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Abstract.

We prove a very general representation theorem for posets and, as
a corollary, deduce that any abstract simplicial complex has a geomet-
ric realization in the Euclidean space of dimension dimP (∆) − 1, where
dim P (∆) is the Dushnik-Miller dimension of the face order of ∆.
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1 Introduction

Schnyder proved in [3] that a graph is planar if and only if its incidence poset
(that is: the poset where x < y iff x is a vertex, y is an edge and y is incident
to x) has dimension at most 3. That an incidence poset has dimension at most
3 implies that the corresponding graph is planar has been extended to abstract
simplicial complexes in [2]: if the face order of an abstract simplicial complex
∆ is bounded by d + 1, then ∆ has a geometric realization in R

d. We prove
here a more general result on poset representation which implies this last result
straightforwardly.

We shall first recall some basic definitions from poset theory: A partially
ordered set (or poset) P is a pair (X, P ) where X is a set and P a reflexive,
antisymmetric, and transitive binary relation on X . A poset is P = (X, P ) is
finite if its ground set X is finite. We shall write x ≤ y in P or x ≤P y if
(x, y) ∈ P . Two elements x, y ∈ X such that x ≤ y in P or y ≤ x in P are said
to be comparable;otherwise, they are said to be incomparable.

If P and Q are partial orders on the same set X , Q is said to be an extension
of P if x ≤ y in P implies x ≤ y in Q, for all x, y ∈ X . If Q is a linear order
(that is: a partial order in which every pair of elements are comparable) then
it is a linear extension of P . The dimension dimP of P = (X, P ) is the least
positive integer t for which there exists a family R = (<1, <2, . . . , <t) of linear
extensions of P so that P =

⋂R =
⋂t

i=1 <i. This concept has been introduced
by Dushnik and Miller in [1]. A family R = (<1, <2, . . . , <t) of linear orders on
X is called a realizer of P on X if P =

⋂R.
For an extended study of partially ordered sets, we refer the reader to [4].
We shall further introduce the following notation: the down-set (or filter) of

a poset P = (X, P ) induced by a set A ⊆ X is the set

Inf(A) =
⋂

a∈A

Inf({a}) = {x ∈ X, ∀a ∈ A, x ≤ a in P}

2 The Poset Representation Theorem

Definition 2.1 Let P = (X, P ) be a finite poset, n an integer and f : X 7→ R
n

a mapping from X to the n-dimensional space R
n.

Then f is said to have the separation property for P if, for any A, B ⊆ X,
there exists a hyperplane of R

n which separates the points of f(Inf(A) \ Inf(B))
and the ones of f(Inf(B) \ Inf(A)), where Inf(Z) = {x ∈ X, ∀z ∈ Z, x ≤P z}
for any Z ⊆ X.

Theorem 2.1 Let P = (X, P ) be a finite poset and let d = dimP be its dimen-
sion. Then, there exists a function f : X 7→ R

d−1, which satisfies the separation
property for P.

Proof: Let R = {<1, . . . , <d} be a realizer of P and denote min(X, <i) the
minimum element of set X with respect to linear order <i. Let F1, . . . , Fd be
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functions from X to ]1; +∞[, each Fi being fast increasing with respect to <i,
which means that

∀x <i y, Fi(x) < d.Fi(y).

We define the function F : X 7→ R
d by F (x) = (F1(x), . . . , Fd(x)).

For any A, B ⊆ X such that Inf(B) 6⊆ Inf(A), define the linear form LA,B :
R

d−1 7→ R, as:

∀π = (π1, . . . , πd) ∈ R
d, LA,B(π) =

∑

1≤i≤d
min(A,<i)<imin(B,<i)

πi

mina∈A Fi(a)
.

On one hand, for any z ∈ Inf(B)\Inf(A), there exists a ∈ A and 1 ≤ i0 ≤ d, with
z >i0 a. Then, we get Fi0(z) > d.Fi0 (a). As min(B, <i0) ≥i0 z >i0 min(A, <i0),
we obtain: LA,B(F (z)) > d.

On the other hand, for any z ∈ Inf(A), we have Fi(z) ≤ Fi(a) for every
i ∈ [d] and every a ∈ A. Thus, LA,B(F (z)) ≤ d.

Altogether, for any A, B ⊆ X such that none is included in the other, the
hyperplane HA,B with equation LA,B(π) − LB,A(π) = 0 separates the points
from F (Inf(B) \ Inf(A)) (for which LA,B(F (z)) > d ≥ LB,A(F (z))) and those
from F (Inf(A)\Inf(B)) (for which LA,B(F (z)) ≤ d < LB,A(F (z))). Notice that
the origin O belongs to all the so-constructed hyperplanes.

