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What is Object-Oriented Programming?

There is no silver bullet for software engineering
      Fred Brooks, early 1970s

Everyone is talking about OOP, no one knows what it is?
       Tim Rentsch, 1979

Reactive systems cannot be modeled by algorithms
     Zohar Manna and Amir Pnueli, 1980s

Concurrent systems cannot be modeled by algorithms
       Robin Milner, 1992

Many signs that Turing machines (TMs) cannot model OOP
  knowing what OO is: not possible by algorithmic models
  OO can be defined only by interactive models of computation

Goal:
  negative: show OOP is not expressible by, reducible to TMs
  positive: unifying model for OOP, AI, networks, graphics, HCI
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The Evolution of Programming Paradigms

Paradign shift from the 1970s to the 1990s:
From mainframes to workstations and networks
From number crunching to embedded systems and GUIs
From procedures to objects and distributed systems
Fundamental shift from algorithms to interactive computing

1950s - 1960s: Machine language -> procedure-oriented
  change in the granularity of actions (scale)
1970s - 1990s: Procedure-oriented -> object-based
  fundamental change in modeling power (quality)

1950s: machine-language
 programming

1960s: procedure-oriented
 programming

1970s: structured programming

1980s: object-based
programming (single-user)

1990s: structured object-based programming

with concurrency and distribution
interactive, adaptable, composable

scalable, heterogeneous object model

dead end

procedure management

actions -> objects

verbs -> nouns

larger-granularity actions

interfaces, frameworks, patterns, interoperability

structure of actions (verbs)
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From Algorithms to Interaction

A procedure transforms arguments (inputs) to values (output)
   sequence of steps of procedure is analgorithm
   behavior is specified as a function

An algorithm is acomputable function from integers to integers
  f: X -> Y, where x∈X is completely defined prior to start

Time-independent spec: indep of start time and execution time
  complexity: depends on number of instrs but not on time

Two modes of computing:
algorithms: computable functions, transformation semantics
  sales contracts: given an input provide an output
interaction: services over time, observation semantics
  marriage contracts, not expressible by sales contracts
  formalize distinction between marriage and sales contracts

Algorithms (verbs) are less expressive than objects (nouns).

value (output)argument (input)
       procedure
       algorithm
       function

function, procedure, algorithm
time-independent sales contract
given an input, deliver an output

object, agent, actual computer
marriage contract over time
interactive service, interaction history

closed systems, Turing machines open systems, interaction machines

     less
expressive
    than

Open Interactive Objects Have Richer Observable Behavior than Closed Algorithms
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Nonalgorithmic Object Behavior

An object has operations that share a state
  embedded system, service over time for unpredictable clients

Two kinds of interaction for an object’s operations:
  interaction with input streams
  interaction with a shared state

op1 is not a fixed function, action changes between activations
  if parallel access to op1, op2, then op2 can interfere with op1
  op2 can change effect of op1 while it is executing

Sharing of state causes nonfunctional behavior of operations
  shared object variables are essential, but formally harmful

Sharing is harmful to formalization, but increases expressiveness
  trade-off between formalization and expressiveness

Go tos were considered harmful to formalization, Dijkstra
  allowing go tos merely increases flexibility, not expressiveness
Interaction is more fundamentally harmful to formalization
  interaction increases expressiveness, solves more problems

 shared
  state

op1

op2

object = glue(op1, op2, state)

operations are not algorithms,
because their nonlocal variables
cause unpredictable interactive

Object Interface Operations Have Nonalgorithmic Behavior

inner interaction

outer interaction,
external messages

 input stream,  op1

effects
 nonlocal variables

input stream,  op2
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Programming in the Large (PIL) Is Interactive

What is “large” in Programming in the Large?
  largeness does not mean a large number of instructions
  algorithms with a million instructions are not necessarily PIL
  PIL programs are, however necessarily interactive
  PIL = interactive programming
  this definition of PIL is crisp and natural
  replaces fuzzy largeness by a precise testable criterion

PIL and PIS are qualitatively (not quantitatively) different
  they differ in expressive power, not just in size

Fred Brooks’ “no silver bullet for PIL” translates into
  “PIL is inherently nonalgorithmic, nonformalizable”
  no silver bullet = no algorithmic model

Greater expressiveness of interactive over algorithmic systems
  explains why SE is not primarily about algorithms
  explains difficulty of extrapolating from PIS to PIL
  explains diff between proc-oriented and OO programming
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Many Alternative Forms of Interaction

