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Abstract

The paper describes two algorithms for threading unknown, finite di-
rected Eulerian mazes. Each of these algorithms is performed by a trav-
eling robot whose control is a finite-state automaton. It is assumed that
each vertex has a circular list of its outgoing edges. The items of this list
are called exits. Each of the algorithms puts in one of the exits of each
vertex a scan pebble. These pebbles can be used by a simple robot as
traffic signals, which allow it to traverse an Eulerian cycle of the maze.

For a directed graph (maze) G(V, E), the simple algorithm performs
O(|V | · |E|) edge traversals, while the advanced algorithm traverses ev-
ery edge three times. Let dout(v) be the out-degree of vertex v. The
algorithms use, at each vertex v, a local memory of size O(log dout(v)).
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1 Introduction and Model

The question of how best to traverse an unknown maze, given only local knowl-
edge, has been long studied. [8, 3, 5, 7, 6, 1, 4, 2]. Without the ability to
store some knowledge about the maze the searcher can easily become trapped
in cycles.

In this paper we consider the case of directed Eulerian mazes/graphs, and
show that a finite state automaton, with access to some local memory stored in
the vertices, can find an Eulerian cycle. During the search for this cycle, each
edge is traversed three times.

It is assumed that each vertex has a circular list of its outgoing edges. The
items of this list are called exits.

The challenge is to use only as simple a “robot,” R, as possible. R has a
finite automaton control and a few external actions. The external actions affect
the external state which consists of the following:

• The vertex in which R is at, and more specifically, the exit at which R is
at.

• For every vertex v, the location of some small constant number of pebbles
at exits of v, and the value of a constant number of flags’ bits at v.

Let dout(v) be the out-degree of v. The external actions allow R to access
O(log dout(v)) bits of information, stored at v. Note that R’s memory may not
be sufficient to store all these bits at any one time, since no bound on dout(v)
is assumed.

The robot R can perform two essential movement actions:

• R can traverse an edge from its beginning, which is an exit of the vertex it
is at, to its end, to enter another (the same, in case of a self-loop) vertex.

• R can move from the exit it is at to the next/previous exit in the cyclic
order of the exits of the vertex it is at.

Also, R can perform two pebbling actions:

• R can observe if a pebble of a specified type is located at the exit R is at.

• R can put/remove any pebble at/from the exit it is at.

Finally, R can perform two flagging actions:

• R can observe whether a certain flag is turned on at the vertex R is at.

• R can turn on/off a certain flag at the vertex R is at.

For simplicity we will often use compound actions such as traverse the edge
with the scan pebble which are straightforward finite automata functions of the
basic actions.

The problem considered in this paper can now be restated as follows: Design
a robot R so that when it is placed at any vertex of any directed Eulerian finite
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graph, with any cyclic ordering of the exits of each vertex, R will eventually
halt, leaving a scan pebble at one exit of each vertex. These scan pebbles serve
as traffic signals for a simple scanning robot. Using these pebbles, and moving
them as it goes along, this robot will traverse an Eulerian cycle, will halt, and
when it does, the scan pebbles will be exactly where they have been when the
simple robot started this traversal.

2 History of Maze Traversal

In 1967, Michael Rabin [8] considered the problem of threading undirected con-
nected graphs by means of a finite automaton which has some fixed number
of pebbles it can leave at vertices and which it can move from one vertex to
another. Note that by threading we mean visiting every vertex, at least once.
He proved that no such automaton can thread all finite undirected graphs. It
follows that no finite automaton can thread all finite, connected graphs, unless
some unbounded information can be stored in the vertices.

In view of this impossibility result, it is no wonder that the classical (19-th
century) algorithms for threading undirected mazes, such as that of Trémaux’s
and Tarry’s (see, for example Even’s book [5], Chapter 3) store data in the
vertices. More about threading undirected mazes can be found in the book of
Hemmerling [7]. However, these algorithms are not easy to implement on di-
rected graphs due to the fact that backtracking along edges is no longer allowed.

