
ology
s and
while
emati-
vide

blem

espond-
(event
pond to

re coa-
imple-

hines,
ational
ontainer
ages.
ple”,
tribute
exam-

tening

exter-
act with
an edu-
interac-

ms by
de for
method
ents.

e1]. We
ve and
e a par-

sources
library
tion-
Interactive Visual Programming: Principles and Examples
Peter Wegner and Joel Silverberg, February 25 1999

1.  Introduction
Emerging principles of interactive visual programming are transforming component-based techn

from an ad-hoc collection of techniques into a subdiscipline with conceptually deep design principle
semantic models. Visicalc and Excel provided special-purpose interactive visual tools in the 1980s,
Visual Basic and Active X controls have provided general-purpose tools in the 1990s. Java 1.2 syst
cally coordinates interactive, visual, and algorithmic functionality in a new and interesting way to pro
an integrated framework for interactive visual component technology.

Java’s interactive visual programming paradigm is a “listening paradigm” closer to human pro
solving than algorithm execution. Components havelistening membranesthat are a computational analog
of sense organs like our eyes, ears, and skin. Java’s “event classes” specify modes of listening and r
ing to events that transmit stimuli from interface components (event sources) to inner components
targets) for handling and response. Menu and checkbox event sources in our first example corres
eyes and ears, while the applet panel (second example) is like the skin.

Interactive programs have characteristic program-structuring and design methods [GHJV] that a
lescing into coherent conceptual models. Java’s event-driven component model provides a concrete
mentation for interaction machines, which were shown [We2] to be more expressive than Turing mac
and therefore harder to formalize. The Java model is sufficiently clean to serve as a canonical oper
semantics for interactive components. The data structure for the Java classes Component and C
(Figure 2 below) play a role similar to stack-based activation record models for block-structure langu

We present principles of interactive visual programming through “learning (or teaching) by exam
by introducing concepts of Java in a top-down way on a need-to-know basis. This article aims to con
to a better understanding of the fundamental concepts and models of interactive program design by
ples that will be useful in the classroom. Our example-driven approach corresponds to learning by lis
or reading, allowing educational form to follow function.

Java’s software components acquire their interactive visual functionality from class libraries and
nal events. Programs are constructed by connecting (gluing) instances of classes so they can inter
both each other and external events. Two example applet programs are examined in detail both as
cational case study and to show the structural differences between languages like Pascal and visual
tive programming languages like Java. Working code can be found athttp://conan.ids.net/~joels/applets.

ShapesAndColors applet that interactively draws colored shapes on a canvas
Scribble applet that supports interactive drawing (scribbling) on the applet’s surface
To provide a framework for examples, we focus on the language and environment mechanis

which Java’s components acquire their visual and interactive functionality. We then explain the co
the ShapesAndColors applet, discuss the effectiveness of “learning by example” as a systematic
for teaching, and finally present the Scribble applet that shows Java’s model for low-level mouse ev

2.  How Components Acquire Visual and Interactive Functionality
Java is an object-oriented language whose objects belong to classes that support inheritance [W

use the term “component” both in an informal sense to mean “heavy” objects that may have interacti
visual functionality, and in a technical sense to mean objects of the Java class Component, which ar
ticular realization of the informal notion.

informal definition: a component is an object that may have interactive and/or visual functionality
technical definition: a component is an instance of the Java class Component
Java’s components support interaction through an event model that lets components act as event

that inform listening components of the occurrence of events, and supports visual widgets by a class
of visual components (controls). It integrates interaction provided by its event model with visual func
Interactive Visual Programming 1/18



es.

d from

compo-
derived
rces to

t model
va event

he class

ct

es of
ompo-
de spe-
contain
whose
in com-
Canvas,
e not.
ence to
refer-

event
t listen-
(multi-
tly.
cts, and
ponents
ability
ality supplied by library classes and algorithmic functionality supplied by traditional language featur

2.1 Is-A, Has-A, and Interacts-With Functionality
Objectsare instances of classes with copies of instance variables and shared methods inherite

superclasses or declared by their class. Accessibility of declared names may bepublic, private(accessible
only within the class),protected (accessible only in subclasses), orpackage (accessible within package).

Java’s components derive their functionality through inheritance, instance variables, and events.
inheritance: an object (component) inherits from superclasses of which its classis-a subclass
instance variables: a componenthas-a collection of instance variables defined in its class
events: a component (event source)interacts with events and notifies registered listeners
The is-a functionality of components is derived through inheritance, thehas-afunctionality through

instance variables directly defined in the component’s class, and theinteracts-withfunctionality by regis-
tering listening components with event-source components. Instance variables are references to
nents that may have visual representations and come with methods for component manipulation
from the component’s class. The Java event model propagates change notification from event sou
listening components which are instances of classes that implement listening interfaces. The even
can be used to handle both external user-initiated event and internal events that make use of the Ja
mechanism to notify listeners of the event’s occurrence.

Dependence of classes on superclasses is specified by an inheritance hierarchy whose root is t
Object. User applets extend the Java class Applet by the code “classUserAppletextendsApplet”. Applet
is a fifth-level class that extends the classes Panel, Container, Component, and Object (Figure 1).

UserApplet extends Applet extends Panel extends Container extends Components extends Obje

Each inheritance level of the class Applet adds qualitatively different functionality. Direct subclass
the root class Object include event model primitives, layout and graphics primitives, and the class C
nent that is the base class for Java’s interactive visual functionality. Subclasses of Component inclu
cific widget classes like Canvas, Choice, and Checkbox classes, and the class Container that can
multiple components. Containers can be panels whose components have a fixed layout or windows
components can be moved, resized, and otherwise manipulated. Applets are panels that may conta
ponents whose interactive and visual properties are defined by the applet designer. Instances of the
Choice, and Checkbox classes are components, while instances of Event and Graphics classes ar

Each instance of the class Component has a set of required instance variables, including a refer
its parent container, a reference to a graphics object that allows the component to draw itself, and a
ence to the list of registered listeners for each listener interface for which that object may be an
source. If the list of registered listeners is empty, then no action need be taken when an event for tha
ing interface occurs. If there are multiple registered listeners, then occurrence of the event sends
plexes) a message to each listening object. Multiplexed notification may be implemented concurren

Figure 2 shows that instances of the class Container inherit references to parents, graphics obje
lists of listeners from Component superclasses and have a required array of references to the com
they contain. They inherit the properties of having a parent, the ability to draw themselves, and the

Object  Component

 Event hierarchy

 repaint method

 Graphics class
 Layout class

Container  Panel class
root class

 Canvas class
 paint method

s

Figure 1. Fragment of the Java Class-Inheritance Hierarchy

Window class

 Applet class
 init method

 UserApplet
 redefine init
 define listeners

Choice class
Checkbox class
 widget classes

 EventObject class
Interactive Visual Programming 2/18



ontain

clude at
ils cre-
of the
tifica-

e com-
nguage

ace
d not be
all Com-
s and on

, and
a rela-
a basis
ompo-
rovides
imple-

ferent
hmic)
nviron-
s and
nts.
tance
sers do
es that
e innate
onents

t deter-
nt

tain
to serve as event sources for specified listening interfaces because a Containeris-a Component, andhave-
a array of references (which is empty if the container has no components). Components cannot c
components, though they are contained in a container.