Now, consider a hyperplane H0 with equation
∑

1≤i≤d πi = 1, which sepa-
rates the origin O and the set of the images of X by F . To each element z of
X , we associate the point f(z) of H0 which is the intersection of H0 with the
line (O, F (z)).

Now, for any A, B ⊆ X (such that none is included in the other), as HA,B

includes O, the hyperplane HA,B∩H0 of H0 separates the points from F (Inf(B)\
Inf(A)) and those from F (Inf(A)\ Inf(B). As H0 ' R

d−1 and as the separation
property would be obviously true if A ⊆ B or conversely, the theorem follows.

2

The preceding theorem is sharp, as proved here using the standard example Sn

of poset of dimension n (introduced in [1]):

Theorem 2.2 For any n ≥ 3, there exists no function f : [n] 7→ R
n−2 which

satisfies the separation property for the standard example Sn of poset of dimen-
sion n, which is the height two poset on {a1, . . . , an, b1, . . . , bn}, with minima
{a1, . . . , an}, maxima {b1, . . . , bn} and such that ∀i, j, (ai < bj) ⇐⇒ (i 6= j).

Proof: Assume there exists a function f : {a1, . . . , an, b1, . . . , bn} 7→ R
n−2

having the separation property for Sn.
According to Radon’s lemma, for any family of n point in R

n−2, there exists
a bipartition V, W of them, such that the convex hulls of V and W intersects
and thus such that V and W cannot be separated by an hyperplane of R

n−2.
Let A = {bi, f(ai) 6∈ V } and B = {bi, f(ai) 6∈ W}. Then, V ⊆ f(Inf(A)) and
W ⊆ f(Inf(B)). Hence, the separation property fails for A, B. 2
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From Theorem 2.1, one derives a sufficient condition for a graph to be pla-
nar, which is that its incidence poset shall be of dimension at most 3 and this
condition is actually also a necessary condition:

Theorem 2.3 (Schnyder [3]) The incidence poset Incid(G) of a graph G has
dimension at most 3 if and only if G is planar, that is: if and only if there
exists a mapping f from V (G) ∪E(G) to R

2 having the separation property for
Incid(G). 2

3 Applications

Corollary 3.1 Let U be a finite set, and F a family of subsets of U such that:

∀x, y ∈ U, ∃X ∈ F , x ∈ X and y 6∈ X. (1)

Let d be the Dushnik-Miller dimension of the inclusion order ⊂F on F .
Then, there exists a function f : U 7→ R

d−1 such that (denoting f(A) the set
{f(z), z ∈ A}, for A ⊆ U):

∀X ∈ F , Conv(f(X)) ∩ f(U) = f(X), (2)
∀X 6= Y ∈ F , Conv(f(X \ Y )) ∩ Conv(f(Y \ X)) = ∅. (3)

Proof: Equation (3) is a direct consequence of Theorem 2.1. For (2), consider
successively all the elements z 6∈ X : According to (1), the intersection of all
the sets in F including z does not intersect X . Hence, setting A = {X} and
B = {Y ∈ F , z ∈ Y }, it follows from Theorem 2.1 that z does not belong to
Conv(f(X)). 2

An abstract simplicial complex ∆ is a family of finite sets such that any
subset of a set in ∆ belongs to ∆: ∀X ∈ ∆, ∀Y ⊂ X, Y ∈ ∆. The face order
of ∆ is the partial ordering of the elements of ∆ by ⊆. A geometric realization of
∆ is an injective mapping f of the ground set |∆| =

⋃
X∈∆ X to some Euclidean

space R
d, such that, for any two elements (or faces) X, Y of ∆, the convex hulls

of the images of X and Y have the convex hull of the image of X ∩ Y as their
intersection: Conv(f(X)) ∩ Conv(f(Y )) = Conv(f(X ∩ Y )). It is a folklore
lemma that a mapping from |∆| to R

d is a geometric realization of ∆ if and
only if disjoints faces of ∆ are mapped to point sets with disjoint convex hulls.

It is well known that an abstract simplicial complex has a geometric realiza-
tion in R

d when d > 2(maxX∈∆ |X |−1) and that, obviously, it has no geometric
realization in R

d if d < maxX∈∆ |X | − 1.

Theorem 3.2 (Ossona de Mendez [2]) Let ∆ be an abstract simplicial com-
plex, and let d be the dimension of the face order of ∆. Then, ∆ has a geometric
realization in R

d−1.

Proof: Consider the mapping from the ground set |∆| of ∆ to R
d−1, whose

existence is ensured by Corollary 3.1. Then, for any disjoint faces F, F ′ of ∆,
we get Conv(f(F ))∩Conv(f(F ′)) = ∅, that is: f induces a geometric realization
of ∆ in R

d−1. 2
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