Notice that every connected undirected graph can be transformed to a di-
rected Eulerian graph by replacing every edge u—v with two directed edges
u −→ v and v −→ u. Thus, the impossibility result for threading undirected
graphs implies the impossibility of threading for directed Eulerian graphs. This,
in turn, proves the impossibility of finding an Euler cycle in Eulerian directed
graphs.

Therefore, in order to thread all finite directed Eulerian graphs, it is natural
to allow our robot, R, to store and use some information in the vertices.

Even, Litman and Winkler [6] presented an algorithm of time complexity
O(|V |2) to thread directed networks. However, their algorithm assumes a dif-
ferent computational model — each vertex is a finite automaton and the directed
edges are communication links. Afek and Gafni [1] present a fairly complicated
solution which uses essentially Depth-First Search (like Trémaux’s algorithm),
and includes a method to effectively backtrack on directed edges. Their method
uses O(|V | · |E| + |V |2 · log |V |) edge traversals, and requires that vertices are
labeled with distinct names. We shall later say more about the comparison of
our results with those of Afek and Gafni.

Deng and Papadimitriou [4] also use a more powerful model than we do.
Their purpose is to explore the graph; i.e. to discover its structure. They
assume that vertices have distinct identities and that the robot is a general
purpose computer (Turing equivalent). They describe a recursive algorithm
which finds an Eulerian cycle in a directed Eulerian graph. This algorithm
traverses each edge twice. They build on this algorithm to attack the problem
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of exploring general strongly connected directed graphs. (See, also, Albers and
Henzinger [2].)

3 Overview of the Robot Algorithms

Let G(V, E) be a finite Eulerian directed graph. Namely, G’s underlying undi-
rected graph is connected, and for every vertex v ∈ V , din(v) = dout(v), i.e.,
its indegree is equal to its outdegree. Euler’s Theorem implies that G has a
directed cycle in which every edge of G appears exactly once.

Since din(v) = dout(v) we shall simply use d(v) to denote dout(v).

3.1 The Simple Algorithm

Without any pebbles the robot, R, might be doomed to pick the same exit every
time it visited a vertex. In this algorithm, R uses a scan pebble to “remember”
which is the next exit to be taken. At each vertex, R moves to the exit with
the pebble, call it Ep, places the pebble at the next exit, returns to Ep, and
traverses that edge. As we will show below, the repetition of this simple “move
pebble forward before traverse” alone will eventually establishes an Eulerian
tour, i.e., after wandering for a while, R will traverse an Eulerian cycle, and
repeat it, indefinitely, unless some mechanism causes it to halt.

Afek and Gafni [1] used a similar idea in their Traversal-1 algorithm. We
use a different halting mechanism (employing a two bits flag at each vertex
and using a single bit of internal state of R,) and take advantage of the fact
that our graphs are assumed to be Eulerian, while they assumed only strong
connectivity. We will show that this Simple algorithm makes O(|V | · |E|) edge
traversals before it halts, using our halting rule.

Afek and Gafni [1] show that their scanning method is existentially optimal,
that is, that there exists a family of (non-Eulerian) directed graphs which require
Ω(|V | · |E|) edge traversals. However, as is shown in the Appendix, there are
dense (Eulerian) graphs for which any Depth-First Search approach, including
that of Afek and Gafni, takes Ω(|V | · |E|) = Ω(|V |3) edge traversals, while our
variant takes O(|V |2).

3.2 The Advanced Algorithm

To prepare for our second robot algorithm we first describe an algorithm which
does not meet our traveling robot model. We first prove the validity of this
algorithm and later show that we can return to our model and preserve the
validity.

The algorithm consists of two phases. The first phase, called preparatory,
is nondeterministic. It concludes by placing a scan pebble at one exit of each
vertex, thus, in fact, having found an Eulerian tour. The second phase, called
stroll, can then execute the simple traveling robot algorithm to trace an Eulerian
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cycle. When it halts the pebbles are back where the preparatory phase had
placed them.

