Journal of Graph Algorithms and Applications

http://www.cs.brown.edu/publications/jgaa/
vol. 6, no. 1, pp. 149-153 (2002)

Realization of Posets

Patrice Ossona de Mendez
CNRS UMR 8557
E.H.E.S.S.
54 Bd Raspail, 75006 Paris, France
http://www.ehess.fr/centres/cams/person/pom/index.html
pom@ehess.fr

Abstract

. We prove a very general representation theorem for posets and, as a corollary, deduce that any abstract simplicial complex has a geometric realization in the Euclidean space of dimension $\operatorname{dim} P(\Delta)-1$, where $\operatorname{dim} P(\Delta)$ is the Dushnik-Miller dimension of the face order of Δ.

1 Introduction

Schnyder proved in [3] that a graph is planar if and only if its incidence poset (that is: the poset where $x<y$ iff x is a vertex, y is an edge and y is incident to x) has dimension at most 3 . That an incidence poset has dimension at most 3 implies that the corresponding graph is planar has been extended to abstract simplicial complexes in [2]: if the face order of an abstract simplicial complex Δ is bounded by $d+1$, then Δ has a geometric realization in \mathbb{R}^{d}. We prove here a more general result on poset representation which implies this last result straightforwardly.

We shall first recall some basic definitions from poset theory: A partially ordered set (or poset) \mathbf{P} is a pair (X, P) where X is a set and P a reflexive, antisymmetric, and transitive binary relation on X. A poset is $\mathbf{P}=(X, P)$ is finite if its ground set X is finite. We shall write $x \leq y$ in P or $x \leq_{P} y$ if $(x, y) \in P$. Two elements $x, y \in X$ such that $x \leq y$ in P or $y \leq x$ in P are said to be comparable;otherwise, they are said to be incomparable.

If P and Q are partial orders on the same set X, Q is said to be an extension of P if $x \leq y$ in P implies $x \leq y$ in Q, for all $x, y \in X$. If Q is a linear order (that is: a partial order in which every pair of elements are comparable) then it is a linear extension of P. The dimension $\operatorname{dim} \mathbf{P}$ of $\mathbf{P}=(X, P)$ is the least positive integer t for which there exists a family $\mathcal{R}=\left(<_{1},<_{2}, \ldots,<_{t}\right)$ of linear extensions of P so that $P=\bigcap \mathcal{R}=\bigcap_{i=1}^{t}<_{i}$. This concept has been introduced by Dushnik and Miller in [1]. A family $\mathcal{R}=\left(<_{1},<_{2}, \ldots,<_{t}\right)$ of linear orders on X is called a realizer of P on X if $P=\bigcap \mathcal{R}$.

For an extended study of partially ordered sets, we refer the reader to [4].
We shall further introduce the following notation: the down-set (or filter) of a poset $\mathbf{P}=(X, P)$ induced by a set $A \subseteq X$ is the set

$$
\operatorname{Inf}(A)=\bigcap_{a \in A} \operatorname{Inf}(\{a\})=\{x \in X, \quad \forall a \in A, x \leq a \text { in } P\}
$$

2 The Poset Representation Theorem

Definition 2.1 Let $\mathbf{P}=(X, P)$ be a finite poset, n an integer and $f: X \mapsto \mathbb{R}^{n}$ a mapping from X to the n-dimensional space \mathbb{R}^{n}.

Then f is said to have the separation property for \mathbf{P} if, for any $A, B \subseteq X$, there exists a hyperplane of \mathbb{R}^{n} which separates the points of $f(\operatorname{Inf}(A) \backslash \operatorname{Inf}(B))$ and the ones of $f(\operatorname{Inf}(B) \backslash \operatorname{Inf}(A))$, where $\operatorname{Inf}(Z)=\left\{x \in X, \forall z \in Z, x \leq_{P} z\right\}$ for any $Z \subseteq X$.

Theorem 2.1 Let $\mathbf{P}=(X, P)$ be a finite poset and let $d=\operatorname{dim} \mathbf{P}$ be its dimension. Then, there exists a function $f: X \mapsto \mathbb{R}^{d-1}$, which satisfies the separation property for \mathbf{P}.

