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Abstract

This paper considers partitioning the vertices of an n-vertex tree into p
disjoint sets C1, C2, . . . , Cp, called clusters so that the number of vertices
in a cluster and the number of subtrees in a cluster are minimized. For
this NP-hard problem we present greedy heuristics which differ in (i) how
subtrees are identified (using either a best-fit, good-fit, or first-fit selection
criteria), (ii) whether clusters are filled one at a time or simultaneously,
and (iii) how much cluster sizes can differ from the ideal size of c vertices
per cluster, n = cp. The last criteria is controlled by a constant α, 0 ≤
α < 1, such that cluster Ci satisfies (1− α

2
)c ≤ |Ci| ≤ c(1 + α), 1 ≤ i ≤ p.

For algorithms resulting from combinations of these criteria we develop
worst-case bounds on the number of subtrees in a cluster in terms of c,
α, and the maximum degree of a vertex. We present experimental results
which give insight into how parameters c, α, and the maximum degree of
a vertex impact the number of subtrees and the cluster sizes.
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1 Introduction

Tree clustering partitions the vertices of a given tree into disjoint sets, called
clusters, subject to optimizing one or more objective functions. Tree clustering
arises in parallel and distributed computing environments and external memory
systems. For a tree representing an external search structure, the created clus-
ters correspond to the blocks. Clusters should minimize the number of blocks as
well as the access to external storage devices [1, 4, 7, 12]. For a tree representing
data flow and communication requirements in a parallel and distributed envi-
ronment, partitioning the vertices corresponds to assigning tasks to processors.
The goal is to balance processor loads and to minimize communication between
processors [6, 10, 11]. Not surprisingly, the combinatorial nature of clustering
problems makes finding optimal solutions computationally intractable for most
realistic situations [4, 5, 7, 14].

Let T be a tree with n = cp vertices, c ≥ 2. We assume that edges and
vertices have no associated weights. A clustering of T partitions the vertices
into p sets, C1, C2, . . . , Cp. We consider generating clusters when the number
of vertices assigned to different clusters should be as equal as possible and
the number of subtrees assigned to every cluster should be minimized. While
minimizing these two cost measures simultaneously captures desirable features
for the above applications, it is an NP-hard problem.

An ideal load is achieved when every cluster contains c vertices. This cor-
responds to every block containing c data items and every processor assigned
c tasks, respectively. Achieving an ideal load is straightforward in the absence
of weights1. Our second cost measure is the number of subtrees in a cluster.
For parallel and distributed applications, minimizing the number of subtrees
enhances locality and decreases communication. When generating blocks for
external tree structures, load and blocknumber are often optimized [4, 8, 12, 13].
The blocknumber measures the number of blocks needed during a search from
the root to a leaf in the tree. Minimizing the blocknumber and achieving ideal
load is NP-hard [7]. Existing heuristics first assign to every block a single sub-
tree and then achieve a better load by partitioning selected subtrees [7, 8, 13].
This approach can assign many subtrees to a block and result in high I/O. Our
approach is to minimize the number of subtrees and the load simultaneously.
We refer to [9] for a more detailed discussion on the relationship between the
blocknumber and the number of subtrees.

Achieving an ideal load and minimizing the maximum number of subtrees
in the clusters is NP-hard [9]. We note that deciding whether there exists a
clustering having an ideal load and every cluster containing one subtree can be
done in linear time. However, deciding whether there exist clusters of size c with
every cluster containing at most 3 subtrees is already NP-complete. An ideal
load is desirable, but generating clusters of size of c is not always necessary.

In this paper we introduce the concept of α-clustering to capture such a
tolerated slackness in cluster sizes. Given a tree T with n = cp vertices and

1The existence of weights on the vertices results in an NP-hard problem, as clustering
becomes a bin-packing like problem.
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a parameter α, 0 ≤ α < 1, an α-clustering generates p clusters so that every
cluster Ci satisfies (1− α

2 )c ≤ |Ci| ≤ c(1+α), 1 ≤ i ≤ p. For α = 0, we generate
an exact clustering; i.e., |Ci| = c. The clustering algorithms presented are greedy
heuristics. They differ in (i) the identification of subtrees (i.e., whether a best-
fit, good-fit, and first-fit selection criteria is used), (ii) the order in which clusters
are filled (i.e., whether clusters are filled one at a time or simultaneously), and
(iii) different values of α which control how much cluster sizes are allowed to
differ from the ideal size of c vertices per cluster. Our work provides insight
into how cluster sizes and number of subtrees in a cluster are impacted by the
value of α, the maximum degree d in the tree, the relationship between c and
d, the subtree selection method, as well as the order in which clusters are filled.
We develop worst-case upper bounds on the number of subtrees and the cluster
sizes and provide experimental results supporting our claims.

The paper is organized as follows. In Section 2 we describe the ingredi-
ents of our clustering algorithms and prove that the cluster forming approaches
generate cluster sizes in the required range. Section 3 presents the two single
fill clustering algorithms along with asymptotic bounds on the number of sub-
trees in a cluster. Section 4 discusses the simultaneous fill algorithms. The
experimental performance of the algorithms is discussed in Section 5.

2 Overview of the Clustering Algorithms

In this section we discuss the framework underlying our α-clustering algorithms.
Figure 1 gives time and number of subtrees bounds for four α-clustering algo-
rithms presented in this paper. Throughout, d is the maximum degree of a
vertex in T .

The quantities log d−2
d−1

α
2 and log d−1

d

α
4 should be read as min{c, log d−2

d−1

α
2 }

and min{c, log d−1
d

α
4 }, respectively. Note that when α = 0, the stated minima

generate c. Figure 2 shows these two quantities (independent of c) for the range
of degrees considered in this paper. Observe that the upper bounds can exceed
the trivial bound of at most c vertices in a cluster.

