pk11 just before it accesses v.

Next run processes P1, . . . , Pk as in E and let Pk11 try to access v at the same
time that the processes in E are trying to access it. There is an extension of this
execution in which Pk11 is stalled and the other processes proceed the same way
as in E. Thus, the contention cost incurred among processes P1, . . . , Pk is
exactly the same as in E, and hence the total contention cost increases by one,
and we are done.

Since in a binary tournament tree the contention is O(1), this bound is
tight. e

6. Discussion

6.1. SUMMARY OF RESULTS. This paper provides the first formal tools for
analyzing contention in shared-memory algorithms. We believe that a realistic
formal model for parallel computation requires taking contention into account.
Similar considerations motivated the recent work done in Choy and Singh [1994],
Culler et al. [1996], Gibbons et al. [1993], and Gibbons et al. [1994].

In particular, we introduce a formal complexity model for contention in
shared-memory multiprocessors and use it to provide the first formal analysis of
contention and trade-offs between contention and critical path length inherent in
basic shared memory problems such as consensus and mutual exclusion. The
results match our intuition: wait-free consensus seems to require more conten-
tion than (the easier problem of) randomized consensus. Moreover, restricting
our attention to hot-spot contention c, randomized consensus, which is non-
blocking, requires a provably longer critical path than one-shot mutual exclusion,
a subproblem (not requiring waiting) of the mutual exclusion problem whose
solution must involve waiting.

We also give the first formal contention analysis for counting networks. In
particular, we show that the amortized contention of the bitonic counting
network is low. Our analysis clarifies experimental results showing that the
bitonic network outperforms the conventional single-variable solution at high
levels of contention. Using the same techniques, similar results are obtained for
linearizable counting networks [Herlihy et al. 1991] and the periodic counting
network [Aspnes et al. 1991]. In addition, we show that our method can be used
to analyze the contention of balancing networks in general, conditioned on them
having certain smoothness properties.

6.2. RECENT WORK. For recent works pursuing the model and techniques
introduced in this paper the interested reader is referred to Hardavellas et al.
[1993] and Busch et al. [1994] (exploring the dependency of contention in
counting networks on the width of the balancers being used, where the width of a
balancer is the number of its input wires), Aiello et al. [1994] (a study of
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contention in balancing networks and in specific constructions including con-
structions with randomized balancers, that is, balancers which flip coins), Busch
and Mavronicolas [1994] (contention analysis of specific counting networks that
have different number of input and output wires), and Ben-Dor et al. [1994]
(construction of low contention dynamic counter). This list is not exhaustive.

6.3. POSSIBLE EXTENSIONS OF THE MODEL. This model, like all complexity
models, represents an abstraction of real architectures. We have chosen not to
model many detailed aspects of common multiprocessor architectures. The
model could be extended to encompass many of these details, and doing this
constitutes very interesting research problems. It remains to be seen whether the
resulting increase in model complexity would provide a proportional increase in
verisimilitude. Below we specify three of the detailed aspects of common
machines not modeled by our model and outline possible extensions. Indepen-
dent work by Gibbons et al. [1993; 1994] addresses some of these issues,
including a memory model that includes pipelining.

For example, we assume that memory accesses are serialized at the granularity
of individual locations, when, in practice, serialization occurs at coarser-grained
memory modules. Clearly, our model can easily be extended to address this
notion. The current simple version however has several virtues. First, it is
independent of the particular architecture. Second, the contention measured by
our model is a relevant measure for cache coherence overhead, since the number
of cache invalidates or updates incurred by a write is often proportional to the
number of processes concurrently accessing the location that is being written.
Note also that any lower bound in our model is a lower bound also in
architectures with memory modules.

Also, for architectures that permit processes to pipeline memory accesses, our
contention cost is somewhat of an overkill. For example, one may want to charge
a process that has several pending operations, by the maximal contention cost of
any of these operations, instead of by their sum (as is currently being done).
Formalizing such an extension depends on the architecture and is an interesting
research problem.

In addition, we assume that the delay in accessing a variable is proportional to
the number of concurrent accesses to the variable, when, in practice, the delay
may be sublinear in the number of concurrent accesses (i.e., combining net-
works), or superlinear (i.e., inefficient spinning protocols). The model can be
extended by defining the contention cost of an operation to be some function
f(m), where m is the number of responses events from the same variable that
occur after the operation’s invocation, up to but not including the matching
response (in our current model f(m) 5 m). The function f will be sublinear for
architectures with combining networks and may be superlinear for the inefficient
spinning protocols. Making this point precise needs of course further research.

6.4. OTHER OPEN QUESTIONS. One interesting open question is whether all
counting networks have low contention. Currently, we can suggest a methodology
for analyzing other networks as well as general networks with certain smoothness
properties, but one does not yet know how to reason about contention for
counting networks in general (see Section 3.4). Indeed, the problem of wait-free
counting is still only partially explored: note that other well-known data struc-
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tures for counting, such as software combining trees [Goodman et al. 1989], are
not wait-free, although they display low contention in practice.

This paper raises other questions as well. The contention or critical path/
contention trade-offs of many well-known problems such as reader-writer syn-
chronization, snapshots, and approximate agreement, are still unknown. (Note
that problems that can be solved using single-writer multi-reader atomic regis-
ters, can be solved with very low hot-spot contention, with the price of an
increase in the length of the critical path (see Section 4.2). For this type of
problems the trade-offs between the hot-spot contention and critical path length
are thus especially interesting.10 It is also unknown whether the lower bounds on
the trade-offs between contention and critical path length for randomized
consensus and for mutual exclusion are tight.

Another interesting research direction is related to the overall cost (rather
than to the contention cost). Loosely stated, in this paper, we compute the
overall cost by simply summing up the contention cost plus the number of
memory accesses. However, sometimes there are additional factors that affect
the overall cost, such as locality of references. One may want to try to compute
costs caused by these factors and incorporate them into the overall cost in a
similar modular fashion to what is done here with contention cost, i.e. the overall
cost will roughly be the sum of the costs caused by each of these factors plus the
number of memory accesses.

On a completely different note, recent works [Ajtai et al. 1994; Aspnes and
Waarts 1996] introduced a theory of competitiveness for distributed algorithms,
meant to provide for distributed algorithms a somewhat more realistic analysis
than the standard worst case analysis. Loosely stated, they suggest to compute
the performance of a distributed candidate algorithm by comparing it to an
optimal specified distributed algorithm that runs on the same schedule. Extend-
ing their model/analyses to encompass contention is a very interesting research
project.
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