When an instance of a container class, such as an applet, is created, its instance variables in
least the inherited and required instance variables of Figure 2. Creation of an applet essentially enta
ating a Panel container class, initializing the reference-to-component array to the visual components
applet, and initializing the event-source listening lists for the container and its components so that no
tion of external events will be transmitted to designated listening components.

JavaBeans components [HC], called beans, support a different, though related, class of softwar
ponents. Beans are components that can be manipulated by a builder that provides a high-level la
for customizing and connecting components. They havepropertieswith get and set operations,methods
for operating on properties, andeventsthat conform to the Java event model. Beans with a visual interf
must be of the class Component, but nonvisual beans that respond to events from other beans nee
subclasses of Components. Not all beans are instances of the class Component and conversely not
ponent instances are beans, because beans have restrictions placed on the form of their selector
other attributes so they can be manipulated by builders.

In this article we focus on visual interactive functionality provided by subclasses of Component
look under the hood at how such functionality is implemented. The Java class Component provides
tively clean model for software components with interactive and visual properties that can serve as
for abstraction to general component-based models. There is no generally agreed-on definition of c
nents, just as there is no generally agreed-on definition of objects. But the Java class Component p
a canonical conceptual model for interactive visual components and a simply described canonical
mentation (operational semantics) in terms of inheritance, instance variables, and events.

The mechanisms by which containers and components acquire their functionality are very dif
from those of procedures in languages like Pascal that focus primarily on the noninteractive (algorit
transformation of inputs into outputs by statements, control structures, and declarations. The Java e
ment differs from Pascal not only in being object-oriented but also in providing specific class librarie
event hierarchies and specific mechanisms for incorporating this functionality in software compone

The difference between is-a functionality of inheritance and has-a functionality supplied by ins
variables corresponds roughly to that between inherited and acquired characteristics for people. U
not care whether functionality is inherited or acquired, and it is generally quite easy to take resourc
are supplied by instance variables and, through mechanisms like wrappers, make them appear to b
(inherited) resources. The class library structure determines both implicit resources that comp
acquire through inheritance and resources that are explicitly acquired through instance variables.

The user applet ShapesAndColors (discussed in section 3)is-aApplet which in turnis-apanel and con-
tainer. Ithas-aset of instance variables of the classes Canvas, Choice, Checkbox, and Graphics tha
mine its visual appearance, andinteracts with external events through components that impleme
listening interfaces that let the applet dynamically change the display of its color and shape.

2.2 Classes and Interfaces
Classes and interfaces are distinct language constructs. Classes specify both aninterfaceof public

methods and data and animplementationthat can be invoked by instances of the class. They may con

 reference to parent container
 reference to graphics object

inherited from component:

 reference to list of listeners
 for each event listener interface

required container variables:
array of references
to container’s components

 Figure 2: Instance Variables of Container Classes

 is-a instance variables has-a instance variables

empty for empty components
Interactive Visual Programming 3/18



can be
ss meth-
ds, are

tion)
t. Java
It sup-

asses.
ariables
va sup-

veral
.

vents
er than
more

s that
compo-
to gener-
he AWT
g com-

re of the
bjects.

e

tations
event
dled by

nd han-
virtual methodsthat are unimplemented in the class and must be defined in subclasses before they
used. Both implemented and virtual methods may be redefined in subclasses to specialize supercla
ods for instances of the subclass. Thus “paint” methods, which are the visual analog of print metho
often redefined in subclasses that display their visual form on the screen.

Interfaces are “lightweight” classes that require all their methods to be virtual (with no implementa
and impose an obligation on classes to implement all virtual methods of interfaces that they suppor
permits interfaces to extend multiple parent interfaces and classes to implement multiple interfaces.
ports “multiple inheritance” of interfaces by interfaces and classes, but only single inheritance of cl
Interfaces can contain methods and constants but not variables. Formal parameters and instance v
of an interface type have values that are references to components that implement the interface. Ja
ports interfaces as well as classes as first-class values.

A class that inherits functionality from a superclass and has multiple listening interfaces for se
kinds of dynamically occurring events is illustrated in the ShapesAndColors example (see Figure 5)

classes extend the functionality of superclasses and implement (provide methods for) interfaces
interfaces impose obligations on classes that implement them to provide interface methods
classes extend only one superclass but may implement multiple interfaces
Listening is better implemented by interfaces that allow each listener to respond individually to e

than by classes that implement a shared listening method. Listener interfaces require client-side rath
server-side binding of implementation code for interface events. Late client-side binding is clearly
flexible than early server-side binding of the actions associated with interface specifications.

2.3 The Java Event Model
Java has many different kinds of events organized into an event hierarchy (Figure 4). Classe

respond to events register their desire to listen to an event with an event source and specify listener
nents that respond to the occurrence of events. External screen events cause the operating system
ate an event notice that is deposited into an event queue with the event source as a parameter. T
processes event notices in the event queue by dispatching (multicasting), to each registered listenin
ponent of a designated listening interface and event source, an event object that specifies the natu
event. Registered listening components implement handlers whose execution is triggered by event o

a componentregisters events to which it wants to listen with a listener interface of an event sourc
the component’s class implements an EventListener interface that handles events
external events cause event objects that trigger execution of client-side EventListener implemen
The control structure for events is a form of exception handling. Registering an event with an

source causes the event source to throw (raise) an exception when the event occurs that will be han
the registering component. Registration supports a more flexible connection between the source a

properties of superclasses:
defines an interface (signature)
implements all or some interface methods
virtual method are unimplemented
supports server-side implementation
allows client-side redefinition

properties of interfaces:
all methods are virtual
requires client-side implementation

properties of subclasses:
extends one class, may implement multiple interfaces
may redefine class methods, must implement all interface methods
abstract class unless all virtual methods are implemented

               Figure 3: Properties of Classes and Interfaces

delayed binding, greater flexibility

     extends
 implements
Interactive Visual Programming 4/18



eas an
amen-

users.
a inter-

. Some
eEvent,
nents

at pro-
lass.
icks on
terface
Mouse

ents have
mouse.
ods are
terfaces
.

e event
of user

r clicks

nition.
Com-

ontainer

differ-

ps
dler for events than for exceptions, and allows an event to be handled by multiple listeners wher
exception is handled by just one handler. But the control structure for events and exceptions is fund
tally identical.