2.1 Single versus Simultaneous Cluster Forming

Our algorithms assign subtrees to clusters in either a single fill or a simultaneous
fill mode. Algorithms based on the single fill mode determine the subtrees for
cluster Ci before generating cluster Ci+1. Algorithms based on a simultaneous
fill mode assign subtrees to clusters without this restriction. Symultaneous fill
algorithms may assign one subtree to each cluster in one iteration or use current
cluster sizes to decide which cluster receives the next subtree. When α > 0,
single fill as well as simultaneous fill need to ensure that cluster sizes are within
the required bounds. For example, if too many clusters are underfull (i.e., have
|Ci| < c), the remaining vertices of T may force a cluster to exceed the upper
bound. Figure 3 gives the outline of a generic single fill algorithm. The quantity
remaini represents the total number of vertices to be made up due to underfull
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Algorithm Time Maximum number of subtrees
SingFill-BF Θ(np) dlog d−2

d−1

α
2 e

SingFill-FF Θ(n) min{c, d ∗ d log c
log de}

SimulFill-BF O(np log d−1
d

α
4 ) dlog d−1

d

α
4 e

SimulFill-GF O(n log d−1
d

α
4 ) dlog d−1

d

α
4 e

Figure 1: Bounds achieved by our clustering algorithms.
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clusters. Lemma 1 shows that c + remaini never exceeds the upper bound on
the cluster size.

Algorithm Generic-SingFill
Input: tree T = (V, E), n = cp, and parameter α
Output: C1, C2, . . . , Cp representing the p clusters of an α-clustering

1. Initialize each cluster as an empty set.

2. remain0 = 0

3. for i = 1 to p − 1 do
targeti = c + remaini−1

remaini = targeti
while (|Ci| < (1 − α

2 ) × targeti) do

(a) Determine a subtree T ′ = (V ′, E′) with |V ′| ≤ remaini

using one of the subtree finding methods

(b) Update: T = T − T ′; Ci = Ci ∪ V ′

remaini = remaini − |V ′|
endwhile
endfor

4. Cp = V

Figure 3: Description of Algorithm Generic-SingFill.

The different ways of determining subtrees are described in Section 2.2. The
following lemma shows that Algorithm Generic-SingFill generates cluster sizes
which fall within the range needed for the α-clustering. The number of subtrees
in a cluster depends on how subtrees are selected and bounds will be given when
individual algorithms are described.

Lemma 1 Cluster Ci generated by Algorithm Generic-SingFill satisfies (1 −
α
2 )c ≤ |Ci| ≤ c(1 + α), 1 ≤ i ≤ p.

Proof: Consider first the p− 1 clusters generated within the while-loop. Since
targeti ≥ c and the algorithm terminates with |Ci| ≥ (1 − α

2 ) × targeti, 1 ≤
i ≤ p − 1, the lower bound on the cluster size is satisfied for the first p − 1
clusters. The upper bound of |Ci| ≤ c(1 + α) is shown as follows. At the end
of the first iteration we have remain1 ≤ α

2 c. Hence, target2 ≤ c + α
2 c and

remain2 ≤ α
2 c + (α

2 )2c at the end of the second iteration. In general,

targeti ≤ c + remaini−1 and

remaini ≤ α

2
× targeti.
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Hence, targeti ≤ c + α
2 × targeti−1 and

targeti ≤ c

i−1∑
k=0

(
α

2
)k <

2
2 − α

× c.

For 0 < α < 1, we have 2
2−α < 1 + α. Thus, targeti < c(1 + α) and the upper

bound on the cluster size holds for the first p − 1 clusters.
Cluster Cp is assigned the remaining vertices of tree T . Since

∑p−1
i=1 |Ci| +

remainp−1 = (p − 1)c, we have |Cp| = c + remainp−1. Since remainp−1 ≤
α
2 × targetp−1 and targetp−1 < 2c

2−α , we have remainp−1 ≤ α
2−α × c. Hence,

c ≤ |Cp| ≤ c + α
2−α × c ≤ c(1 + α). 2

Algorithm Generic SimulFill
Input: tree T = (V, E), n = cp, and parameter α
Output: C1, C2, . . . , Cp representing the p clusters of an α-clustering

Initialize Ci = ∅ and remaini = c, 1 ≤ i ≤ p.
PHASE 1: Generate p safe clusters.
while there exists a cluster which is not safe do
for i = 1 to p do
if cluster Ci is not safe then

1. Determine the next subtree T ′ = (V ′, E′) with |V ′| ≤ remaini

using one of the subtree finding methods.

2. Update: T = T − T ′; Ci = Ci ∪ V ′

remaini = remaini − |V ′|
endfor
endwhile

PHASE 2: Assign the remaining vertices of T .
Update remain-entries: remaini = αc + remaini, 1 ≤ i ≤ p.
while tree T is not empty do
for i = 1 to p do
if tree T not empty and cluster Ci not full then

1. Determine the next subtree T ′ = (V ′, E′) with |V ′| ≤ remaini

using one of the subtree finding methods.

2. Update: T = T − T ′; Ci = Ci ∪ V ′

remaini = remaini − |V ′|
endfor
endwhile

Figure 4: Description of Algorithm Generic-SimulFill.
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We now turn to the simultaneous filling of clusters. As for single fill, we
need to ensure that deficits in cluster sizes can be made up by other clusters
without exceeding the upper bound of (1+α)c. Our clustering algorithms based
on the simultaneous fill mode create the clusters in two phases, as evident from
the outline given in Figure 4. We say cluster Ci is safe if (1 − α

2 )c ≤ |Ci| ≤ c.
In Phase 1, we generate p safe clusters. The number of iterations executed in
Phase 1 equals the maximum number of subtrees assigned to a safe cluster.
After Phase 1, every cluster size lies within the required range. However, not
all vertices of the tree may have been assigned to clusters yet.

Phase 2 assigns the remaining vertices of tree T to the safe clusters. We
say cluster Ci is full if |Ci| ≥ (1 + α

2 )c. Once a cluster becomes full, no more
assignments are made to it. The while-loop is executed until all vertices of T
have been assigned to a cluster. A cluster may thus not receive any additional
vertices in Phase 2. In particular, when α = 0, all vertices of T are assigned to
clusters in Phase 1.