Quote from Christos Papadimitriou
  In computer science, important concepts usually come in many
alternative characterizations

Christos was referring to many forms of NP-completeness
  also many alternative models for computability, interaction

Computability: TMs,λ-calculus, recursively enumerable sets
  interaction can also be characterized in many different ways

Interactive Models (machines, sets, algebras)
  Turing machines -> interaction machines
  recursively enumerable sets -> non-well-founded sets
λ-calculus -> coalgebras

  inductive reasoning -> circular reasoning (coinduction))

object-oriented programming-
services over time (QoS)
structured object-oriented prog.
emergent behavior
programming in the large
agent-oriented (distributed) AI
open systems
empirical computer science

procedure-oriented programming-
input-output transformation
structured programming
compositional behavior
programming in the small
logic and search in AI
closed systems
algorithmic computer science

            Parallel Extensions from Algorithms to Interaction

Algorithmic Concepts                    Interactive Concepts
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Multiple Models (Projections) of Shared Domain

Computer Science has multiple models of computation:
machines: rules of computation, a mechanism for realizing them
grammars: sets of strings, generating rules
logics: relate syntactic inference to semantic modeling

Same underlying semantics expressed by different models
  interactive models likewise have many alternative forms

The real world has multiple models with weak interaction:
physics: matter and motion; for example, the solar system
chemistry: atoms and molecules; chemical reactions
biology: living organisms; cells, protein folding, evolution
economics: production and distribution of goods and services
literature: literary interpretation of texts, deconstruction
art: visually represented modeled worlds, human models

Multiple models of real world is basis for science
  chemistry, biology: different projections of the real world
  models are also central to economics, literature, art

machines
(physics)

grammars
(chemistry)

logic
(biology)

domain of discourse
with multiple models
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Multiple Models of Object-Based Design

The object modeling technique OMT has a three-level model
  three levels of analysis of interactive software systems

 object model: relation among interactive components (nouns)
  nonformalizable static description of interaction patterns
dynamic model: specific sequential interaction histories
  dynamic partial inter-object behavior for sequential steam
functional model: transformation behavior of specific functions
  dynamic intra-object behavior at the level of algorithms

Parallel levels of interactive and algorithmic abstraction
  static model: object model <---> flow diagram
  dynamic model: interaction history <---> execution history
  transformation model: message control <---> inner control

Greater gap between static and dynamic structure
  two levels of dynamic modeling: outer events, inner rules
  interactive operation sequences composed of instr sequences
  interactive events are second order, built from first-order events

object model

dynamic interaction
interaction history
interactive time
scenarios, use cases

operation behavior
operations, algorithms
protocols, patterns

algorithm model

dynamic execution
execution history
algorithmic time
sequence of instructions

instruction behavior
primitive instructions
pre- and post-conditions

second-order logic first-order logic

different semantics of time
interactive vs algorithmic

inter-object dynamics inter-instruction dynamics

                    Three-Level Model for Objects and Procedures

intra-object semantics intra-instruction semantics

transformation model

flow diagram
control paths

different graph semantics
objects versus actions

object diagram
access relations

external versus internal

  execution model
access versus control

structure model

interacting side-by-side sequential execution

 different granularity of actions
 observable events vs inner rules
    operations vs instructions
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Algorithms and Turing Machines (TMs)

Algorithm:  computes outputs noninteractively from its inputs
TM: computes output strings noninteractively from input strings
  read symbol, perform state transition, output, move tape
  always start with the same initial state, history independent

TMs shut out the external world during the computation
  they model inner cleverness, not interactive behavior

Multitape TM:  has multiple input, output, working tapes
  initial state, working and output tapes initially blank

TMs and multitape TMs compute the computable functions
  functions f:X -> Y from integers to integers, strings to strings
  arguments x∈X completely defined before computation starts
  equivalence of TMs and lambda calculus proved by Turing

Church’s thesis:not a theorem, but assumed true for 50 yrs
  equates intuitive computability with formal comp. by TMs
  robustness of models of computation provides strong evidence
Turing tarpit:  no way of specifying richer form of computation
  interactive models allow us to escape from the Turing tarpit

Fundamental extension of computation to interaction
  mentioned by Turing in his 1936 paper (choice machines)
  but he did not examine properties of “choice” machines
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Interaction Machines

IMs extend TMs: incremental input streams from environment
  I/O stream (i1,o1), (i2,o2), ... , ik+1 can depend on output ok

Sequential IMs (SIMs): interact with single I/O stream
Multi-stream IMs (MIMs): interact with k streams, k>1