The package java.awt.event provides interfaces for handling events generated by interaction with
The inheritance hierarchy of Java event classes in Figure 4 shows a systematic classification of Jav
faces events and a framework for adding new kinds of events, like audio and multimedia events.

Objects that respond to events must implement listener interfaces of the associated event class
events are generated by low-level user actions such as mouse or keyboard events (KeyEvent, Mous
FocusEvent, ContainerEvent), while others are generated by user interaction with AWT compo
(ActionEvent, AdjustmentEvent, ItemEvent, TextEvent). Each event class has a listener interface th
vides the signature of methods for the event type, which must be implemented by the responding c

For example, ItemEvents are generated by pull-down menus or by checkboxes when the user cl
them. An instance of a class that implements the interface ItemEventListener has an ItemEvent in
with a method itemStateChanged that must be implemented by listeners that respond to the event.
events indicate that the user has moved the mouse or pressed one of the mouse buttons. Mouse ev
methods that return the number of times the mouse button was clicked and the coordinates of the
They inherit methods to determine the component the mouse was over at the time of the event. Meth
provided to determine if the mouse was pressed, released, clicked, moved, dragged, etc. The in
MouseListener and MouseMotionListener provide separate responses to each of these possibilities

External events of an event class cause event objects of that class to be transmitted from th
source to each listener registered with the event source. ItemEvent objects signal the occurrence
clicks on menus or checkboxes, ActionEvent objects occur when the user enters data in a textfield o
on a button, while MouseEvent objects occur when the user clicks or moves the mouse.

The event types for which instances of an interactive class may listen are a part of the class defi
The class Component has references to lists of listeners for Focus, Key, Mouse, MouseMotion, and
ponent events. Subclasses of Component can add additional listeners. For example, the class C
adds a listener for Container events and Checkbox adds a listener for Item events.

Interactive execution of sequences of unpredictable screen events is specified and handled very
ently from noninteractive execution of inner computation steps:

noninteractive dynamics: execution of sequences of algorithmically determined computation ste
interactive dynamics: execution triggered by external screen events

Action
Event

 Adjustment
Event

 Component
Event

Item
Event

Text
Event

Container
Event

Focus
Event

 Input
Event

 Paint
Event

Window
Event

EventObject
 class

 AWTObject
 class

KeyEvent MouseEvent

Figure 4: Java Class Hierarchy for Events
Interactive Visual Programming 5/18



mic
rallel

actions
r. The
, WG]
than

utation

anag-
xam-
within

l Age
ming

mean
ean-

ed not
gen-

braries
ibraries)

ystem
particu-

mers by
alified
f

he
asses
r
 parts:
The interactive “listening paradigm” is cognitively closer to human behavior than the algorith
“speaking paradigm”. Listening membranes that respond to a variety of different kinds of events pa
mechanisms of human interactive behavior. Interface stimuli reported to inner handlers that cause
with visible interface effects are a common model for human and computational interactive behavio
event model provides an implementation for interaction machines [We2] that have been shown [We3
to provide a unifying model for object-oriented and agent-oriented programming more expressive
Turing machines. The connection of the Java event model to abstract models of interactive comp
motivates our interest in event models but is beyond the scope of this paper.

Java’s role in applet programming is that of a modern scripting language. Java provides glue for m
ing the visual behavior of library-defined widget classes and controlling their behavior. Our applet e
ples show that Java seamlessly supports scripting for the management and control of components
the framework of general-purpose programming. Implementations of JavaBeans like IBM’s Visua
explicitly permit the use of Java for scripting when visual methods must be supplemented by program
to realize the desired functionality.

The term “scripting language” was first used in the context of Unix, but has increasingly come to
a language for specifying and controlling the interactive behavior of visual interfaces. This modern m
ing identifies scripting with visual, interactive programming. Java shows that scripting languages ne
be specialized languages that sacrifice efficiency for flexibility and that scripting can be included in
eral-purpose programming languages that have interactive, visual, and algorithmic functionality.

2.4 Java Packages: Physical Directory Structure
The Java programming environment consists of the Java language [AG] augmented by class li

[Fl]. Java’s system resources are implemented by classes grouped into about 20 packages (class l
that determine the name space (directory structure) for system-specified resources.

packages contain classes, interfaces, and other packages as their members
Language facilities are specified in the package java.lang, which is only a small part of the s

resources provided by Java. The remaining packages are specialized class libraries for a variety of
lar purposes. The packages particularly relevant to applet programming include:

java.lang: contains (provides) traditional language facilities
java.awt: abstract window tool package that provides visual programming functionality
java.awt.applet: includes the class Applet, can be embedded in browsers
java.awt.event: event classes and event listener interfaces that provide interactive functionality
Packages contain information resources (classes and interfaces) accessible to Java program

qualified names. Import commands permit imported resources to be referred to directly by unqu
names. For example, the import command “import java.awt.applet.*;”, which imports all resources o
Java’s awt.applet package, allows its Applet class to be referred to by its unqualified name Applet.

2.5 Structure of Applets
Applets execute the two operationsinit andstart when they are first displayed by the browser and t

operationsstop anddestroy when they are deleted. Each of these operations may be overridden in cl
that extend Applet. We override the initialization methodinit to create the visual interface and registe
event listeners of the applet with event sources. The code for our example applets has the following

import commands for external resources (class-library packages and individual classes)
public class that names the applet andextends the class Applet
declaration and initialization for variables and visual structures (widgets)
init  method that initializes interface and registers event listeners with event sources
internal methods with listening interfaces that interpret and respond to interface events

Applet code can be embedded in a Java enabled browser by HTML commands:
<APPLET code = “name.class”, width = display-width, height = display-height> </APPLET>
Interactive Visual Programming 6/18



in the

ed as a
mong
squares

oxes to
urces for
menu,
t sources.

ing on
instance
e can-

ces to
plet is

).

in this
ever be
for Ite-

ion that

s

This code will cause Java-enabled browsers to execute the applet, display its initial visual form
specified window, and respond to user interface events in a manner that the applet specifies.

3.  ShapesAndColors Applet
The ShapesAndColors applet, whose complete code is given in appendix 1, is visually represent

container (panel) with four components, consisting of a pull-down (drop-down) menu to choose a
colors, two checkboxes (radio buttons) for choosing among shapes, and a canvas on which colored
and circles are drawn.