From the way Algorithm Generic-SimulFill forms clusters it is clear that the
number of vertices assigned to a cluster lies in the required range determined
by α. The number of subtrees assigned to a cluster depends on how subtrees
are identified and bounds on the number of subtrees are developed in Section 4.

We conclude this section with a brief comparison of the two cluster filling
modes. The advantage of the single-fill mode is that at the time cluster Ci is
filled, the final sizes of the first i − 1 clusters are known. A single-fill algorithm
fills cluster Ci using α and information on how underfull previous clusters are.
A single-fill algorithm tries to make up an earlier created deficit as soon as
possible. The advantage of the simultaneous-fill mode is that during its first
few iterations, every cluster has a chance to find subtrees in a large tree. This
can lead to Phase 1 generating safe clusters consisting of few trees in each
cluster. As will be discussed in Section 5.2, these characteristics show up in the
experimental results. At the same time, corresponding disadvantages show up
as well. For example, the final clusters created by a single-fill algorithm select
subtrees from a relatively small tree. Since the number of subtree choices is
now limited, these final clusters can end up being assigned a large number of
subtrees.

2.2 Identifying Subtrees

In this section we sketch the three methods used by the clustering algorithms for
identifying subtrees. Assume we are to determine the next subtree for cluster
Ci. Let remaini be the maximum number of vertices that can still be assigned
to Ci (without exceeding the upper bound on the cluster size of Ci).

Suppose we remove an edge e = (u, v) in T . Then, T is divided into two
subtrees. Let Te,u = (Ve,u, Ee,u) (resp. Te,v = (Ve,v , Ee,v)) be the subtree
containing vertex u (resp. v), but not edge e. Recall that d is the maximum
degree of a vertex. The subtree T ′ = (V ′, E′) of T is found using one of the
following:
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• Best-Fit: Determine an edge e = (u, v) and vertex u such that |Ve,u| ≤
remaini and |Ve,u| is a maximum. Set T ′ = Te,u.

• Good-Fit: Choose the first tree T ′ encountered in the traversal of T with
dremaini/de ≤ |V ′| ≤ remaini.

• First-Fit: Choose the first tree T ′ encountered in the traversal of T with
|V ′| ≤ remaini.

The different tree selection methods result in algorithms with different run-
ning times. Clustering algorithms using best-fit selection traverse, in the worst
case, the entire tree T to find one subtree T ′. For clustering algorithms based
on good-fit and best-fit the running time depends on whether single-fill or
simultaneous-fill is used. For single-fill, our implementations perform one tree
traversal when forming one cluster. For simultaneous-fill, one traversal of the
tree identifies p subtrees, one for every cluster. We refer to Figure 1 for running
times and upper bounds on the number of subtrees in a cluster. A major focus
of our experimental work is whether the use of the best-fit subtree selection
results in significantly better clusters and thus justifies the increase in time.

3 Single Fill Clustering

We now present two single clustering algorithms, Algorithm SingFill-BF based
on best-fit and Algorithm SingFill-FF based on first-fit subtree selection. Algo-
rithm SingFill-BF creates one cluster by performing one traversal of the tree,
and thus achieves a Θ(np) running time. Algorithm SingFill-FF determines all
clusters during a single traversal of the tree, and thus has an Θ(n) running time.
We do not consider good-fit subtree selection for single fill clusterings. Good-fit
subtree selection can be implemented to achieve O(np) time, as does best-fit
(which determines better fitting subtrees). The good-fit strategy is used in the
simultaneous fill algorithms described in Section 4.

3.1 Algorithm SingFill-BF

Algorithm SingFill-BF corresponds to the generic single fill algorithm described
in Figure 3 with the best-fit subtree selection. We describe an O(np) time im-
plementation and then show that the number of subtrees in a cluster is bounded
by min{c, dlog d−2

d−1

α
2 e}.

A straightforward O(np log d−2
d−1

α
2 ) time bound is obtained by searching the

current tree for the next subtree giving the best fit. The implementation de-
scribed below determines the subtrees for one cluster in O(n) time by using a
queue to efficiently locate the subtrees giving the best fit.

Consider the beginning of the i-th iteration. Tree T now corresponds to
the original tree from which the vertices assigned to clusters C1, . . . , Ci−1 have
been removed. Before entering the while-loop of iteration i, we determine for
all edges e = (u, v) in tree T the quantities |Ve,u| and |Ve,v|. A priority queue
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Q in the form of an array of size targeti is used to represent selected subtree
entries. Subtree Te,u = (Ve,u, Ee,u) is an entry in queue Q at index |Ve,u| if the
following two conditions hold:

1. |Ve,u| ≤ remaini and

2. for every edge e′ = (u′, v) with u′ 6= u we have |Ve′,v| > remaini.

Condition (1) selects for queue Q only those subtrees that “fit” (i.e., they do not
exceed the remaining capacity). Condition (2) selects, among all subtrees that
fit, the ones that are as large as possible. Using standard tree computations
and traversals, queue Q can be set up in O(n) time.

Step 3(a) of SingFill-BF determines the next best fitting subtree by scan-
ning array Q starting at position remaini. The subtree is found by scanning
left, looking for the first non-empty entry in Q. Let T ′ = Te,u be the subtree
chosen. Before remaini is decreased in Step 3(b), we update array Q. The
entry representing subtree Te,u is deleted. Before the next subtree is selected,
we “break up” subtrees which are now too large while satisfying conditions (1)
and (2). Entries corresponding to subtrees larger than remaini − |Ve,u| are
no longer needed. To record appropriate subtrees of these trees, we proceed
as follows. Scan array Q from the position which contained Te,u to the left
to position remaini − |Ve,u|. Let Tb,x be a subtree encountered during this
scan, b = (x, y). The entry corresponding to Tb,x is deleted and every vertex
adjacent to x (excluding y) is considered. Let w be such an adjacent neigh-
bor. If |V(w,x),w| ≤ remaini − |Ve,u|, condition (1) is satisfied. Observe that
we do not need to check whether condition 2 is satisfied: since it was satis-
fied for tree Te,u, it is also satisfied for T(w,x),w. We thus insert T(w,x),w into
Q. On the other hand, if condition (1) does not hold for subtree T(w,x),w (i.e.,
|V(w,x),w| > remaini − |Ve,u|), the vertices adjacent to w (excluding x) are con-
sidered for insertion. This process continues until subtrees of small enough size
are found. During the entire while-loop of Step 3, an edge is considered at most
a constant number of times. Thus the maintenance of array Q costs O(n) time.
The O(np) overall time follows.