Finally, our Advanced Algorithm replaces the nondeterministic preparatory
phase with a traveling robot sub-algorithm. The new preparatory phase requires
two more pebbles per vertex and two additional 3-value variables in each vertex.
Including both its phases, the Advanced Algorithm traverses each edge 3 times.

3.3 The Recursive Algorithm

It is worth noting that the Recursive Algorithm of Deng and Papadimitriou can
also be performed by a traveling finite robot. However, the required memory in
each vertex v is Θ(d(v) · log d(v)). If the robot is “input aware”, (i.e. when a
vertex is entered the output edge is a constant 1-1 function of the input edge,)
then the Recursive algorithm need scan every edge only twice. Without input
awareness, each edge is scanned exactly 3 times. This was shown by Tayar [9].

Finally, we note that while each of the three algorithms (Simple, Advanced
and Recursive) produces an Eulerian cycle, they may produce different cycles
(e.g. when applied to the maze shown in Figure 1.)

4 The Simple Algorithm

4.1 The Algorithm

The traversal of the graph is to be performed by a finite-state robot R. The
algorithm which governs the behavior of R consists of two mechanisms: The
scanning mechanism, which determines the order in which the edges are tra-
versed, and the halting mechanism.

4.1.1 The Scanning Mechanism

In each vertex v there is a scan pebble, initially placed at some arbitrary exit.
Each time the robot enters a vertex it finds the scan pebble, moves it forward
one position, and exits through the edge where the scan pebble has been.

Clearly, the scanning continues indefinitely, unless the halting mechanism
stops it.

4.1.2 The Halting Mechanism

For the purpose of deciding when R stops scanning, vertices and exits are marked
as follows:

• Each vertex has a root flag r. Initially r = 0 at all vertices. The first
action by the robot is to mark its initial vertex flag r = 1. Thereafter, no
vertex has its r flag changed.

• Each vertex also has a status flag, s, which is initially marked NEW.
On first visiting a vertex the robot changes s to SEEN. Eventually, the
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robot will change each s flag to DONE and thereafter leave it unchanged.
Also, on the first visit the robot finds the exit in which the scan pebble
is located and puts the start pebble at the same exit. The start pebble
is not moved anymore. It helps determine if all exists have been used to
leave the vertex.

In addition, the robot carries a state bit F . This bit may be UP or DOWN .
The initial value of F is DOWN . The meaning of F = UP is that on the present
”phase”, to be defined shortly, all vertices, it has encountered so far, have had
all their outgoing edges traversed, at least once.

The actions of the robot under the Simple Algorithm are given in Table 1.
Lines 3, 5, 7 and 20 perform the scanning mechanism. Lines 1-2, 4, 8-16 and
18-19 perform the halting mechanism. Line 17 defines the end of a phase. The
phases are only defined to simplify the proof.

1 r ← 1
2 s← SEEN
3 goto exit with scan pebble
4 put start edge pebble at exit
5 move scan pebble to next exit and leave vertex through current exit
6 while TRUE
7 goto exit with scan pebble
8 if s = NEW then do
9 put start edge pebble at exit
10 s← SEEN
11 if r = 0 then do
12 if s 6= DONE then do
13 F ← DOWN
14 if start edge pebble at next exit then
15 s← DONE
16 if r = 1 and exit has the start edge pebble then do
17 (end of phase)
18 if F = UP then HALT
19 F ← UP
20 move scan pebble to next exit and leave vertex through current exit

Table 1: The Simple Algorithm

4.2 Validity

The vertex where r = 1 is called the root ρ.