The user of the applet can click on the menu to change the color and on square or circle checkb
change the shape appearing on the canvas. Its menu, square, and circle components are event so
ItemEvents with the canvas component as their target. Thus the canvas component will register with
square, and circle components so that it can respond to events that change the state of these even

Clicking on the menu exposes a list of color names that can be selected to change the color. Click
the menu or checkboxes generates ItemEvent objects that are sent to the canvas. The canvas is an
of the inner class DrawOn that implements listener interfaces for menu and button events to which th
vas wishes to listen and has a paint method for drawing (painting) colored shapes on the canvas.

The Applet data structure has the container instance variables of Figure 2. Its array of referen
components will have four elements, corresponding to the four components of Figure 5. Since the ap
a subclass of Panel, it will be an event source for MouseEvents and MouseMotionEvents (Figure 6

Though an applet panel can listen for MouseEvents and MouseMotionEvents, the event sources
example are the menu, square, and circle components rather than the applet itself, so there will n
registered listeners for mouse events. Menu, square and circle components are event sources
mEvents with nonempty lists of registered listeners whose target is the canvas.

3.1 Applet Structure and Imported Resources
The ShapesAndColors applet has the following structure:
import commands and class declaration that extends Applet
instance variables for menu and checkbox event sources and the canvas event listener
init method that places widgets on the panel and registers the canvas as a listener
DrawOn class that extends Canvas and implements ItemListener to handle events
It imports the packages java.awt, java.applet, and java.event and is introduced by a class declarat

extends the class Applet.
import  java.awt.*; // set of all resources in the package java.awt
import  java.applet.*; // set of all resources in the package java.applet

       pull-down
         menu   square   circle canvas

  with
colored
 shape

                  Figure 5:  The Panel of the ShapesAndColors Applet

pull-down menu controls the color
two checkboxes control the shape
canvas is the target of all changes

this applet panel contains four widgets

interactively changes its color and shape
in response to menu and checkbox event

inherited from Component:

Figure 6: Instance Variables of ShapesAndColors Panel (Container)

 reference to parent container
 graphics object reference
 ref to MouseListener list
 ref to MouseMotionListener list
 ref to other listener interface lists

required container variables:
 ref to menu component
 ref to circle component
 ref to square component
 ref to canvas component
Interactive Visual Programming 7/18



lasses
is

nce.

lass

e
ted and
ble. The
y user-

visual
instance
screen.
es.
, which
olors.

e class
s like-
.
roup of

s
hich

eckbox
ckbox

of the
y (red,
colors
reen”,

orre-

fined in
n exten-

Canvas

r, Bool-
import  java.awt.event.*;  // resources in the package java.awt.event, used for event handlers
public class ShapesAndColors extends Applet
Import commands do not actually import resources. They allow direct (abbreviated) naming of c

specified in imported packages. For example,import java.applet.*; allows the class whose full name
java.applet.Applet to be referred to by its abbreviated name Applet.

3.2 Declaring the Applet’s Instance Variables
Instance variables are declared by specifying the variable’s class and creating an initialized insta
Class variable;  // declare a variable of the given class, usually a reference to a component
variable = new Class(parameter-list); // create and initialize variable to an instance of the given c
Declaration and instance creation can be specified by a single statement:
Class variable = new Class(parameter-list); // declare variable, create instance, assign to variabl
The named variable is first created with a null reference, a new instance of the class is then crea

initialized by the parameters, and a reference to the newly created instance is assigned to the varia
parameter list may be empty, indicating that class parameters are initialized by default rather than b
supplied values. Local (hidden) instance variable declarations are preceded by the keywordprivate.
Applets may declare variables for classes defined in accessible (public) packages.

Applets are panels (containers) whose instance variables include both components that have a
appearance when added to the panel and auxiliary objects that play a role behind the scenes. The
variables for the applet specify menu, checkbox, and canvas components to be displayed on the
Variables that represent components with a visual appearance are usually instances of public class

The first declaration creates an instance variable of the class Choice (that extends Component)
specifies pull-down menus. The variable is called color because it will specify choice of a range of c

private Choice color = new Choice();   // create a pull-down (drop-down) menu
The instance variable “color” is a component whose applicable operations are determined by th

Choice, which is a subclass of Component (Figure 1). The class of other declared instance variable
wise determines their operations and allows the applet to exhibit functionality of associated classes

The declared variable shapes of the class CheckboxGroup (that extends Object) defines a g
checkboxes (radio buttons).

private CheckboxGroup shapes = new CheckboxGroup();  // create a coordinator for checkboxe
The next two declarations create two variables “square” and “circle” of the class Checkbox (w

extends Component) and initialize their properties with parameters. The three parameters of Ch
specify the printname, whether initially checked, and the CheckboxGroup (shape) to which the che
is assigned. The Circle checkbox is initialized to true and will therefore be initially displayed.

private Checkbox square = new Checkbox("Square", false, shapes);
private Checkbox circle = new Checkbox("Circle", true, shapes);
The next two declarations specify an array of the type Color (which extends Object) and an array

type String (for naming colors). The class Color has values that are physical colors, represented b
green, blue) triples. The array theColor of the class Color is initialized to the three system-defined
red, green, and blue, and the associated array colorName is initialized to the color names “Red”, “G
“Blue”. The color names will later be inserted in the pull-down menu and will be used to select c
sponding colors in the Color array.

private Color [] theColor = {Color.red, Color.green, Color.blue};
private String[] colorName = {"Red", "Green", "Blue"};
The final instance variable declaration declares an instance of the user-defined class DrawOn, de

the body of the ShapesAndColors applet, that extends the class Canvas, which is itself defined as a
sion of the class Component.

private DrawOn canvas = new DrawOn();  // create canvas as instance of DrawOn that extends 

The instance variables of the ShapesAndColors applets are more complex than types like intege
Interactive Visual Programming 8/18



visual
ons of

applet
ponent,

-
.

nd the
ed as a

eared
ey are

d the
” is a
e done

. Com-
item-

e com-

of Ite-
mLis-
.
rms of
stomizes
grammed

look-

s Can-
actions
ean, character, array, and record that occur in traditional programming languages, since they include
as well as logical properties. Moreover, they may be defined in inherited class libraries in remote regi
the inheritance hierarchy. The classes of the seven instance variables of the ShapesAndColors
include one primitive language type, two classes that extend Object, three classes that extend com
and one user-defined type that extends Canvas (that is an extension of Component).