The correctness of the above approach relies on the subtrees represented in
queue Q being disjoint. The existence of disjoint subtrees when creating clusters
C1, . . . , Cp−2 is guaranteed since we have n − |Ve,u| > 2c for every subtree in
Q. For iteration p − 1, subtrees represented in Q may not be disjoint. In our
implementation, iteration p − 1 does thus not use the queue, but it explicitly
traverses the remaining tree for finding best fitting, disjoint subtrees. This does
not impact the O(np) overall time.

We now turn to bounding the number of subtrees in a cluster. The first
lemma relates the size of subtree T ′ to remaini.

Lemma 2 Assume edge e = (u, v) and vertex u are selected in Step 3(a) of the
i-th iteration of Algorithm SingFill. Then, |Ve,u| ≥ remaini

d−1 .

Proof: Assume this is not true and let Te,u be a best fitting subtree satisfying
|Ve,u| < remaini

d−1 . For any edge e′ = (u′, v) incident to vertex v, we either have
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• |Ve′,u′ | ≤ |Ve,u| < remaini

d−1 (i.e., subtree Te′,u′ could be chosen, but does
not give a better fit), or

• |Ve′,u′ | > remaini (i.e., subtree Te′,u′ is too large).

There must exist at least one vertex u′ with |Ve′,u′ | > remaini. (To be precise,
there must exist at least two such vertices.) Otherwise |Ve′,u′ | < remaini

d−1 would
hold for every vertex u′ adjacent to v and thus for subtree Te′,v we would have
|Ve′,v| < remaini

d−1 × (d− 1) < remaini. This would contradict that Te,u is a best
fitting subtree.

u

v
e

u’

e’
best fitting 
subtree

e’’
w

subtree containing > remain_i vertices 

Te,u

Te’,u’

Figure 5: Illustrating the position of edges e, e′, and e′′.

We arrive at a contradiction for the assumption |Ve,u| < remaini

d−1 by consid-
ering a subtree in Te′,u′ with |Ve′,u′ | > remaini. Vertex u′ is incident to at least
one edge e′′ = (u′, w) with |Ve′′,w| ≥ remaini

d−1 . This situation is illustrated in
Figure 5. The case |Ve′′,w| ≤ remaini would imply that the subtree rooted at w
is a better fit than Te,u and give a contradiction. If |Ve′′,w| ≥ remaini, we apply
the same argument using edge e′′ in the role of e′. A subsequent step leads to
a contradiction. Hence, |Ve,u| ≥ remaini

d−1 . 2

Lemma 3 The number of subtrees assigned to a cluster by Algorithm SingFill-
BF is at most min{c, dlog d−2

d−1

α
2 e}).

Proof: Let t(i, j) be the minimum size of the subtree selected at the j-th step
of the i-th iteration of the while-loop. We set t(i, 0) = targeti. From Lemma 2
it follows that t(i, 1) = t(i,0)

d−1 and t(i, 2) = t(i,0)−t(i,1)
d−1 = t(i, 0) d−2

(d−1)2 . The j-th

step of the while loop removes a subtree of size t(i, j) = t(i, 0) (d−2)j−1

(d−1)j . The
total number of vertices in cluster Ci after m steps of the while loop is thus

t(i, 0)
m∑

j=1

(d − 2)(j−1)

(d − 1)j
=

(
1 −

(
d − 2
d − 1

)m−1
)

∗ targeti.
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The while loop terminates when (1 − (d−2
d−1)m) × targeti > (1 − α

2 ) × targeti.
This implies that the number of subtrees assigned to cluster Ci is bounded by
log d−2

d−1

α
2 = 1−log α

log(d−1)−log(d−2) . Since no cluster contains more than c vertices, the
claimed bound follows. 2

The following theorem summarizes our discussion:

Theorem 4 Algorithm SingFill-BF determines an α-clustering for an n-vertex
tree T in time Θ(np), n = cp. The number of subtrees assigned to a cluster is
bounded by min{c, dlog d−2

d−1

α
2 e}).

3.2 Algorithm SingFill-FF

In this section we describe Algorithm SingFill-FF, a single fill clustering algo-
rithm using first-fit subtree selection. We describe the algorithm for the case
α = 0. Its generalization to arbitrary values of α’s uses target and remain-
entries as described in Algorithm Generic-SingFill in Figure 3.

Algorithm SingFill-FF uses the results of a weighted postorder numbering
on a rooted version of tree T to form the clusters. Let r be an arbitrary vertex
of T chosen as the root. With T rooted towards r, we determine the weighted
postorder number of every vertex as follows. Let u be a vertex with children
v1, v2, . . . , vk. The children are arranged by non-increasing sizes of subtrees; i.e.,
|V(vi,u),vi

| ≥ |V(vi+1,u),vi+1 | for every i, 1 ≤ i < k. With the children ordered this
way, perform a postorder traversal of T . Let post(u) be the postorder number
assigned to vertex u. Then, vertex u belongs to cluster Cdpost(u)/ce. Figure 6
shows clusters C1 and C2 for the sketched tree. Ordering the children of all
vertices by size can be done in O(n) time. One implementation uses the fact
that subtree sizes are bounded by n and thus all sizes can be indexed into an
array of size n, allowing an O(n) time rearranging. The assignment of vertices
to clusters based on the weighted postorder traversal number can thus be done
in O(n) time. In the remainder of this section we show that the number of
subtrees in a cluster is bounded by min{c, d ∗ d log c