Theorem 1 The robot R will halt at the root, ρ, after having traversed all edges
of G. This will happen within O(|V | · |E|) edge traversals. In its last |E| edge
traversals R makes an Eulerian tour.
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Note that upon termination the scan pebbles are not necessarily back in their
initial condition. In fact, their position is exactly what has been “learned”. If
now the traversal is restarted, with F = UP , R will perform an Eulerian tour
and stop, and the scan pebbles will again be in the “learned” position.

Proof: Note the definition of a phase, as in Table 1, Line 17. First, let us
examine the route of R during the first phase. Clearly, every edge incident with
ρ has been traversed exactly once. Furthermore, every edge on the route of the
first phase is traversed once only. This is easily proved by induction on the order
in which the edges are traversed: When a vertex v 6= r is entered by an edge
(traversed for the first time) the number of used incoming edges is one greater
than the number of used outgoing edges. Thus, the exit in which the pebble is
placed leads to an edge which has not yet been traversed.

Note that if during the first phase every incident edge of v 6= ρ has been
traversed then v’s s flag is DONE. Other vertices are still flagged NEW or
SEEN . However, for every vertex the number of untraversed incoming edges
is equal to the number of untraversed outgoing edges.

Now consider the second phase. As long as for every vertex v 6= ρ, encoun-
tered by R, s = DONE, the route of the second phase is identical to that of
the first phase. This follows from the fact that, at the end of the first phase,
for ρ and every DONE vertex, the scan pebble is back at the start exit. If not
all edges of G have been traversed in the first phase, there must be vertices on
the first route for which some of their outgoing edges have not been traversed
and such vertices are still flagged SEEN . This follows from the fact that G
is strongly connected. If SEEN vertices exist, let v be the first SEEN ver-
tex encountered in the second phase. A new tour starts at v, using only edges
untraversed in the first phase, and ending in v. Now v is flagged DONE and
its scan pebble is at the start exit. The route of the first phase is resumed.
Since every vertex which is still flagged SEEN and which is on the route of
the first phase is similarly treated, at the end of the second phase all vertices
encountered on the first route are now flagged DONE. Every traversed edge
has been traversed exactly once in the second phase, which is the second time
for those traversed on the first route.

For every phase i > 1, the algorithm maintains the following properties:

• While R is traveling through ρ and DONE vertices, it retraces the route
of the (i− 1)′st phase.

• If R encounters a SEEN vertex, u, it suspends the retracing of the tour
of the (i − 1)′st phase. A new tour starts at u and ends there. u is now
DONE. The tour of the (i−1)′st phase is resumed (using the start exit).
Thus, every edge it traversed at most once during a phase.

• If for every vertex v 6= ρ, which R encounters, v is DONE, then R returns
to ρ with F = UP , and halts.

During each phase, other than the last and possibly the first, at least one
SEEN vertex becomes DONE. Thus, there are at most |V |+ 1 phases. Hence,
the number of edge traversals is O(|V | · |E|). 2
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5 The Generic Algorithm

In order to explain our more efficient algorithm for finding an Eulerian directed
cycle in G(V, E), in terms of the number of edge traversals, we describe first a
Generic Algorithm. This is a nondeterministic algorithm which deviates from
our computational model; i.e. it is not limited to actions performed by a travel-
ing finite automaton. Later on we show how to remove the nondeterminism and
run the algorithm by means of a finite automaton which threads the directed
graph.

5.1 Definitions

• An edge is new if it has not been traversed yet. It is old otherwise.

• A vertex is new if all its outgoing edges are new. It is old otherwise.

• An exploration from vertex v is a directed path which starts in v and
continues via a new directed edge, as long as there is one. It is assumed
that, in each vertex, exits are chosen according to the specified circular
order.

For convenience, we shall assume that the exits of a vertex v are labeled
v.1, v.2, . . . , v.d, where v.1 is the start exit, as we used it in Section 4, d is
dout(v) and the exits are numbered according to the specified circular order.
Also, we shall use a scan pebble, one per vertex, to be placed at one of the
exists.