Proof: Let $\mathcal{R}=\left\{<_{1}, \ldots,<_{d}\right\}$ be a realizer of \mathbf{P} and denote $\min \left(X,<_{i}\right)$ the minimum element of set X with respect to linear order $<_{i}$. Let F_{1}, \ldots, F_{d} be
functions from X to $] 1 ;+\infty\left[\right.$, each F_{i} being fast increasing with respect to $<_{i}$, which means that

$$
\forall x<_{i} y, \quad F_{i}(x)<d . F_{i}(y) .
$$

We define the function $F: X \mapsto \mathbb{R}^{d}$ by $F(x)=\left(F_{1}(x), \ldots, F_{d}(x)\right)$.
For any $A, B \subseteq X$ such that $\operatorname{Inf}(B) \nsubseteq \operatorname{Inf}(A)$, define the linear form $L_{A, B}$: $\mathbb{R}^{d-1} \mapsto \mathbb{R}$, as:

$$
\forall \pi=\left(\pi_{1}, \ldots, \pi_{d}\right) \in \mathbb{R}^{d}, \quad L_{A, B}(\pi)=\sum_{\substack{1 \leq i \leq d \\ \min \left(A,<_{i}\right)<i \min \left(B,<_{i}\right)}} \frac{\pi_{i}}{\min _{a \in A} F_{i}(a)} .
$$

On one hand, for any $z \in \operatorname{Inf}(B) \backslash \operatorname{Inf}(A)$, there exists $a \in A$ and $1 \leq i_{0} \leq d$, with $z>i_{0} a$. Then, we get $F_{i_{0}}(z)>d . F_{i_{0}}(a)$. As $\min \left(B,<_{i_{0}}\right) \geq i_{0} z>_{i_{0}} \min \left(A,<_{i_{0}}\right)$, we obtain: $L_{A, B}(F(z))>d$.

On the other hand, for any $z \in \operatorname{Inf}(A)$, we have $F_{i}(z) \leq F_{i}(a)$ for every $i \in[d]$ and every $a \in A$. Thus, $L_{A, B}(F(z)) \leq d$.

Altogether, for any $A, B \subseteq X$ such that none is included in the other, the hyperplane $H_{A, B}$ with equation $L_{A, B}(\pi)-L_{B, A}(\pi)=0$ separates the points from $F(\operatorname{Inf}(B) \backslash \operatorname{Inf}(A))$ (for which $L_{A, B}(F(z))>d \geq L_{B, A}(F(z))$) and those from $F\left(\operatorname{Inf}(A) \backslash \operatorname{Inf}(B)\right.$) (for which $L_{A, B}(F(z)) \leq d<L_{B, A}(F(z))$). Notice that the origin O belongs to all the so-constructed hyperplanes.

Now, consider a hyperplane H_{0} with equation $\sum_{1<i \leq d} \pi_{i}=1$, which separates the origin O and the set of the images of X by \bar{F}. To each element z of X, we associate the point $f(z)$ of H_{0} which is the intersection of H_{0} with the line $(O, F(z))$.

Now, for any $A, B \subseteq X$ (such that none is included in the other), as $H_{A, B}$ includes O, the hyperplane $H_{A, B} \cap H_{0}$ of H_{0} separates the points from $F(\operatorname{Inf}(B) \backslash$ $\operatorname{Inf}(A))$ and those from $F\left(\operatorname{Inf}(A) \backslash \operatorname{Inf}(B)\right.$. As $H_{0} \simeq \mathbb{R}^{d-1}$ and as the separation property would be obviously true if $A \subseteq B$ or conversely, the theorem follows.

The preceding theorem is sharp, as proved here using the standard example \mathbf{S}_{n} of poset of dimension n (introduced in [1]):

Theorem 2.2 For any $n \geq 3$, there exists no function $f:[n] \mapsto \mathbb{R}^{n-2}$ which satisfies the separation property for the standard example \mathbf{S}_{n} of poset of dimension n, which is the height two poset on $\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right\}$, with minima $\left\{a_{1}, \ldots, a_{n}\right\}$, maxima $\left\{b_{1}, \ldots, b_{n}\right\}$ and such that $\forall i, j, \quad\left(a_{i}<b_{j}\right) \Longleftrightarrow(i \neq j)$.
Proof: Assume there exists a function $f:\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right\} \mapsto \mathbb{R}^{n-2}$ having the separation property for \mathbf{S}_{n}.

According to Radon's lemma, for any family of n point in \mathbb{R}^{n-2}, there exists a bipartition V, W of them, such that the convex hulls of V and W intersects and thus such that V and W cannot be separated by an hyperplane of \mathbb{R}^{n-2}. Let $A=\left\{b_{i}, f\left(a_{i}\right) \notin V\right\}$ and $B=\left\{b_{i}, f\left(a_{i}\right) \notin W\right\}$. Then, $V \subseteq f(\operatorname{Inf}(A))$ and $W \subseteq f(\operatorname{Inf}(B))$. Hence, the separation property fails for A, B.