log de}.
W.l.o.g. assume the formation of cluster Ci starts at vertex u and only

vertices in the subtree rooted at u are in cluster Ci. If this is not the case,
the vertices in Ci having smaller postorder numbers form one subtree. For
illustration, consider vertex a in Figure 6. Cluster C2 contains vertices in the
subtree rooted at a and the vertices not in this subtree form one tree as indicated.
We ignore this one subtree when counting subtrees. Let v1, v2, . . . , vk, k ≤ d, be
the children of u. Assume cluster Ci receives the subtrees rooted at v1, . . . , vl1−1

and some of the vertices in the subtree rooted at vl1 , l1 ≥ 2. The number of
vertices needed from the subtree rooted at vl1 is at most c/l1. If more vertices
were needed, the use of the weighted postorder numbering (i.e., |V(u,vj),vj

| ≥
|V(u,vj+1),vj+1 | and |V(u,vj),vj

| > c/l1, 1 ≤ j ≤ l1 − 1) would imply that Ci

contains more than c vertices.
To show the claimed bound on the number of subtrees in Ci we first show

that after the inclusion of d − 1 subtrees into cluster Ci, the cluster misses
at most c/d vertices. In other words, the first c − c/d vertices selected by
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Figure 6: Forming exact clusters using weighted postorder numbers. The tree
has n = 600, c = 60, d = 10; integers next to vertices represent the number of
vertices in the subtree.

the algorithm induce at most d − 1 subtrees. Observe that “the first c − c/d
vertices” refers to the c− c/d vertices in Ci and in the subtree rooted at u with
the smallest postorder numbers. We then apply the same argument to the at
most c/d remaining vertices. This results in at most min{c, d log c

log de} iterations,
each iteration contributing at most d − 1 subtrees.

The subtrees rooted at v1, . . . , vl1−1 represent l1−1 subtrees in Ci. To avoid
conflict in notation, rename vl1 = ul1 . The algorithm then continues including
vertices from the subtree rooted at ul1 . At vertex ulj−1 , we include subtrees
rooted at children of ulj−1 and identify at most one subtree rooted at child ulj

which contains more vertices than needed. More specifically,

• ulj ’s left siblings are roots of subtrees included into Ci and

• not all vertices in the subtree rooted ulj are needed for Ci.

Assume the process of including subtrees and identifying subtrees of size
larger than needed considers vertices ul1 , ul2 , . . . , ult . See Figure 7 for an illus-
tration. Observe that we assume lj ≥ 2. If for a vertex ulj−1 the subtree rooted
at its leftmost child contains more vertices than needed, vertex ulj−1 does not
appear in this enumeration. For example, for the tree shown in Figure 6, vertex
a would appear in the enumeration, but vertex c would not.

As already stated, the maximum number of vertices needed for cluster Ci

from the subtree rooted at ul1 is c
l1

. Using the same argument, the number of
vertices needed for cluster Ci from the subtree rooted at ulj is at most c

l1l2...lj
.

We stop the process of including subtrees into cluster Ci at vertex ulj when the
actual number of vertices needed from the subtree rooted at ulj is smaller than
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 subtrees  not  in C    

u

 subtrees already in C  and inducing more than  c-c/d vertices      
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l2

l3

2
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kvv vv
1

at most c/d vertices to
be included into C

  

i
i

i

Figure 7: Illustrating vertices ul1 , ul2 , . . . , ult and the subtrees in cluster Ci for
l1 = 4, l2 = 3, l3 = 2, and t = 3.

c/d for the first time. For cluster C1 in the tree shown in Figure 6, the first
iteration of this process stops at vertex b when C1 already contains 55 vertices.
Only 5 more vertices are needed and 5 < 6 = c/d. It follows that

c

l1l2 . . . lt
≥ c

d

and l1l2 . . . lt ≤ d. Cluster Ci contains already l1 + l2 + . . . + lt − t subtrees
and we have lj ≥ 2, 1 ≤ j ≤ t. The number of subtrees already in Ci (i.e.,∑t

j=1(lj − 1)) is maximized and l1l2 . . . lt ≤ d is satisfied for t = 1 and l1 = d.
Hence, the first c − c/d vertices in cluster Ci induce at most d − 1 subtrees.

This above argument is repeated for the subtree with root ult . The goal is
to include the remaining (i.e., at most c/d) vertices into cluster Ci. The next
c/d − c/d2 vertices assigned to cluster Ci induce at most d − 1 subtrees. After
δ applications of the argument, c

dδ vertices remain to be assigned to cluster Ci.
This implies that c ≥ dδ and δ ≤ log c

log d .
The total number of subtrees assigned to cluster Ci is thus at most min{c, d∗

d log c
log de}. This bound on the number of subtrees also holds for α > 0. We

conclude this section with the following theorem.

Theorem 5 Algorithm SingFill-FF determines an α-clustering for a given n-
vertex tree T in time Θ(n). The number of subtrees assigned to a cluster is
bounded by min{c, d ∗ d log c

log de}.
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4 Simultaneous Fill Clustering

In this section we describe our clustering algorithms based on simultaneous
cluster filling. To turn Algorithm Generic-SimulFill described in Figure 4 into
a complete algorithm, we need to specify the subtree selection and the order in
which clusters are considered. Algorithm SimulFill-GF uses the good-fit subtree
selection and has O(n log d−1

d

α
4 ) running time. Algorithm SimulFill-BF uses

best-fit subtree selection and achieves O(np log d−1
d

α
4 ) time. First-fit subtree

selection can be implemnetd to achieve the same performance as SimulFill-GF.
Since good-fit determines better fitting subtrees, we do not consider first-fit for
simultaneous fill algorithms.

We first present Algorithm SimulFill-GF which considers clusters by non-
decreasing remain-entries. This order is crucial for achieving the claimed time
bound. Since the remain entries are between 0 and c, sorting the remain-
entries costs O(n) time per iteration. Recall that SimulFill-GF selects subtrees
T ′ which satisfy dremaini/de ≤ |V ′| ≤ remaini. Let r be an arbitrary vertex of
T chosen as the root. The algorithm first roots tree T at r. Next, it determines
for every vertex v the number of vertices in the subtree rooted at v. Let s(v)
be this quantity. Rooting the tree and the computation of the s(v)-entries can
be done in O(n) time [3].