5.2 The Preparatory Algorithm

Consider Preparatory, as stated in Table 2.

choose a vertex ρ
run an exploration from ρ
while there are old vertices which have new exits do

choose such a vertex u
run an exploration from u

for every vertex v do
if only one exploration passed through v then

put v’s pebble at the first exit of this exploration
else put the pebble at the first exit of the

second exploration which passed through v

Table 2: Preparatory

Note that the first exploration ends at ρ, the vertex at which it started.
This observation, like the proof of Euler’s theorem, follows from the fact that
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whenever any vertex u, other than ρ, is entered, the number of old incoming
edges is greater (by 1) than the number of old outgoing edges, and since din(u) =
dout(u), there is at least one new outgoing edge. When the first exploration ends,
for every vertex the number of new incoming and outgoing edges is the same,
and this invariant holds every time an exploration ends.

For every vertex, Preparatory places a pebble at one of its exits. The position
of these pebbles is the information learned by running Preparatory.

5.3 The Scan Algorithm

The benefit of the Preparatory Algorithm becomes evident when it is followed
by the Scan Algorithm. The Scan Algorithm is similar to the actions taken by
R in the last phase of the Simple Algorithm. The pebble is used just as the scan
pebble has been used there. However, the locations of the pebbles, when Scan
begins, may be different from those of the scan pebbles, when the last phase of
Simple starts. Scan halts when exit ρ.1 is about to be used again. The route R
takes during Scan is an Eulerian tour.

r

ab

c

1

1

2

1
2

1

2

3

Figure 1: Example for running Generic

The interaction of Preparatory with Scan may seem a bit magical so we
demonstrate their action on the example shown in Figure 1. For each vertex, the
exits are numbered, and for convenience, all vertices are given names. Assuming
ρ = r, the first exploration yields the cycle C1 : r.1, a.1, c.1. Assume the second
exploration starts at a; it yields a cycle C2 : a.2, b.1, c.2. Assume the third cycle
is C3 : b.2, c.3. Since only one exploration cycle includes r, a pebble is placed
on r.1. The other vertices are in more than one exploration so the pebbles are
placed at the first edge used by the second exploration, that is, a.2, b.2 and c.2.
This completes the operation of Preparatory.

Now, during a Scan, the following Eulerian cycle is traversed:

r1, a2, b2, c2, a1, c3, b1, c1.

Note that the edges of a Preparatory cycle may not be scanned consecutively,
and they may even appear in an order different from the order in which they
have been traversed in the exploration. Nonetheless, as we show below, Scan
will always traverse an Eulerian path.
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Lemma 1 In the directed path indicated by Scan, no edge is traversed more
than once.

Proof: The only exploration which passes through ρ is the first one, and there-
fore Preparatory places the pebble at exit ρ.1. Scan halts when R is at ρ and
the pebble is back at exit ρ.1 when ρ is entered. Thus, every edge out of ρ has
been traversed exactly once.

Assume there are edges which R traverses more than once, and let u
e−→ v

be the first such edge on the route of R. By the argument above, u 6= ρ. Since
the pebble is moved in a round robin fashion, the number of times R has left
u, at the time it traverses e for the second time, is d(u) + 1. R has not started
in u and is not at u now. Thus, u must have an incoming edge which R has
traversed more than once before traversing e the second time. This contradicts
the choice of e. 2

The following simple observation is used in the proofs of the next three lem-
mas: The exits of every vertex v are used by Preparatory in consecutive order.
Exits v.1, v.2, . . . , v.l1 are used in the first exploration which passes through v.
Next, v.(l1 + 1), v.(l1 + 2), . . . , v.l2 are used in the second exploration which
passes through v, etc.

Lemma 2 Let u be a vertex and Ci, i ≥ 1, is the cycle of the first exploration
to pass through u. If during Scan, R traverses all edges of Ci which exit from
u, then R has traversed all outgoing edges of u.