A SIM is a machine M = (S, I, F)
  S is an enumerable set of states
  I is an enumerable set of input strings
  F: SxI -> SxO is a computable function
  computation step is a complete TM computation

The transition from sk-1 to sk: atomic I/O pair (ik, ok)

Input nondeterminism: unpredictable dynamic inputs ik

Output determinism: ok is determined by ik

  can easily be extended so that output is nondeterministic

SIMs: single-user workstations and databases, Markov processes
MIMs: ATMs, distributed systems, networks, the Internet

i1

s0 s1 s2 s3

i4i2 i3

m m m

o1 o2 o3
Figure 2: SIM with Input i∈I, Output o∈O, and mapping m
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Properties of Interaction Machines

Finite computing agent:
  the computing agent is finitely specifiable

Dynamic (late, lazy, incremental) binding of inputs
  ik+1 may depend on ok and on external events

Persistence of state:
  initial state for each interaction is the previous final state

History dependence:
  output can depend on previous I/O tokens via the state

Hidden information:
  state is unknown to the observer, circular reasoning

No halting state:
  computation is a continuing process, not a transformation

Behavior of IMs is modeled by I/O streams
  IMs (streams) express nonenumerable possible behaviors

Streams are mathematically modeled by non-well-founded sets
  axiomatic set theory provides a model for streams

SIMs interact with a single stream, MIMs with multiple streams
  MIMs are more expressive than SIMs
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Interactive Identity Machines (IIMs)

Pure interaction without transformation is nonalgorithmic
  interactive identity machines, transduce without transforming

loop “ interactive-identity-machine”
    input(message); output(message);
end loop

Interactive chess machine M:
  use intelligence of player A against player B

Ant on a beach finding way home to ant colony

Set of all beaches cannot be described algorithmically
  nonalgorithmic behavior, complexity determined by beach
Management paradigm: harness behavior of environment
  managers are as powerful as their workers
  interaction machines can harness power of the environment
  potentially more powerful than Turing machines
    at the cost of heavy dependence on the environment

interface of A interface of B

player A player B

                   Interactive Chess Machine

interactive chess machine M

         Path of Ant Reflects Complexity of the Beach

irregular path

in the sand
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Concurrency, Distribution, and Interaction

Parallel computations are overlapping (simultaneous) in time
Distributed computations are separated in space
Interactive computations have inputs distributed in time

.

Parallel noninteractive computations are algorithmic
 textbooks, graduate courses, practical applications

Distributed noninteractive computations are also algorithmic
  the design space is algorithmic in the horizontal base plane

Algorithmicity of parallel and distributed comp caused confusion
  relating nonalgorithmicity to interaction is a key insight

Focus on interaction instead of concurrency changes perspective
  transactions: concurrency control to interaction control
  processes: concurrent composition -> interactive composition
  focus on external interference, not inner concurrency
  distinguish interactive from execution concurrency
  interactive conc. = multiple streams = distributed systems

distributed (separated in space)

          parallel (simultaneous in time)

noninteractive parallelism and distribution are algorithmic,

interaction is nonalgorithmic even when sequential,

sequential algorithms

specifies empirical model of computation

express inner noninteractive system properties

 Design Space for Interactive, Parallel, and Distributed Computing

  (external inputs, distributed in time)
                                            interactive
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Multi-Stream Interaction Machines (MIMs)

Finite agents that interact with multiple streams
  ATM systems, distributed databases, collaborative computing
  MIMs express n-agent interaction, n>2
  SIMs model 2-body problem, MIMs n-body problem, n>2
  physics: 2-body problem is tractable, 3-body problem is not

MIMs precisely define distributed systems
  a system is distributed if its interaction is inherently concurrent

Claim: MIMs are more expressive than SIMs
  interactive expressiveness: observation (poblem-solving) power
  two technical arguments for greater expressiveness:

1. nondeterministic behavior of multiple autonomous observers

  MIM observers can observe only partial system behavior
  cannot observe the whole elephant, only its trunk or tail
  notion of an observer is inherently sequential
2. nonserializable behavior due to interaction among observers
  autonomous streams cannot be merged into a single stream
  collaboration, coordination is more expressive than SIMs

multi-stream system

Multi-Stream Interaction of Primary and Secondary Observers of a MIM

           MIM

                      primary observer

secondary observers who interact

MIMs -> n-agent systems, n>2
SIMs -> 2-agent systems
TMs -> 1-agent systems

MIM + primary observer -> open system
SIM + primary observer -> closed system

with MIM through hidden interfaces
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Does God Play Dice?