One for-loop in Phases 1 or 2 makes one traversal of the current tree and
assigns one subtree to every cluster (if the cluster still qualifies for receiving
vertices). Phase 1 executes iterations until every cluster is safe and the number
of iterations equals the maximum number of subtrees assigned to a safe cluster.

Assume the last step determined a subtree for cluster Ci. Assume vertex v
has children u1, u2, . . . , uk and cluster Ci is assigned the subtree rooted at vertex
ul, 1 ≤ l ≤ k. Hence, remaini/d ≤ s(ul) ≤ remaini and for 1 ≤ j < l we have
s(uj) < remaini/d (i.e., the subtree rooted at uj is too small for Ci). After the
subtree rooted at ul has been assigned to cluster Ci, a subtree for cluster Ci+1

is determined. Note that we have remaini ≤ remaini+1. The next paragraph
sketches how the next subtree for Ci+1 is found. The O(n) time bound for one
iteration follows from the way the tree traversal identifies subtrees.

In order to determine the subtree to be assigned to cluster Ci+1, the traversal
first considers the remaining children of vertex v, namely vertices ul+1, . . . , uk.
Observe that since the subtrees rooted at u1, u2, . . . , ul−1 were not large enough
for cluster Ci, they are also not large enough for Ci+1 (since clusters are con-
sidered by non-decreasing remain-entries). If there exists a vertex uj with
s(uj) ≥ remaini+1/d, l +1 ≤ j ≤ k, a subtree for Ci+1 is found in a tree rooted
at one of the siblings of ul. The traversal considers thus vertices not yet tra-
versed in the current iteration. Assume that for all vertices uj , l+1 ≤ j ≤ k, we
have s(uj) < remaini+1/d. The traversal now backs up the tree and considers
vertex v next. For vertex v we maintain the number of vertices in its subtree
which have already been assigned to clusters in the current iteration. If the
current subtree rooted at vertex v does satisfy the size requirements for Ci+1,
an assignment is made. Observe that the subtree rooted at vertex v cannot be
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too large (since all children have subtrees which are too small). If the subtree
rooted at v is too small, we continue with the parent of v, say v′. We repeat
the same process of first considering the children of v′ not previously consid-
ered and, if no suitable subtree is found, we consider the subtree rooted at v′.
Again, we know that the children of v′ considered earlier are not the roots of
a big enough subtree and thus do not need to be checked. It follows that each
cluster receives a subtree while executing one traversal of the tree and thus one
iteration takes O(n) time.

Phase 2 proceeds with the subtree selection and the ordering of the clusters
as Phase 1. The while-loop is executed until all vertices of T have been assigned
to a cluster. A cluster may thus not receive any additional vertices in Phase 2.
The total time spent in Phases 1 and 2 is O(n) times the maximum number of
subtrees assigned to a cluster. The bound on the number of subtrees is given in
the proof of the following theorem.

Theorem 6 Algorithm SimulFill-GF determines an α-clustering for a tree T of
n vertices in time O(n log d−1

d

α
4 ). The number of subtrees assigned to a cluster

is bounded by min{c, dlog d−1
d

α
4 e}.

Proof: From the conditions Phase 1 and 2 impose on the cluster sizes it follows
that (1− α

2 )c ≤ |Ci| ≤ (1+α)c, 1 ≤ i ≤ p. The number of iterations within each
phase gives an upper bound on the number of subtrees assigned to a cluster.
Using an argument similar to that used in Lemma 2, it follows that the algorithm
can always find a subtree T ′ such that |VT ′ | ≥ remaini/d. (Since the tree
is rooted and not all subtrees are considered in a rooted tree, the bound is
|VT ′ | ≥ remaini/d instead of |VT ′ | ≥ remaini/(d − 1).) Assume cluster Ci is
safe after m iterations of Phase 1. We have targeti = c and, using the argument
in the proof of Lemma 3, we have

(1 − (
d − 1

d
)m) × c > (1 − α

2
) × c.

This implies that the number of iterations in Phase 1 bounded by dlog d−1
d

α
2 e.

In Phase 2, we have targeti = (1+α)c− |Ci| with αc ≤ targeti ≤ 3
2αc. Assume

cluster Ci is full after m iterations of Phase 2. Then,

(1 − (
d − 1

d
)m) × αc >

α

2
× c.

Hence, the number of iterations of Phase 2 is bounded by dlog d−1
d

1
2e and the

claimed bound on the total number of iterations follows. 2

Algorithm SimulFill-BF uses best-fit selection for determining the subtrees.
Determining a subtree may result in a complete traversal of the current tree. Our
implementation considers the clusters by non-increasing remain-entries. Even
though this ordering does not impact the worst-case bounds, the approach of
looking for large subtrees in large trees tends to produce better experimental
results.
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Theorem 7 Algorithm SimulFill-BF determines an α-clustering for a given n-
vertex tree T in time O(np log d−1

d

α
4 ). The number of subtrees is a cluster in

bounded by min{c, dlog d−1
d

α
4 e}.

Proof: Using best-fit for the subtree selection results in a new traversal when-
ever a subtree is assigned to a cluster. This increases time to the stated bound.
The bound on the number of subtrees is as in SimulFill-GF. 2

5 Experimental Results

In this section we discuss the performance of the different clustering algorithms
and show how parameters α, c, and d impact cluster sizes and number of subtrees
in the clusters. We considered synthetically generated trees with n ranging from
1, 000 to 6, 000. Ideal cluster sizes considered varied from c = 10 to c = 500
and the maximum degree varied from d = 20 to d = 74. We used four classes
of synthetic trees. All trees were created level by level and the classes differ on
how the degree of a vertex is determined. Class 1 assumes that every degree
between 1 and d is equally likely for every vertex. Class 2 assumes that the
probability of a vertex being a leaf is significantly higher (we used 0.5 instead
1/d) and that, once a vertex is identified as a non-leaf, every degree is equally
likely. Class 3 generates degrees using a normal distribution. Trees in classes
1 to 3 are generated level-by-level starting with the root. Class 4 generates
B-trees [2]. Trees in class 4 are created by specifying number of leaves and
the value of B (which corresponds to the maximum degree). Trees are then
generated from the leaves towards the root and for a non-root, interior vertex,
every degree between B/2 and B is equally likely.