3.3 Initializating the Applet’s Interactive Visual Interface
Having defined the instance variables, we are ready to define theinit method of the applet, whose exe

cution creates its initial screen representation. Theinit  method is a public procedure with no return value
public void init () {
The next four lines add to the Applet panel the color menu, the square and circle radio buttons, a

canvas that will contain the colored shape. The default layout of this panel causes items to be add
sequence, with wraparound to the next line when there is no more space.

add(color);  // add the pull-down menu called color to the applet panel
add(square);  // add the checkbox square to the applet panel
add(circle);  // add the checkbox circle to the applet panel
add(canvas);  // add the canvas to the applet panel
The following code adds the color names to the pull-down menu called color. It could have app

prior to the code for adding the menu to the panel. Widgets can be initialized either before or after th
added to a display.

for  (int i=0; i < colorName.length; i++)
 color.addItem(colorName[i]);  // addItem is a method for adding menu items to Choice menus
The color variable is initialized so that the menu displays the first color (red) as its initial color, an

canvas size is initialized to 150 by 150 pixels. “select” is a method of the Choice class, while “setSize
method that the class Canvas inherits from the class component. These initializations can likewise b
before or after items are displayed.

color.select(0);  // initially display the zeroth string (red) in the pull-down menu
canvas.setSize(150,150); // set size of canvas to 150 by 150 pixels
When users click on checkboxes or pull-down menus, the mouseUp action generates ItemEvents

ponents that listen to ItemEvents must implement an ItemListener interface that contains a method
StateChanged with an ItemEvent parameter.

The final code ininit registers the canvas as a target of item events generated by the event-sourc
ponents color, square, and circle when the user clicks on them.

color.addItemListener(canvas);
square.addItemListener(canvas);
circle.addItemListener(canvas);
The command.”s.addItemListener(canvas)” registers canvas as a component to be informed

mEvents generated by the user with the component “s”. This commits “canvas” to implement the Ite
tener by providing a method itemStateChanged that defines how canvas will respond to ItemEvents

The instance variable declarations specify the collection of components (beans) of the applet in te
Java classes, while the init method places the components on the panel (beans in the beanbox), cu
the components (beans), and establishes connections between event sources and listeners. Pro
widgets are more flexible than widgets specified in a higher-level language like JavaBeans, and allow
ing under the hood to examine implementation mechanisms.

3.4 DrawOn Class that Extends Canvas and Listens to Menu and Checkbox Events
The remaining code of the Applet implements a class DrawOn that extends the AWT-defined clas

vas, which is a subclass of Component and implements an ItemListener interface that performs
when DrawOn instances are notified that an ItemEvent has occurred for color, circle, or square.

class DrawOnextends Canvasimplements ItemListener
Interactive Visual Programming 9/18



whose
erit the

rface to
nt the

g action
ur.

e type
state
he test

hics g)
d that

applet.
t of the
he can-

rrently
color is

hod of
tState

ther-
of the

ge of
extend

ce vari-
ledge
at the
onent
structural

to the
s not

illus-
d as a
nts that
name
Class definitions extend a single parent class and may additionally implement several interfaces
virtual methods must be implemented in the defined class. The class DrawOn extends Canvas to inh
painting methods of Canvas and its superclass Component, and implements an ItemListener inte
specify operations that handle item events. The ItemListener interface requires DrawOn to impleme
method itemStateChanged that takes an ItemEvent object as a parameter. In this case the listenin
calls the method repaint, defined in Component, to repaint the canvas when designated events occ

public void itemStateChanged(ItemEvent e)
  { if  (e.getStateChange() == ItemEvent.SELECTED)
        repaint();  // repaint canvas, the target of the addItemListener that registered the item event
The method itemStateChanged(ItemEvent e) calls the inherited method repaint() for events of th

SELECTED (a MouseUp event for pull-down menus or checkboxes). Without this condition the
would be changed also when the menu or checkbox was deselected by mouseDown events. T
ensures that repainting will occur only once, on mouseUp events.

The repaint() method invokes, behind the scenes, an operating system call to an update(Grap
method that redraws the background of the given component followed by a paint(Graphics g) metho
DrawOn redefines to perform the drawing of colored squares and circles for the ShapesAndColors
The paint(Graphics g) method of Component is redefined below and is passed the graphics objec
canvas as a parameter so that operations like g.setColor and g.fillOval perform paint operations on t
vas. Paint is called indirectly as a result of calling repaint when an ItemEvent occurs.

public void paint(Graphics g) {
   g.setColor(theColor[color.getSelectedIndex()]);  // setColor is a method of the Graphics class
if  (circle.getState())  // getState is a method of the Checkbox class

    g.fillOval(20,20,100,100);  // fillOval is a method of the Graphics class
else  // square.getState() is true

    g.fillRect(20,20,100,100);

Whenever the canvas is painted, this method sets the color of its graphics object to the cu
selected color and draws the shape indicated by the checkboxes. The getSelectedIndex method of
used to index the array of colors, providing the correct color as the parameter for the setColor met
the canvas’ Graphics object. It then tests whether the circle checkbox is on (true), using the ge
method of the Checkbox class. It draws a filled-in oval if “circle” is checked and a filled-in rectangle o
wise. The fillOval and fillRect commands have four parameters: the first two specify the coordinates
northwest corner and the last two specify the width and height of the component being drawn.

Understanding this paint method requires knowledge of the environment, including knowled
methods in the Graphics class that extend Object and of the Choice and Checkbox classes that
Component. The different mechanisms by which these methods are made available (through instan
able declarations, parameters, and inheritance) are nontrivial. However, the environment know
needed to understand “paint” is limited. Understanding of the fact that the Graphics class defined
level of Object has setColor and fillOval methods while the Choice class defined at the level of comp
has a setSelectedIndex method and Checkbox has a getState method allows us to understand the
dependence of “paint” on its environment.

This paint method may also be invoked by calls to repaint() generated by the system in response
user moving, resizing, reshaping, covering, or uncovering the window containing the Applet. It i
restricted to responding to events reported to the canvas in its role as ItemListener.

4.  Learning (Teaching) by Example
Analysis of the method of presentation and difficulty of concepts of the ShapesAndColors applet

trate the process of “learning by example”. Instead of starting with the language, Java is introduce
collection of physical packages (class libraries) whose classes may be instantiated by compone
make use of externally defined functionality through is-a, has-a, and interacts-with relations. The
Interactive Visual Programming 10/18



ritance,
compo-

public
ariety
mecha-
us and
omputa-
in turn
ding of

sers
ity was
onse to

ork for
sented,
check-

f how
.
sion of
classes
ation
s to ini-
ort dis-
e class
ow (Fig-
pler in

applet
ets the
ents
the init
el, ini-

d to be
space of physical packages is contrasted with logical relations among classes specified by inhe
instance variables, and events. The class Applet is presented as a container (panel) that may have
nents and interact with (listen to) external events.