Einstein: quantum nondeterminism (ND) due to hidden variables
  partial knowledge causes quantum ND, God does not play dice
  Bohr, Bell, Aspect proved hidden variable model inadequate
  concluded ND is inherent part of reality, God plays dice

MIM observers: hidden interfaces, secondary observers
 observed objects are connected to, modified by environment

secondary observers cause ND, eg random noise
  observer perceives subjective ND, but objectively deterministic
  compatible with Einstein’s belief that God does not play dice
  Einstein’s intuition was correct, but his example was wrong
  observed objects in real world are MIMs, not SIMs

Testable hypothesis: extend Aspect experiment to 3-bodies
  need 3 bodies (2 streams) for ND by secondary observers

Computationally this model is themultiple writers  problem
  multiple-writers cause nondeterminism for databases
  airline reservation systems are nondeterministic in this way
  MIMs models: collaboration, coordination, higher management

observed system

observed objects interact with hidden secondary observers

                     primary observer

   hidden active agents (secondary observers)
   observed system connected to world
  testing requires at least three bodies (agents)
  results of two-body experiment are invalid
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The Turing Test

Turing test: experiment to test “Can machines think?”
  depends on the meaning of “machine”, “think”. “can”

Machine simulates human responses to broad range of questions
  Turing: machines think if their behavior is indistinguishable

Turing hypothesis in 1950: machines can in principle think
  they will in time be able to pass the Turing test

Details: what kind of a machine?
  Turing naturally assumed that machines were Turing machines
  allowed machines to delay answer to simulate human slowness
  but no provision for inherently slower tasks, scene recognition

Critics (Penrose and Searle):
extensional skeptics: machines cannot behave like thinkers
intensional skeptics: even if they can, they lack awareness

Two kinds of machines: TMs, IMs
  Can Turing machines think? - no, thinking includes interaction
Can interaction machines think? - maybe, plausibly yes

questions
question-answering agent

  questioner must guess whether the agent is human or machine

answers

agent is closed
except to queries
by the questioner
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The Interactive Turing Test

Turing’s two main contributions: TMs and the Turing test
  part of a comprehensive unified model of computation
  computational limitations of TMs limit the Turing test
  does not handle SIM or MIM models of computation

Extend Turing test to interactive behavior (interactive thinking):
  sequential thinking: history-dependent behavior of SIMs
  sequential Turing test: SIMs have more realistic behavior
  distributed thinking: multi-agent behavior of MIMs
distributed Turing test: MIMs have even more realistic behavior

SIMs remember answers, questioners ask follow-up questions
  Starr can learn more about Clinton with follow-up questions

MIMs can delegate to experts hidden from the questioners
  encyclopedia Britannica, human or chess expert
  SIMs can do better than TMs, though not as well as MIMs

Searle was right that TMs are an inadequate model of thought
  but wrong that behavior cannot inherently model thought
  SIMs and MIMs can model intentionality, though TMs cannot
  Searle was right for the wrong reasons
  Turing, though wrong, was right in his experimental method
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Penrose’s Model of Physics and Thought

Penrose: physical world is deterministic but noncomputable
  all computable models of physics are nondeterministic, but
∃ noncomputable deterministic models of physics and thought

Two interpretations of Penrose’s view:
  1. Penrose is wrong: IMs are computable deterministic models
  IMs model extensional behavior of physics and thought
  2. Penrose is nearly right: IMs are non-TM computable
∃ non-TM computable det. models of physics and thought

Penrose viewed noncomputability as mystical, undefined
  however non-TM computable is defined by IM models
  non-TM models express physics and thought

If we replace “noncomputable” by “non TM computable”
  then MIMs have the properties Penrose postulates
  MIMs are ND for TM and SIM observers
  objectively deterministic for an omniscient observer (God)

Computational reasoning provides insight into physics
  resolves Einstein-Bohr controversy, Penrose dilemma
  physics provides a computational model of the real world
  interactive models in turn provide a framework for physics
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Correctness and Testing Specifications

A specification Sp defines behavior for observation set O.
Algorithms: elements of O are single I/O observations.
SIM specifications extend O to streams of I/O observations.