Proof: If all outgoing edges of u belong to one exploration then the claim is
trivial. Otherwise, Preparatory places the pebble at the first exit of the second
exploration which passes through u. Thus, R has traversed all other outgoing
edges of u before it traverses the edges of Ci. 2

Lemma 3 During Scan, R traverses all edges of G.

Proof: Consider the cycles traced during Preparatory, and let Ci be the cycle
traced in the i-th exploration. Assume there are edges of G which are not
traversed by R during Scan, and let Ck be the first cycle to contain such an
edge. Let s be the vertex in which the k-th exploration has started (and ended).

First, consider the claim that all outgoing edges of s are traversed by R.
If k = 1 then the claim follows from the halting condition of Scan. If k > 1

then there are earlier cycles which pass through s, and all outgoing edges of
these cycles have been traversed by R. By Lemma 2, all outgoing edges of s
have been traversed. This proves the first claim.

Now, let us call all edges of Ck, which have been traversed by R, black, and
the remaining edges of Ck — red. The edges of other cycles remain colorless.

Next, consider the (second) claim that there is a vertex on Ck for which the
number of black outgoing edges is greater than the number of black incoming
edges. Note that this holds if and only if there is a vertex on Ck for which the
number of black outgoing edges is less than the number of black incoming edges.
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Clearly, in every vertex the exits to black edges are consecutive, and the red
ones succeed the black.

Now, let us trace the edges of Ck in the order they have been chosen in
Preparatory. According to the first claim, all outgoing edges of s have been
traversed by R, and therefore are all black, and thus, the first edge of Ck is
black. Consider the first red edge u

e−→ v while we trace Ck. Since we have
entered u via a black edge, and all our previous entries into u have been via black
edges, the number of black incoming edges is an upper bound on the number
of times we visited u. All previous exits from u were through black edges, and
e is red. Thus, the number of black outgoing edges is less than the number of
black incoming edges. This proves the second claim.

Assume v is a vertex on Ck which has more black outgoing edges than black
incoming edges.

If Ck is the first cycle which passes through v then the number of times
that R has visited v is equal to the number of black outgoing edges, plus the
number of colorless outgoing edges; these belong to later cycles, and they have
all been traversed by R. This follows from the fact that the pebble has been
put, by Preparatory, at the first such exit, and all these exits have been used,
by R, before the exits of Ck, while at least one black edge exists. Note that the
number of entries by R, when it leaves through the last black outgoing edge,
is equal to the number of departures. Also note that the number of colorless
incoming edges is equal to the number of colorless outgoing edges and that no
edge is traversed more than once (Lemma 1). It follows that the number of black
incoming edges must be greater than or equal to the number of black outgoing
edges. A contradiction.

If Ck is not the first cycle which passes through v, then the choice of Ck and
Lemma 2 imply that all outgoing edges have been traversed by R, and therefore
all incoming edges of u have been traversed as well. Therefore the number of
black incoming edges is equal to the number of black outgoing outgoing edges.
A contradiction.

It follows that every edge is traversed by R. 2

Theorem 2 The robot R, moving according to algorithm Scan, traverses an
Eulerian cycle.

Proof: By Lemma 1 no edge is traversed more than once, and by Lemma 3,
every edge is traversed. 2

Note that after Scan halts, the pebbles are back where Preparatory had put
them.

6 The Advanced Algorithm

In this section we describe an algorithm in which the operation of Preparatory is
performed by a traveling robot R, whose control is a finite automaton. This new
algorithm will ensure that a pebble is placed on edges in a manner consistent
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with Preparatory. In total four pebbles are used (equivalently, the amount of
memory required in each vertex v is 4 log d(v)+O(1)), and each edge is traversed
3 times.

Each vertex has four pebbles, named start-edge, explore, retrace and scan.
It is assumed that all four pebbles are initially placed at the same exit. The
start-edge pebble will never move. Thus, in what follows, only the movements
of the other three pebbles will be discussed.