For all trees, we report the mean, median, and the maximum of number of
subtrees in a cluster and the cluster sizes. When we report, for example, the
median number of subtrees in a cluster for a tree, we report the mean of the
medians of the p clusters over 10 different trees within the same class. The
different classes of trees exhibit the same performance trend for trees with the
same n, c, d, and α values. As is discussed in the next two sections, we observed
that the choice of α and the relationship between c and d has significant impact
on the performance. The plots shown in this paper are for trees in classes 1 and
4.

Given the NP-completeness of the problem and the considered tree sizes, we
did not generate optimal results. Comparing the algorithms gives interesting
and relevant insight into the different strategies as well as the parameter choices.
The implementation of the clustering algorithms was done in Java. The imple-
mentations have no hidden constants and are based on the same data structures.
We do not report actual running times and expect the running times to follow
the asymptotic worst-case bounds established.
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Figure 8: Comparing the number of subtrees for SimulFill-GF ◦, SingFill-FF
2, SimulFill-BF �, SingFill-BF × for trees in class 1.

5.1 Comparing clustering algorithms

In this section we discuss the performance of Algorithms SingFill-FF, SimulFill-
GF, SingFill-BF, and SimulFill-BF with respect to the number of subtrees and
cluster sizes for synthetically generated trees belonging to classes 1 and 4. The
graphs show results for ten α-values, α = j/10, j ∈ {0, 1, 2, . . . , 9}. Graphs for
trees in class 1 (i.e., trees in which every degree is equally likely) have n = 5, 000,
c = 50, and a maximum degree of 50. Graphs for trees in class 4 (i.e., B-trees)
have 5, 000 leaves.

Figures 8 and 9 show results for the number of subtrees. The graphs show
trends which were observed for all trees classes and cluster sizes considered.
Algorithm SingFill-FF generates clusters containing the largest number of sub-
trees. This holds when we consider the median, mean, and maximum number of
subtrees (over all clusters and over 10 trees of the same type). This is not sur-
prising since SingFill-FF simply arranges subtrees by size and proceeds greedily
without further optimizations. Algorithms SimulFill-BF and SingFill-BF consis-
tently outperform the two algorithms based on first-fit and good-fit with respect
to minimizing the number of subtrees in the clusters. The relationship between
the two best-fit approaches is examined in detail in the next section.

For all four clustering algorithms Figures 8 and 9 show a “leveling off” in the
number of subtrees as α increases. Overall, our experimental work suggests that
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Figure 9: Comparing the number of subtrees for SimulFill-GF ◦, SingFill-FF 2,
SimulFill-BF �, SingFill-BF × for B-trees with 5,000 leaves; upper four graphs
have B = 20 and c = 50; lower four have B = 32 and c = 25.
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using α greater than 0.4 has little impact on reducing the number of subtrees.
We next comment on a relationship between c and d we observed throughout.
As the maximum degree exceeds c and a tree contains a significant number of
nodes with high degree, it becomes harder - and at times impossible - to keep
the number of subtrees in a cluster small. For trees in class 1 with c = 50 and
values of d smaller than 50, we observed a decrease in the number of subtrees for
all algorithms. For degrees larger than 50, we observed an increase. However,
the relationship between the four algorithms remains stable. Figure 9 shows
this for two types of B-trees. The upper four graphs show a typical behavior for
the case when the maximum degree is smaller than c. In the lower four graphs
the maximum degree exceeds c (32 versus 25). All algorithms produce clusters
with more subtrees. In particular, the maximum number of subtrees is equal
(or close to) to the possible worst case of c vertices in a cluster for small values
of α. Plots in Section 5.2 which vary c or d will also reflect this characteristic.

We use trees in class 1 to illustrate observed behavior on the cluster sizes
as α increases. Figure 10 shows the median, mean, and maximum difference
between achieved and ideal cluster size (i.e., the quantities |Ci − c|). Clearly,
as α increases, the differences in the cluster sizes continue to increase. Algo-
rithm SimulFill-GF fills the clusters closer to the limits set by α than any other
algorithm. In Figure 10, the maximum cluster sizes generated by the two simul-
taneous fill algorithms are consistently higher compared to those of the single
fill algorithms. This is a characteristic of the simultaneous filling of clusters.
Recall that the simultaneous filling of clusters proceeds in two phases: the first
phase generates safe clusters and it does not allow a cluster size to exceed c.
Clusters exceeding size c are generated in the second phase. This approach
ensures correct cluster sizes, but it also makes it more likely that there exist
clusters which are close to the extremes of the required range.

5.2 Comparing SingFill-BF and SimulFill-BF

We now turn to comparing the two best-fit clustering algorithms, SimulFill-BF
and SingFill-BF. All graphs shown in this section were obtained using trees in
class 1, but are representative for all types of trees we considered. Figure 11
shows typical results for the number of subtrees when α ranges from 0 to 0.9 and
c ranges from 10 to 500. In the trees used, the maximum degree is 44. For small c
values (up to around c = d), we observe a large number of subtrees for both best-
fit algorithms. Note the significant increase in the maximum number of subtrees
(and the different scale used). For larger c values, we see the number of subtrees
decrease as α increases and we observe a leveling off around α = 0.4 with respect
the mean, median, and maximum number of subtrees in the clusters. Figure 12
also illustrates the observed leveling off for the mean number of subtrees and
Algorithm SingFill-BF.