Correctness requires O to account for all system behavior
Testing: subset of O that determines partial system behavior

Incompleteness: complete behavior O not formally specifiable

Algorithms have an absolute correctness spec for all behavior
  even though correctness may be undecidable, unverifiable

Interactive systems have only partial specifications of behavior
  relative correctness: no absolute correctness even in principle
  correctness is definable only relative to a class of observations

Correctness can be approximated by progressively finer OEs
  sets of all k-step observations for SIMs
  but k-step OEs do not capture complete behavior for any k

Interactive correctness cannot be formally specified by fol
  only testing specifications are possible

Dijkstra: correctness shows only presence of bugs, not absence
  used as an argument in favor of correctness proofs
  but for interactive systems testing is the only game in town
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Specification

Specification language: class of things that may be specified
  first-order logic: specifies algorithms, computable functions
  non-well-founded set theory: specifies sequential interaction

Consistency: the property that a system satisfies a specification
Specification Sp defined by a class OSp of observations

System S defined by class OS of observable behaviors

System S is consistent with Sp if OSp⊆OS, complete if OSp=OS

Sp determines a class CSp = {S | OSp⊆OS} consistent with Sp

Systems S consistent with Sp can be viewed as possible worlds
CSpis an observation equivalence class, coinductively defined

CSp = {S | S is the maximal class of systems satisfying Sp}.

Compare fol and nwfst as specification languages:
  fol specifications: CSp is a class of TMs

  nwfst specifications: CSp is a class of SIMs, stronger formalism

  MIMs require an even stronger specification formalism

nwfst more strongly determines behavior
  determines a smaller class of systems (possible worlds)

Software Specification and the Associated Class CSp of Consistent Systems (Possible Worlds)

  class CSpof systems S
  (possible worlds)
  with specifications Sp

software specification  Sp
   defined by
  observations OSp
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Interactive Expressiveness of Machines

Expressiveness of algorithms: transformation power
  definable by classes of sets, regular, context-free, etc
  recursively enumerable sets express computable functions

Expressiveness of objects, agents: observation power
  ability to make distinctions in the environment
  environment: set of strings for TMs, streams for SIMs
  SIMs can make finer environment distinctions than TMs
  MIMs can make finer environment distinctions than SIMs
  classes of sets, equivalence classes of an equivalence relation

Let BE(M) be the behavior of agent M in environment E

  for M∈TM the behavior of M is a set of ordered pairs
  for M∈SIM it is a set of I/O streams (sequences of pairs)
  distinguishing set: DS = BE(M1) ⊕ BE(M2)

  elements dc∈DS are called distinguishability certificates

M1, M2 can be distinguished in E if dc∈DS exists

  distinguishable machines have a finite distinguishability cert.
  equivalent machines have no distinguishability certificates in E

Machines M determine an equivalence relation on E
  e, e’ are equivalent Be(M) = Be’(M), same behavior for e, e’

  M partitions E into equivalence classes
  M1 is more expressive on E than M2 if BE(M1) < BE(M2)

  M1 can make finer distinctions on E than M2
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Observation Power of Finite Computing Agents

The number of equivalence classes of an ER is called its index

Lemma for finite automata (Myhill, Nerode)
  ERs induced on tapes (strings) by FAs have a finite index
strings are equivalent for state s if they compute same final state

  strings equivalent for all states s are indistinguishable

Extension of this lemma to TMs and IMs
  ERs induced on strings by TMs have an enumerable index
  ERs induced on environs by IMs have nonenumerable index

Interactive finite agents can make nonenumerable distinctions
about their environments (surprising result)
Proof: I/O streams are nonenumerable (cardinality of reals)

  streams are modeled by non-well-founded sets

This “proves” that IMs are more expressive than TMs
  grounds interactive expressiveness in classical automata theory
  relates observation-based expressiveness to automata theory
  IMs model the real world by the real numbers

For FAs and TMs, domain = enumerable environment X, f:X->Y
  FAs make enumerable distinctions, TMs nonenumerable ones
  for IMs, domain is nonenumerable streams
  SIMs partition ENV into nonenumerable classes (streams)
  MIMs require more complex definition of observation
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Classes of Agents and Environments

Classes of agents(machines) with behaviors: TMs, SIMs, MIMs

Classes of environments:
Turing machines TM (interaction specified by I/O pairs)
SIMs (interaction specified by I/O streams)
MIMs (interaction specified by multiple I/O streams)
the physical world W (at least as demanding as MIMs)

Sequential interaction: producer/consumer
  agent (machine) consumes behavior produced by environment
  actual behavior: intersection of agent, environment behavior

Real world W is the strongest environment considered
BW(M) is a measure of the expressiveness of M

  Expressiveness result:BW(TMs) < BW(SIMs) < BW(MIMs)

But if the environment is constrained to be a TM:
  BTM(TMs) = BTM(SIMs) = BTM(MIMs)

Or if the agent is constrained to be a TM:
  BTM(TMs) = BSIM(TMs) = BMIM(TMs) = BW(TMs)

Infinite expressiveness hierarchy for SIMs:
  Let SIMk be class of SIMs with k interactions

BW(SIMk) < BW(SIMk+1), for all  k>0

BW(TM) = BW(SIM1), TMs are at the bottom of the hierarchy
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High-Level Questions about Computer Science

What is a computational problem?
What are the basic models of computation?