The Java environment allows class declaration and instantiation to make use of inherited and
resources, while the event model provides a dynamic environment for systematic interaction with a v
of event classes organized in an event hierarchy. The listening metaphor relates the computational
nisms of interaction to human mechanisms of perception and problem solving. Item events for men
checkboxes, action events for text entry and buttons, and mouse events for mouse movements are c
tional modes of listening. The overall structure of applet code as a class that extends Applet, which
extends the class Panel, illustrates how applets are integrated into the Java environment. Embed
applets in HTML browsers is briefly described to indicate the role of browsers.

Though is-a and has-a functionality is acquired in distinct ways, how functionality is delivered to u
does not depend on its mode of acquisition. The user cannot tell how an applet’s graphics functional
acquired, and knows simply that the applet and its canvas act as though it can draw and paint in resp
menu and checkbox events.

The high-level discussion of relations among Java classes and components provides a framew
specific applet examples. The visual appearance of the applet and its interactive behavior are pre
showing the menu, checkboxes, and canvas on a screen and the impact of clicking on the menu and
boxes. The intuitive immediacy of the example, supplemented by a high-level understanding o
applets can utilize inherited resources, prepares the reader for a detailed discussion of applet code

The import commands and class declaration are easily understood in terms of the earlier discus
packages and inheritance. The declarations of color and shape as instances of the AWT-defined
Choice and Checkboxgroup includes a brief discussion of the important topic of creation and initializ
of declared variables. Declaring square and circle to be instnaces of Checkbox requires parameter
tialize the properties of checkboxes. The declaration of the Color array and String array needs a sh
cussion of how colors are represented. Declaration of “canvas” as an instance of DrawOn before th
itself has been defined is perhaps the hardest declaration to understand and is further examined bel
ure 7). The declarations illustrate ideas that are quite complex to present in the abstract, but are sim
the context of specific examples where only a reading knowledge of the code is required.

The init method starts by adding the menu, circle and square checkboxes, and the canvas to the
panel. It initializes the menu to the color names Red, Green, Blue, sets the initial color to red and s
canvas size. The final three lines of code ofinit registers the canvas as a target of three ItemListener ev
associated with clicking on menu and checkbox items. Compared with the declarations, the code of
method is relatively easy to understand. But the notions of add commands that add widgets to a pan
tialization of visual properties of widgets, and registering of events are unusual operations that nee
systematically described in courses on interactive computing.
Interactive Visual Programming 11/18



ethods

. Dra-
Item-
d from
s when
repaint

rface,
ut what
omplex

mental
ic envi-
terac-

ing the
terac-

. The
log of
ings.

y with
mouse
t, the
ing and
creen.
The class DrawOn (Figure 7) extends Canvas and implements ItemListener. DrawOn inherits m

from both the class Canvas and the interface ItemListener and exhibits a form of multiple inheritance
wOn has the obligation to implement the methods of ItemListener but there is only the one method
StateChanged that needs to be implemented. DrawOn also redefines the method paint inherite
Canvas but in fact defined in the superclass Component. There is much going on behind the scene
DrawOn responds to an event by executing the itemStateChanged method and calling the inherited
method, which in turn calls the redefined paint method, as shown in Figure 7.

Understanding how DrawOn draws on information from the Canvas class, ItemListener inte
Graphics class, Component class, and Object class in realizing its functionality requires smarts abo
goes on behind the scenes that are very different from those required to program and understand c
algorithms. However, once the environment structure for this particular example is understood, the
tools for other applets have largely been mastered. The forms of dependence of DrawOn on its stat
ronment through Canvas and dynamic environment through ItemListener parallel those of human in
tion with a predictable physical environment and unpredictable temporal events.

5.  Scribble Applet
The Scribble applet allows users to scribble directly onto the applet panel by pressing and dragg

mouse. It is simpler than the ShapesAndColors applet in not requiring system-defined widgets for in
tion, but has to deal with the low-level complexity of pressing, dragging, and moving the mouse
applet panel is the computational analog of the human skin, while widgets are a computational ana
human sense organs. Scribble’s only widget is a clear button that clears the panel of scribbled draw

The Applet data structure has the container instance variables of Figure 2, with a component arra
a single visual element (the clear button). The applet itself is an event source that listens to both
clicks and mouse motion. Its MouseListener and MouseMotionListener lists will be nonempty. In fac
applet is both the source and the target for mouse events, so that external events of mouse click
motion will cause the applet to send a message to itself to perform scribbling actions on the applet’s s

The structure of the scribble applet’s code is like that of the ShapesAndColors applet.

  ItemListener
  virtual methods

 Canvas
 paint method

 DrawOn: applet-defined class
  redefines paint method
  implements itemStateChanged method

itemStateChanged

redefined
in DrawOn

 implemented
 in DrawOn

  is extended by

Figure 7: Classes and Methods of DrawOn Class

  paint(Graphics g)
 for painting canvas     for handling

     ItemEvents

is implemented by

                implements redefines

    CLEAR .  ,,
  -

Figure 8: Scribble Applet with a Clear Button
Interactive Visual Programming 12/18



hose of

let
press-

in the

b

tton
r classes
f regis-

ed. The
s an
utton b.
ple-
utton b.
e but-
which is

events
when the
ntinue-
.

erform
al task.
he Mou-
import commands, Scribble class declaration that extends Applet, instance variables
init method that registers two mouse listeners and a button listener with the applet
inner classes that implement the mouse and button listeners

5.1 Imported Packages and Instance Variables
The import commands, class declarations, and instance variables are similar to but simpler than t

the ShapesAndColors applet.
import  java.awt.*;
import  java.applet.Applet;
import  java.awt.event.*;
public class Scribbleextends Applet {
int  lastX;  // initial x coordinate for scribbling
int  lastY;  // initial y coordinate for scribbling

5.2 The Init Method
The Scribble class redefines theinit method of the class Applet, placing a clear button on the app

panel, setting the panel’s background color, registering a button listener, and registering listeners for
ing and dragging the mouse. The declaration for the button b could have appeared outside theinit method,
like the widget declarations of the ShapesAndColors applet. Since the button is referred to only with
init method (as the source for ClearScreenHandler), it is appropriate to declare the button b withininit .

public void init  {
Button b =new Button("Clear");  // create a button variable labelled Clear
this.add(b);  // display the button as a widget on the panel
this.setBackground(Color.yellow);  // set this applet’s background color to yellow
b.addActionListener(new ClearScreenHandler());  // register ClearScreenHandler as a listener for 
this.addMouseListener(new StartLineHandler() );  // register (add) MouseListener event for applet
this.addMouseMotionListener(new ContinueLineHandler()); // register MouseMotionListener event
}  // end init

The last three commands ofinit register three listeners and create three listening components for bu
and mouse events as a side-effect of registration. The classes for each listener are specified as inne
of Scribble later in the code. Creation of a new listener of a subsequently defined class at the time o
tration is a neat programming technique used both in this and the prvious example.