From our experimental results we can conclude that SingFill-BF outperforms
SimulFill-BF with respect to the mean and the median number of subtrees.
When considering the maximum number of subtrees, we see that SimulFill-BF
outperforms SingFill-BF. This behavior showed up in all trees we considered
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Figure 10: Comparing cluster sizes for SimulFill-GF ◦, SingFill-FF 2, SimulFill-
BF �, SingFill-BF × for trees in class 1.
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Figure 11: Comparing the number of subtrees for SimulFill-BF 5 and SingFill-
BF × when c and α change; n = 5, 000 and d = 44; c values are [10, 20, 25, 40,
50, 100, 125, 200, 250, 500].
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Figure 12: Mean number of subtrees in clusters for Algorithm SingFill-BF as α
and c change for n = 5, 000 and d = 44; c values are [10, 20, 25, 40, 50, 100,
125, 200, 250, 500].

and reflects a characteristic between the two approaches. Algorithm SingFill-
BF is able to delay creating clusters containing a large number of subtrees until
the remaining tree is small. The final iterations of SingFill-BF generate clusters
with a larger number of subtrees compared to what SimulFill-BF generates.
This happens since the small tree remaining allows fewer choices, creating thus
a large maximum for SingFill-BF.

The final set of experimental results examines the impact of the maximum
degree on the performance of the two best-fit algorithms. We show data obtained
for n = 5, 000, c = 50, and d in the range from 20 to 74. In Figure 13 we again
see that Algorithm SimulFill-BF outperforms SingFill-BF with respect to the
maximum number of subtrees placed in a cluster, but that SingFill-BF gives
better results for the mean and median values. For the large degrees (d = 62, 68,
and 74 in Figure 13), we observed a significantly larger number of subtrees for
the mean, median, as well as the maximum. This confirms the relationship of c
and d discussed earlier.

Figure 14 illustrates cluster sizes for c = 50 as maximum degrees and α
increase. As to be expected, increasing α generates for both algorithms clusters
whose sizes vary more and more from the ideal size of c. SimulFill-BF generates
clusters much closer to their upper and lower limits, as was already mentioned in
the discussion in single versus simultaneous fill for Figure 10. Using Figures 13
and 14 and d = 26 for SimulFill-BF, we see a maximum of 5 subtrees in the
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Figure 13: Comparing the number of subtrees for SimulFill-BF 5 and SingFill-
BF × when the maximum degree d and α change; n = 5, 000 and c = 50; d
values are [20, 26, 32, 38, 44, 50, 56, 62, 68, 74].
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Figure 14: Comparing cluster sizes for SimulFill-BF 5 and SingFill-BF
× when d and α change; n = 5, 000 and c = 50; d values are
[20, 26, 32, 38, 44, 50, 56, 62, 68, 74].

clusters for α = 0.5 and a maximum of 5 subtrees for α = 0.8. In both cases,
there exists clusters which are filled to the upper limit of 75 and 90 vertices in
a cluster, respectively. While increasing α beyond 0.4 tends not to reduce the
number of subtrees, it does generate clusters sizes lying in larger ranges.

6 Conclusion

We presented algorithms for α-clustering the vertices of a tree when cluster sizes
need to lie in a range defined by α and the number of subtrees assigned to a
cluster should be minimized. In addition to input parameter α, the algorithms
differ in the identification of subtrees and the order in which clusters are filled.
We described efficient implementation of the clustering algorithms and estab-
lished upper bounds on the number of subtrees in a cluster. Our experimental
results provided insight into how the maximum degree d, the relationship be-
tween c and d, the value of α, the subtree selection method, and the order in
which clusters are filled impact the number of subtrees and the cluster sizes. In
particular, our experimental result show that as α increases, the reduction in the
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number of subtrees slows down considerably, but the differences between clus-
ter sizes continues to increase. Overall, we observed that the best-fit clustering
algorithm filling one cluster at a time generates consistently good results.

7 Acknowledgments

We thank the referees for their helpful and constructive comments.

References

[1] J. Banerjee, W. Kim, S.-J. Kim, and J. F. Garza. Clustering a DAG for
CAD databases. IEEE Transactions on Software Engineering (SE), 14(11),
Nov. 1988.

[2] R. Bayer and E. McCreight. Organization and maintenance of large ordered
indices. Acta Informatica, 1:173–189, 1972.

[3] T. Cormen, C. Leiserson, and R. Rivest. Introduction to algorithms. The
MIT Press, 1990.

[4] A. A. Diwan, S. Rane, S. Seshadri, and S. Sudarshan. Clustering tech-
niques for minimizing external path length. In Proceedings of the 22-nd
International Conference on Very Large Data Bases, pages 342–353, 1996.

[5] A. Farley, S. Hedetniemi, and A. Proskurowski. Partitioning trees: match-
ing, domination, and maximum diameter. International Journal of Com-
puter and Information Sciences, 10(1):55–61, Feb. 1981.

[6] A. Gerasoulis and T. Yang. On the granularity and clustering of directed
acyclic task graphs. IEEE Transactions on Parallel and Distributed Sys-
tems, 4(6):686–701, June 1993.

[7] J. Gil and A. Itai. How to pack trees. Journal of Algorithms, 32, 1999.

[8] S. Hambrusch and C.-M. Liu. Data replication for external searching in
static tree structures. In Proceedings of the Ninth ACM International Con-
ference on Information and Knowledge Management, Nov. 2000.

[9] C.-M. Liu. Searching in static, external memory data structures. Ph.d.
thesis, Purdue University, Department of Computer Sciences, in progress.

[10] P. Maheshwari and H. Shen. An efficient clustering algorithm for partition-
ing parallel program. Parallel Computing, 24(5-6):893–909, June 1998.



S. E. Hambrusch et al., Clustering in Trees, JGAA, 4(4) 1–26 (2000) 26

[11] D. M. Nicol and D. R. O’Hallaron. Improved algorithms for mapping
pipelined and parallel computations. IEEE Transactions on Computers,
40(3):295–306, Mar. 1991.

[12] M. H. Nodine, M. T. Goodrich, and J. S. Vitter. Blocking for external
graph searching. Algorithmica, 16(2):181–214, Aug. 1996.

[13] S. Ramaswamy and S. Subramanian. Path caching: A technique for optimal
external searching. In Proceedings of the Thirteenth ACM Symposium on
Principles of Database Systems, volume 13, pages 25–35, 1994.

[14] R. Schrader. Approximations to clustering and subgraph problems on trees.
Discrete Applied Mathematics, 6:301–309, 1983.