What is a good intuitive notion of computation?
What is expressiveness, how should it be modeled?

What are the goals of computer science?

Traditional answers:
problem: algorithm, traveling salesman, sorting
models: Turing machines, strings, grammars, logic
intuition : Church’s thesis, intuitive computing = TM computing
expressiveness: transformation power, recognition power
goals: complexity, quantitative analysis of algorithms

Broader view:
problem: services over time, objects, agents, embedded systems
models: interaction machines, streams, well-founded sets
intuition : beyond Church’s thesis, manage interaction over time
expressiveness: external modeling power, environment capture
goals: modeling reactive, embedded, interactive applications

Evolution:
solve a larger set of problems
more ambitious set of technological goals
different foundational models
from reasoning to modeling
parallel extensions: machines, set theory, algebra
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What is a Model?

A model represents, describes, implements something
  it abstracts “relevant” properties, ignores “irrelevant” properties

Visual models: partial description, model airplane, car, building
  behavior models (simulate, implement behavior)
  differential equation, airline reservation models

A model expresses semantic properties of a modeled world W
  by syntactic properties of a representation R

Goal of logic models: to capture semantics syntactically
  empirical models have different goal: express external reality

Soundness and completeness: measure adequacy of R for W
soundness: R reliably expresses specific properties of W
completeness: all properties of W can be expressed by R

Godel: first-order logic is incomplete for arithmetic over integers
  semantic domains of mathematics are too rich for fol models
  fol can model only enumerable, inductively specified domains
  fol is incomplete for interaction domains for the same reasons
  fol is too weak to model mathematics or computation

syntax, representation R
static and dynamic properties
formula, program, text, image
simulation, prediction, control

    semantics, world W
 something we wish to model
 modeled world, domain
 real world, logic world
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Pragmatics (Modes of Use)

Pragmatics: Interpreter I of representation R of world W
Model M = (R, W, I) = (rep, meaning, interpretation)
   = (Syntax, Semantics, Pragmatics)

Users should explicitly be part of the model (embedded models)
  models may have multiple pragmatics, specified by interfaces
  examples: banking ATMs, airline reservation system
  model structure recapitulates application structure

Mathematical model: logic, algorithms:
  modeled world of functions and predicates
  automatic derivation by rules, noninteractive interpreters
  prescribed single pragmatics identified with syntax

Empirical model: physics, objects, components, interaction
  modeled world is the real world or an artificial world
  derivation by interaction with external events
  multiple pragmatics sharing a common syntax and semantics
  grounded in an external reality that imposes external semantics

Pragmatics relates modeled worlds (and objects) to modes of use
  uses of simple objects, algorithms, systems may be complex
  empirical models describe patterns of observation, simulation
  multiple pragmatics enhance abstraction and description power

pragmatics: interpretation I
observe, control, predict,
design, describe, manage
things in the modeled world

        syntax: representation R
        static, dynamic properties
        language, text, graphics
        formulae, programs

          semantics: world W
         domain being modeled
          behavior and meaning
          logical or physical objects

Pragmatics Provides Partial Description Relative to Specific Mode of Use
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Declarative, Imperative, and Interactive Models

Computing: lingua franca for modeling many different domains
  predicate calculus: models domain-independent notion of truth
  declarative: functional and logic programming, relations
  imperative: algorithms, computable functions, TMs
  interactive paradigm: services over time, objects, agents

Declarative, imperative, interactive models of computation

Declarative and imperative models express equivalent power
  interactive models express reactive/proactive services over time
  grounded in the real world, embedded, reactive systems

Shift in focus from declarative/imperative equivalence
  to exploration of interactive models
  expr(Decl) = expr(Imp) < expr(Int)

        Model                              Syntax                             Semantics                     Pragmatics
 M = (R, W, I)                     Representation R            Modeled world W          Interpretation I