Components that listen for button and mouse events are created when the events are register
occurrence of “new ClearScreenHandler” as a parameter of “b.addActionListener” both create
instance of the class ClearScreenHandler (defined as an inner subclass) and registers it with the b

Clicking a button causes an ActionEvent. The ActionListener for the button-clicking event is im
mented and handled by the applet-defined class ClearScreenHandler, which is registered with the b
The command b.addActionListener(new ClearScreenHandler()); registers an Action listener with th
ton b as its source and instantiates the listener as an instance of the class ClearScreenHandler(),
defined in later code as an inner applet class.

The source for MouseListener events is the applet panel itself, denoted by “this”. MouseListener
are handled by the StartLineHandler class and cause a mousePressed method to be executed
mouse is pressed anywhere on the applet, while MouseMotionListener events are handled by the Co
LineHandler class and cause a mouseDragged method to be executed when the mouse is dragged

5.3 Adapters: Auxiliary Classes (Wrappers) for MouseListener Interfaces
Adapters are a general mechanism for enhancing interoperability by interposing modules that p

adaptation of interfaces and enhancement of functionality between modules that perform an actu
Event adapters interpose adaptation modules between an event source listener list and its target. T
Interactive Visual Programming 13/18



heir tar-
l six of
apper”
lity to
f adapt-

class

action
ners are

s stubs
nly one
int for

ods

gged
sets the

t, and
nts per

e to the
for the
view-

for the
ted.
red by
applet
seAdapter is an auxiliary abstract class interposed between event sources for MouseEvents and t
gets to reduce the work of classes that respond to MouseEvents by providing dummy methods for al
the MouseListener methods in the MouseAdapter. The class MouseAdapter is an example of a “wr
that “wraps” the MouseListener interface in an implemented class and allows its listening functiona
be used more easily. The concept of wrappers that enhance portability by adapting interfaces and o
ers that enhance interoperability is nicely illustrated by this example. The MouseAdapter is a system
that is not a part of the applet code, but is included to show how adapters work.

public abstract class MouseAdapterextends Objectimplements MouseListener {
public void mouseClicked (MouseEvent e);
public void mouseEntered (MouseEvent e);
public void mouseExited (MouseEvent e);
public void mousePressed (MouseEvent e);
public void mouseReleased (MouseEvent e); }

5.4 Handler Classes for Mouse and Button Events
Scribble has two inner classes for listening to mouse events and a third class for listening to

events for the Clear button. Instances of these classes are defined in earlier code at the time liste
registered.

The class StartLineHandler extends the system-defined MouseAdapter class, which implement
for all methods of a MouseListener, and then redefines the mousePressed method, which is the o
needed for scribbling. The action of the mousePressed method is simply to initialize the starting po
scribbling.

classStartLineHandlerextendsMouseAdapter{ // extend adapter class with dummy interface meth
public void mousePressed(MouseEvent e) {
lastX = e.getX();  // x coordinate for start of a scribble
lastY = e.getY();  } } // y coordinate for start of a scribble

The class ContinueLineHandler extends a MouseMotionAdapter by redefining its mouseDra
method. It gets the graphics object of the applet panel so that its graphics operations can be used,
color of the draw program, draws a line from the start point to the point of the current MouseEven
then reinitializes the starting point for the next MouseEvent. Dragging causes about 10 MouseEve
second, so that scribbles are actually sequences of short lines having the appearance of a curve.

class ContinueLineHandlerextends MouseMotionAdapter {
public void mouseDragged(MouseEvent e) {
Graphics g = getGraphics();  // returns a reference to the graphics object of the applet
int x = e.getX();  // coordinates of current mouseEvent, supplied by parameter
int y = e.getY();
g.setColor(Color.red);  // uses the setColor method of the graphics object
g.drawLine(lastX,lastY,x,y);  // draw line from last to current coordinates
lastX = x;  // reinitialize coordinates for next drawLine execution
lastY = y;} }

The mouseDragged method gets the graphics object of the applet by assigning to g a referenc
graphics object, while the paint method in the ShapesAndColors applet gets the graphics object
canvas through a parameter. These methods are linguistically different though equivalent from the
point of the methods that use the graphics object. Both methods have the effect that g is an alias
graphics object that refers to a shared copy implicitly created when the canvas and applet are crea

The ClearScreenHandler class implements an ActionListener - a higher-level event listener trigge
button clicks. It gets the applet’s graphics object, sets the color to the background color for the
panel, and fills in the complete panel area with the background color.
Interactive Visual Programming 14/18



import
es new
ual and

d in a
e that
al lan-
eved by
s.
compa-
re ele-
ctures,
ction of
ore dra-
nviron-
ather
y well

f

nical
class ClearScreenHandler implements ActionListener
{ public void actionPerformed(ActionEvent e)
{ Graphics g = getGraphics();  // returns a reference the applet’s graphics object
g.setColor(getBackground());  // uses operations of the graphics objects
g.fillRect(0,0,getSize().width, getSize().height);
} } // end Scribble

The Scribble applet has the same structure as the ShapesAndColors applet, with some initial
commands and declarations, an init method, and inner classes that implement listeners. It introduc
MouseEvent classes and associated listeners but for the most part serves to reinforce notions of vis
interactive applet programming presented in the first example.

6.  Conclusions
Our example-driven approach allows new concepts of interactive programming to be presente

direct and relatively simple manner that corresponds to learning by listening and reading. We believ
programming languages should be assimilated by reading before learning to write, just as natur
guages are assimilated by listening before learning to speak. Good programming can be better achi
learning good programming practice through reading than by learning to program from a set of rule

This presentation assumes that readers have a basic knowledge of object-oriented programming
rable to an introductory course. But the example-driven approach could easily be extended to mo
mentary material by adding more basic examples of expressions, statements, control stru
procedures, types, classes, and objects. By focusing on examples rather than on rules of constru
programs, the amount of material that needs to be mastered is dramatically reduced. The effect is m
matic when applied to complex systems like Java than to simpler systems like Pascal. However, e
ments that rely on class libraries to support visual and interactive programming will be the norm r
than the exception in the future, and programming by example rather than by language rules ma
become the norm for learning and teaching.