From Theorem 2.1, one derives a sufficient condition for a graph to be planar, which is that its incidence poset shall be of dimension at most 3 and this condition is actually also a necessary condition:

Theorem 2.3 (Schnyder [3]) The incidence poset $\operatorname{Incid}(G)$ of a graph G has dimension at most 3 if and only if G is planar, that is: if and only if there exists a mapping f from $V(G) \cup E(G)$ to \mathbb{R}^{2} having the separation property for $\operatorname{Incid}(G)$.

3 Applications

Corollary 3.1 Let U be a finite set, and \mathcal{F} a family of subsets of U such that:

$$
\begin{equation*}
\forall x, y \in U, \exists X \in \mathcal{F}, \quad x \in X \text { and } y \notin X \tag{1}
\end{equation*}
$$

Let d be the Dushnik-Miller dimension of the inclusion order $\subset_{\mathcal{F}}$ on \mathcal{F}.
Then, there exists a function $f: U \mapsto \mathbb{R}^{d-1}$ such that (denoting $f(A)$ the set $\{f(z), z \in A\}$, for $A \subseteq U)$:

$$
\begin{align*}
\forall X \in \mathcal{F}, & \operatorname{Conv}(f(X)) \cap f(U)=f(X), \tag{2}\\
\forall X \neq Y \in \mathcal{F}, & \operatorname{Conv}(f(X \backslash Y)) \cap \operatorname{Conv}(f(Y \backslash X))=\emptyset \tag{3}
\end{align*}
$$

Proof: Equation (3) is a direct consequence of Theorem 2.1. For (2), consider successively all the elements $z \notin X$: According to (1), the intersection of all the sets in \mathcal{F} including z does not intersect X. Hence, setting $A=\{X\}$ and $B=\{Y \in \mathcal{F}, z \in Y\}$, it follows from Theorem 2.1 that z does not belong to $\operatorname{Conv}(f(X))$.

An abstract simplicial complex Δ is a family of finite sets such that any subset of a set in Δ belongs to $\Delta: \forall X \in \Delta, \forall Y \subset X, \quad Y \in \Delta$. The face order of Δ is the partial ordering of the elements of Δ by \subseteq. A geometric realization of Δ is an injective mapping f of the ground set $|\Delta|=\bigcup_{X \in \Delta} X$ to some Euclidean space \mathbb{R}^{d}, such that, for any two elements (or faces) X, Y of Δ, the convex hulls of the images of X and Y have the convex hull of the image of $X \cap Y$ as their intersection: $\operatorname{Conv}(f(X)) \cap \operatorname{Conv}(f(Y))=\operatorname{Conv}(f(X \cap Y))$. It is a folklore lemma that a mapping from $|\Delta|$ to \mathbb{R}^{d} is a geometric realization of Δ if and only if disjoints faces of Δ are mapped to point sets with disjoint convex hulls.

It is well known that an abstract simplicial complex has a geometric realization in \mathbb{R}^{d} when $d>2\left(\max _{X \in \Delta}|X|-1\right)$ and that, obviously, it has no geometric realization in \mathbb{R}^{d} if $d<\max _{X \in \Delta}|X|-1$.

Theorem 3.2 (Ossona de Mendez [2]) Let Δ be an abstract simplicial complex, and let d be the dimension of the face order of Δ. Then, Δ has a geometric realization in \mathbb{R}^{d-1}.
Proof: Consider the mapping from the ground set $|\Delta|$ of Δ to \mathbb{R}^{d-1}, whose existence is ensured by Corollary 3.1. Then, for any disjoint faces F, F^{\prime} of Δ, we get $\operatorname{Conv}(f(F)) \cap \operatorname{Conv}\left(f\left(F^{\prime}\right)\right)=\emptyset$, that is: f induces a geometric realization of Δ in \mathbb{R}^{d-1}.

References

[1] B. Dushnik and E.W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610.
[2] P. Ossona de Mendez, Geometric realization of simplicial complexes, Graph Drawing (J. Kratochvil, ed.), Lecture Notes in Computer Science, vol. 1731, Springer, 1999, pp. 323-332.
[3] W. Schnyder, Planar graphs and poset dimension, Order 5 (1989), 323-343.
[4] W.T. Trotter, Combinatorics and partially ordered sets: Dimension theory, John Hopkins series in the mathematical sciences, Johns Hopkins University Press, London, 1992.