Declarative models:
  first-order logic               well-formed formulae        model theory domain       rules of inference
  lambda calculus              lambda expressions            computable functions      reduction rules
Imperative models:
  Turing machines             states, transitions               computable functions       transition rules
  procedure paradigm        bnf specification               pre and post conditions     interpreter
Interactive models:
  distributed systems         system specification           interacting computers    interaction protocols
  software components      design specification            software applications      use cases, traces
  AI agent models            representation language       intelligent agents             behavior spec
  dynamical systems         differential equations          real world systems          dials and meters

         Declarative, Imperative, and Interactive Models
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Plato’s Cave: Incomplete Physical Models

People observe only shadows of reality on the walls of a cave
  projection of light on our retina,incomplete cues of reality

Plato: abstract ideas are more real than empirical reality
  ideal table in heaven more “real” than physical tables
  reality is mathematical, physics cannot give certain knowledge
  denial of validity of empirical observation
fundamental mistake, harmful consequences

  obstacle to the development of science for 2000 years

We agree reality is unknowable, knowledge is incomplete
  disagree withPlato that partial knowledge is worthless
  fortunately understanding, prediction, control are possible
  coping with incompleteness: the basis for empiricism

Dwelling in a cave is not so bad, reflects reality
  we deal with inherently incomplete knowledge all the time
  when we talk to each other, no knowledge of inner thoughts
  coinductive models express interacting computers and people

just as interaction machines

•

Plato’s Cave as a Metaphor for Both Rationalism and Empiricism

projection on the retina

partial description:
interface behaviors of
inherently undescribable
objects

Physical objects are
incompletely observable

are incompletely describable

  modeled world
  real, ideal world
 semantics

  representation
  reflection, shadow
  abstraction, syntax

   mathematical models
        completeness
     empirical models
      incompleteness
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History of Modeling

Models aim to formalize or mechanize intuitions about domains
  math models formalize semantics by syntax
  physics models describe, predict, control physical behavior

History of modeling dates back to the Greeks
  Presocratic models:Thales, Heraclitus, Parmenides, Democritus
  Plato’s cave: observe only shadows (reflections) of reality
  Euclidean geometry: geometric model of reality

Rationalism (Descartes), Empiricism (Locke, Berkeley, Hume)
  “Cogito ergo sum”, thinking implies existence
    certain knowledge only through inner algorithmic thinking
Hume: inductive inference and causality are not deductive
Kant: Critique of Pure Reason, logic is inadequate for modeling

Rationalist revivals in 19th and 20th century
  Hegel, Marx, extend reason beyond its legitimate domain
  Russell, Hilbert, formalize mathematics by logic
  Godel, logic cannot completely model mathematics
  overturns Hilbert’s formalism

Church-Turing models arise in 1930s, just after Godel
  Church’s thesis: computational analog of Hilbert formalism
  Godel incompleteness applies also Church’s thesis
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Godel Incompleteness

Logics prove theorems from axioms by rules of inference
  theorems provable from axioms are recursively enumerable

Soundness (S) andcompleteness (C) relate syntax to semantics
  syntactic proofs model truth in a semantic domain
  sound if all theorems are true, complete if all truths are thms

Completeness restricts the richness of modeled domains
  can model only model domains where all truths are theorems
  # or true properties of domain cannot exceed # of theorems

Proposition: S+C logics can model only RE # of properties
Proof: cardinality of properties = cardinality of theorems = RE
Corollary:  Domains with non RE # of properties are incomplete

This result is part of folklore of logic, easy to prove
Godel: arithmetic over integers has non RE # of properties
  harder to prove: diagonalization shows non RE # of properties

General method: show incompleteness by proving non RE
Program equivalence is not RE, not formalizable by S+C logic
IMs: non RE # of computations, cardinality of infinite bit strings
  behavior of IMs cannot be completely described by S+C logic

In contrast algorithms have an RE # of computations
  behavior is describable by S+C logic
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Implications of Incompleteness

Logic is a weak modeling tool, can model only limited domains
  limitation: domains must be noninteractive, closed, monotonic

Logic is a weak specification tool, cannot specify IMs
  cannot specify complete behavior, only partial behavior
  correctness is not definable, testing specifications are

Specification: observation equivalence for class of observations
  refine specification by enlarging set of observations
  interactive specs cannot be formally defined - more later

Completeness requires semantics to be isomorphic to syntax
  incomplete systems can express semantics beyond syntax

General setting for Godel: non RE iff incomplete
  incompleteness of maths -> incompleteness of computing
    -> descriptive incompleteness of behavior specifications

Incompleteness is stronger than undecidability
noncomputability of fixed points -> nonexistence of fixed points