7.  References
[AG] Ken Arnold and James Gosling,The Java Programming Language, Addison Wesley, 1996.
[Fl] David Flanagan,Java in a Nutshell, 2nd Edition, O’Reilly, 1997.
[GHJV] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,Design Patterns: Elements o
Reusable Object-Oriented Software, Addison-Wesley, 1994.
[Ha] Graham Hamilton Ed., JavaBeans, Sun Microsystems, java.sun.com/beans
[We1] Dimensions of Object-Based Languages Design, OOPSLA 1987.
[We2] Peter Wegner, Why Interaction is More Powerful Than Algorithms,CACM, May 1997.
[We3] Peter Wegner, Interactive Foundations of Computing,Theoretical Computer Science, Feb. 1998
[WG] Peter Wegner and Dina Goldin, Interaction, Computability, and Church’s Thesis, Brown Tech
Report,  www.cs.brown.edu/people/pw

Appendix 1: Code for ShapesAndColors Applet

import  java.awt.*;                      // needed for widgets of AWT
import  java.applet.*;           // needed for Applets
import  java.awt.event.*;        // needed for event handlers

public class ShapesAndColors extends Applet   {
{       // create an empty drop-down menu

private Choice color = new Choice();
        // Create square and circle radio-buttons with circle selected initially.
Interactive Visual Programming 15/18



        // Selecting one checkbox within the checkboxgroup will turn the others off.
private CheckboxGroup shapes = new CheckboxGroup();
private Checkbox square = new Checkbox("Square", false, shapes);
private Checkbox circle = new Checkbox("Circle", true, shapes);

        // Initialize an array of strings ("labels" for drop-down menu)
        // and an array of abstract "colors" for setting the drawing color.

private String[] colorName = {"Red", "Green", "Blue"};
private Color [] theColor = {Color.red, Color.green, Color.blue};

        // create an instance of DrawOn (canvas to draw upon, with built in eventlistener)
        // class DrawOn is defined later in the code.

private DrawOn canvas = new DrawOn();

public void init() {
                // add the pull-down menu color, the Checkboxes square and circle
                // and the DrawOn instance, canvas to the applet container
                this.add(color);
                this.add(square);
                this.add(circle);
                this.add(canvas);
                // Complete the intialization of the drop-down menu, color
                for (int i=0; i < colorName.length; i++)
                  color.addItem(colorName[i]);
                color.select(0);  // set the first item to appear as the intial selection
                // Complete intialization the DrawOn instance, canvas
                canvas.setSize(150,150);

                // register canvas as the ItemListener for any ItemEvents generated
                // by the drop-down menu or by either checkboxe
                color.addItemListener(canvas);
                square.addItemListener(canvas);
                circle.addItemListener(canvas);
          }  // end init

// extend Canvas and implement ItemListener
// to provide for both drawing and event handling capabilities
class DrawOn extends Canvas implements ItemListener {

public void itemStateChanged(ItemEvent e)
  {  if (e.getStateChange() == ItemEvent.SELECTED)
        repaint();  // calls a redefined (below) repaint
                                // to draw the correct object and color
  }
// Redefine DrawOn’s paint method (inherited from Component)
// so that whenever a DrawOn instance is asked to draw itself, it will do so
// according to the color indicated by the drop-down menu and the
// shape indicated by the checkbox
public void paint(Graphics g) {

    // find the index of the selected string in the drop-down menu
    // extract that index from the array of abstract colors.
Interactive Visual Programming 16/18



    // use the color extracted to set the color of the Graphics object.
    // Anything drawn on the graphics object will be in that color until
    // the color of the graphics object is reset
        g.setColor(theColor[color.getSelectedIndex()]);
        if (circle.getState())
                g.fillOval(20,20,100,100);
        else  // square.getState() is true
                g.fillRect(20,20,100,100);
    }    }    }

Appendix 2: Code for the Scribble Applet
import  java.awt.*;
import  java.applet.Applet;
import  java.awt.event.*;

public class Scribble extends Applet {
   // declare instance variables lastX and lastY
        int lastX;
        int lastY;

        // Scribble contains only one method: init()
public void init() {

                this.setBackground(Color.yellow);  // change applet’s background color

                // Create a new button and add it to the applet container
                Button clearBtn = new Button("Clear");
                this.add(clearBtn);

                // Create a listener for button actions and register it with the button
                clearBtn.addActionListener(new ClearScreenHandler());

                // Create listeners for mouse events and register them with the applet
                this.addMouseListener(new StartLineHandler() );
                this.addMouseMotionListener(new ContinueLineHandler());

     } // end init
        // define the three eventListener Classes
        // The applet (container) generates events for the first two MouseEvent
        // event handlers, but the button generates events for the ActionEvent handler

class StartLineHandler extends MouseAdapter{
public void mousePressed(MouseEvent e) {

                        lastX = e.getX();
                        lastY = e.getY();
                        }     }

class ContinueLineHandler extends MouseMotionAdapter {
public void mouseDragged(MouseEvent e) {

                        Graphics g = getGraphics();
                        int x = e.getX();
Interactive Visual Programming 17/18



                        int y = e.getY();
                        g.setColor(Color.red);
                        g.drawLine(lastX,lastY,x,y);
                        lastX = x;
                        lastY = y;
                    }    }

class ClearScreenHandler implements ActionListener
            {public void actionPerformed(ActionEvent e)
                { Graphics g = getGraphics();
                  g.setColor(getBackground());
                  g.fillRect(0,0,getSize().width, getSize().height);
                }      }       }
Interactive Visual Programming 18/18


	1. Introduction
	2. How Components Acquire Visual and Interactive Functionality
	2.1 Is-A, Has-A, and Interacts-With Functionality
	2.2 Classes and Interfaces
	2.3 The Java Event Model
	2.4 Java Packages: Physical Directory Structure
	2.5 Structure of Applets

	3. ShapesAndColors Applet
	3.1 Applet Structure and Imported Resources
	3.2 Declaring the Applet’s Instance Variables
	3.3 Initializating the Applet’s Interactive Visual Interface
	3.4 DrawOn Class that Extends Canvas and Listens to Menu and Checkbox Events

	4. Learning (Teaching) by Example
	5. Scribble Applet
	5.1 Imported Packages and Instance Variables
	5.2 The Init Method
	5.3 Adapters: Auxiliary Classes (Wrappers) for MouseListener Interfaces
	5.4 Handler Classes for Mouse and Button Events

	6. Conclusions
	7. References