In addition to the root flag, which marks the initial vertex ρ (whose place-
ment will not be discussed any further), there are two more flags stored in each
vertex v:

• The flag visited indicates the number of cycles (explorations) which have
passed through v; its value is 0, 1, or 2. Initially visited = 0. If its value
is 2 then there are at least two cycles which have passed through v.

• The flag seen indicates if v has previously been passed in the current cycle
(exploration). Initially, seen = 0, and when R reaches v for the first time
during the current exploration, it changes the flag seen to 1. Once all
edges of an exploration are found, R retraces the cycle and assigns all
seen flags on the cycle to be 0 again. Thus, the seen flag of a vertex v is
changed to 1, and back to 0, as many times as there are cycles which pass
through it.

The main procedure, which governs the actions of R, is create-eulerian-
cycle; see Table 3. It employs two subroutines, explore (Table 4) and retrace
(Table 5). Also, we use the macro:

• exit(X-pebble): R exits the vertex it is at via the exit in which the
X-pebble is located now, but first it moves the X-pebble to the next exit,
in a round-robin fashion.

6.1 The Explore Subroutine

Subroutine explore is activated in order to perform an exploration.
If seen = 0 then the current vertex is visited during this exploration for

the first time. If in addition, visited = 1 then the running exploration is not
the first to pass through the current vertex, and the scan-pebble is moved to
the exit where the explore-pebble is at; which is the first exit of the second
exploration to pass through the vertex. If visited < 2 then it is incremented.
Now seen is set to 1. R leaves the current vertex through the exit indicated
by the explore-pebble, not before moving it to the next exit, in a round robin
fashion.

If seen = 1 then inquire whether all outgoing edges of the current vertex
have been explored; this is done by checking if the explore-pebble is back where
the start-pebble is at. If so, R is back at the vertex where the exploration has
started and the subroutine is terminated. Otherwise, there are still unexplored
outgoing edges and the exploration continues.
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1 call explore
2 call retrace
3 repeat
4 exit(scan-pebble)
5 if explore-pebble not at start-edge then do
6 call explore
7 call retrace
8 until R is at ρ and scan-pebble is at start-edge

Table 3: Procedure create-eulerian-cycle

while TRUE
if seen = 0 then do

if visited = 1 then
put scan-pebble at explore-pebble’s exit

if visited < 2 then
visited← visited + 1

seen← 1
exit(explore-pebble)

elsif explore-pebble at start-edge pebble then
EXIT explore subroutine

else
exit(explore-pebble)

Table 4: Subroutine explore

while seen = 1 or retrace-pebble not at start-edge do
seen← 0
exit(retrace-pebble)

Table 5: Subroutine retrace
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6.2 The Retrace subroutine

Subroutine retrace is activated after an exploration cycle is found. Its purpose
is to reset all seen flags of the vertices of the newly found cycle to 0. This is
done as follows.

If seen = 0 and the retrace-pebble is at the start-edge, then all edges of
the new cycle have been retraced and retrace halts. The halting condition can
occur only at the vertex where the exploration has started and all exits of that
cycle have been retraced. In every encountered vertex seen is set to 0, whatever
its value has been.

6.3 The Create-Eulerian-Cycle Procedure

We shall refer to lines 3,4 and 8 of Table 3 as the Scan behavior.
Procedure create-eulerian-cycle uses explore and retrace to perform

a deterministic version of Preparatory. R starts an exploration from ρ, first
performing explore and then retrace. Now it is back at ρ, while all three
pebbles are at the start-edge. R behaves now as Scan, advancing the scan-
pebble only, but this behavior is stopped when R hits a vertex v which has new
outgoing edges; this is detected by the fact that the exit where the explore-
pebble is at is not at the start-edge. When this happens, R suspends the Scan
behavior. It performs an exploration from v, again by first running explore and
then retrace. While doing that, the scan-pebble of every vertex encountered
on this cycle is moved from its start-edge to the first exit of the new exploration
if the present exploration is the second to pass through that vertex. When
retrace terminates, R resumes the Scan behavior.