Connection between logical and descriptive incompleteness
  incomplete systems have no complete description, specification
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Church’s Thesis

Church’s thesis: conjecture about intuitive notion of computing
  the intuitive notion X corresponds to the formal notion Y
  X = algorithmic computability, Y = TMs, lambda calculus

Stronger thesis for sequential interaction:
  X = single-stream interaction, Y = SIMs, PTMs

Still stronger thesis for multi-stream interaction:
  X = general interactive computing, Y = MIMs, coinduction

Church-style theses are completeness theorems:
  TMs completely specify algorithmic computing
  SIMs completely specify sequential interactive computing
  MIMs completely specify multi-stream interactive computing

Incompleteness theorems:
  TMs are incomplete for SIM computations and behavior
  SIMs are incomplete for MIM computations and behavior

intuitive notions of computation

 noninteractive models
 algorithms, functions
 automatic computation

formal models of computation

 Turing machines
 lambda calculus
 recursively enumerable sets

 multi-stream interaction machines
 coinductive models of computing
 “nonlinear” set equations

 multi-stream interaction
 collaboration, distribution
 nonserializable behavior

 sequential interaction
 dialog, two-person games
 serializable behavior

 persistent Turing machines
 non-well-founded sets
 coalgebras with flat set equations

           Correspondences Between Intuitive Notions and Formal Models
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Church’s Thesis and Quantum Computers

Intuitive notion of physically realizable computation:
physically realizable (PR): polynomial time and space resources

Physical Church Thesis (PCT):
  X = PR computations, Y = TMs with polynomial resources
  intuitive characterization for subclass of TM computations
  PR-computable functions is subclass of TM computable fns

Quantum TMs: larger class of PR-computable fns than TMs
  quantum PR prime factorization, no known PR TM algorithm
  quantum TMs appear to violate physical Church thesis

But quantum TMs are noninteractive, only single observations
  PCT relates intuition to formal sub-TM models
  interactive CT relates intuition to formal super-TM models

Church’s thesis relates intuition to formalism
  was influenced by Brouwer’s intuitionism (1920s)
  debate between Brouwer (intuitionism) and Hilbert (formalism)

Debates in the 1920s influenced both Church and Turing
  Godel incompleteness (1930) provoked a crisis
  to which both Church and Turing reacted
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Logicism, Intuitionism, Formalism, Realism

Intense debates in the 1920s on the nature of mathematics
Logicism (Russell): mathematics is reducible to logic
Intuitionism (Brouwer): formalism does not capture intuition
Formalism (Hilbert): mathematics can be consistently formalized
Realism (Cantor,Finsler): Consistency implies existence (C -> E)
  consistent theories determine possible worlds

Russell, Brouwer, Hilbert: limited logic to inductive reasoning
  Hilbert believed C->E, but restricted logic to inductive methods
  Godel believed coinduction inconsistent, set theory paradoxes
  proved incompleteness of inductive logics for mathematics
  but could have proved completeness for coinductive logics

Godel overturned Hilbert’s program of inductive formalism
  Hilbert’s program was inadequate due to inductive restrictions
  Hilbert’s program might be possible for coinductive formalism

Three principles of metamathematics:
(1) C->E (2) inductive formalism (3) objective mathematics

Claim:  all three principles cannot be simultaneously true
Hilbert: accepted C->E, inductive formalism
Godel: accepted objective mathematics, inductive formalism
  rejected C -> E, puzzling aspect of Godel’s philosophy
Cantor, realism: accept C->E, objective math
  reject inductive formalism, accept coinductive formalism
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Significance for OOP

Unifying framework for OOP, software engineering, and AI
  provides a better basis than TMs for OOP, OMT, UML etc
  answers “What is OOP?” in a satisfactory way

Interactive models unify subdisciplines of CS
  also provides framework for unifying CS, mathematics, physics
  new answers to questions of nondeterminism, quantum theory
  empirical CS, the Turing test, Church’s thesis

What is the practical impact of interactive models on OOP?
  framework for development of new foundations for OOP
  will change the way textbooks are written
  the way we think about problems and problem solving
  will unify, simplify models of OOP, SE, AI, HCI

Impact on practice is explored in:
Interactive Software Technology, Handbook of CS&E, 1996
  available at www.cs.brown.edu/people/pw
  application to:
  design patterns, ineroperability, coordination
  AI agents, control theory, virtual reality, databases

These ideas have many alternative formulations
  interactive technology -> new paradigms, new models, for CS