It is easy to see that create-eulerian-cycle causes R to place the scan-
pebbles in accord with Preparatory, and when R uses the exits where the scan-
pebbles are at, it traverses every edge once. When create-eulerian-cycle
terminates, the scan-pebbles are back where Preparatory could have placed
them. Thus, at that time, one can use Scan behavior to traverse an Eulerian
cycle.
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Appendix: The Simple Algorithm — Lower bounds
and a comparison with depth first techniques

Let us show that, in a certain sense, the upper bound on edge traversals, i.e.
O(|V | · |E|), is tight for the Simple Algorithm. And yet, there are some cases in
which the Simple Algorithm performs significantly better than any depth-first
search algorithm.

We present two examples of graphs, one sparse and one dense, for which the
Simple Algorithm reaches its upper bound for edge traversals. As our sparse
example, we consider a simple chain, as shown in Figure 2. The start exit of
every vertex is labeled 1.

1 2 3
1 11

n-1 n
1

1 2 2 2

Figure 2: A simple chain

Let us denote by fs(n) the number of edge traversals until every edge is
traversed, when the initial vertex is vertex No. 1. The last edge to be discovered
is the edge from vertex n to vertex n − 1. Clearly, fs(2) = 2 and fs(n + 1) =
fs(n) + 2n− 1. Thus,

fs(n) = n2 − 2n + 2.

It follows that in this case, the bound of O(|V | · |E|) is tight.
As our dense graph example, consider the following directed graph Gp(V, E),

where p is an odd prime.

V = {0, 1, . . . , 2p− 1},

The set of directed edges consists of two types:

• body
For every two vertices, i, j < p, let δ(i, j)

4
= j−i mod(p); i.e. 0 ≤ δ(i, j) <

p. If δ(i, j) < p
2 then there is an edge i −→ j, and the exit at i is labeled

δ(i, j).

• tail

– There is an edge 0 −→ p labeled p+1
2 .

– For every p ≤ i < 2p− 1 there is an edge i −→ i + 1, labeled 2.

– For every p < i ≤ 2p− 1 there is an edge i −→ i− 1, labeled 1.

– There is an edge p −→ 0 labeled 1.
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Figure 3: G5

The case of G5 is shown in Figure 3.
Note that according to the Simple Algorithm, starting in vertex 0, R scans

all p(p−1)
2 edges of the body; i.e. the edges between vertices whose name is less

than p, before it takes the edge to p. In fact, every time R returns to vertex 0,
via the edge from p, it repeats the scan of all edges of the body. This will occur
p times. Thus the tour, until the last edge (from 2p− 1 to 2p− 2) is discovered,
is of length

p · p(p− 1)
2

+ p2 − 2p + 2.

Again, this is of the order |V | · |E|.
We now present two examples in which the Simple Algorithm is superior to

any DFS algorithm.
The first example is a directed cycle, with a self-loop in every vertex, where

exit No. 2 leads to its self-loop. R visits all vertices in the first phase and thus,
performs an Eulerian tour on the second phase. The edge traversal complexity
is O(|V |). However, if we execute any DFS based algorithm on the same graph,
R has to make Ω(|V |2) edge traversals.

The second example is the case of a complete directed graph of n vertices;
namely for every two vertices a and b there is an edge a −→ b. In the first
phase all vertices are visited, since the root has an edge to every other vertex.
Therefore, all edges not traversed in the first phase are traversed in the second,
and the third phase is the last phase. Thus, the total number of edge traversals
is O(|V |2). However, if one applies a DFS based algorithm, it takes Ω(|V |3)
steps. (The DFS tree is a directed path of length |V |−1, and each time a back-
edge is traversed, the tree must be traversed again, at least up to the parent of
the start vertex of the back-edge.).


