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Abstract

A drawing of a family of cuts of a graph is an augmented drawing of
the graph such that every cut in the family is represented by a simple
closed curve and vice versa.

We show that the families of cuts that admit a drawing in which every
cut is represented by an axis-parallel rectangle are exactly those that have
a cactus model that can be rooted such that edges of the graph that cross
a cycle of the cactus point to the root. This includes the family of all
minimum cuts of a graph. The proof also yields an efficient algorithm to
construct a drawing with axis-parallel rectangles if it exists.

Article Type Communicated by Submitted Revised

regular paper G. Liotta January 2004 July 2005

Research partially supported by the DFG under grant BR 2158/1-1,2 and WA 654/13-

1,2 and by the Human Potential Program of the EU under contract no HPRN-CT-

1999-00104 (AMORE Project).



Brandes et al., Drawing Cuts with Rectangles, JGAA, 9(1) 99–115 (2005) 100

1 Introduction

A cut of a graph is a partition of its vertex set into two non-empty subsets. In
a drawing of a graph, it is therefore natural to represent a cut by a closed curve
partitioning the plane into two regions containing one subset each. See Fig. 1(a)
for an example.
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Figure 1: a) Example of a drawing of the cut separating rectangles from circles.
b) Example of a simultaneous drawing of six cuts separating vertices according
to shape, border, and filling style.

When a set of cuts is drawn in this way, the curves can intersect so that
their union might contain closed curves that represent other cuts not contained
in that set. We are interested in families of cuts that can be drawn without
creating confusing non-members. In particular, we consider the problem of
drawing families of cuts such that every member is represented by an axis-
parallel rectangle and vice versa. For example, Fig. 1(b) shows a simultaneous
drawing with axis-parallel rectangles of six cuts. The rectangles representing the
cuts that separate vertices of different shape or vertices with different border,
respectively, intersect. Drawings of this kind have been studied so far for the
set of all minimum cuts of a weighted connected planar graph [1].

Our main result is a characterization of all families of cuts that can be
represented by axis-parallel rectangles, namely those that can be modeled by a
cactus containing a certain, rootable, node. These include the important family
of all minimum cuts of a graph [4]. We give an algorithm to test this property.
Provided a set of cuts of a graph with n vertices and m edges is represented by
a cactus model, the test works in O(nm) time. We also show how to construct
a drawing with axis-parallel rectangles if one exists. The construction works in
two steps. First, we solve the problem for families of minimal cuts of a planar
connected graph. Then, we use similar planarization techniques as in [3] to
extend the result to general graphs.

The paper is organized as follows. In Sect. 2, we define drawings of families
of cuts. In Sect. 3, we introduce the cactus model and show that its existence
is necessary for the existence of a drawing with axis-parallel rectangles. Us-
ing hierarchically clustered graphs (briefly introduced in Sect. 4), we give an
additional necessary condition for families of cuts that admit a drawing with
axis-parallel rectangles in Sect. 5 and show how to test it. To show that the
conditions are also sufficient, we construct a drawing in Sect. 6.
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2 Drawing Families of Cuts

Throughout this paper, let G = (V,E) denote a simple, connected, undirected
graph with n vertices and m edges. A drawing D of G maps vertices on distinct
points in the plane and edges on simple curves connecting the drawings of their
incident vertices. The interior of an edge must not contain the drawing of
a vertex. A drawing is planar, if edges do not intersect but in common end
points.

Let S, T ⊆ V . With G(S) we denote the subgraph of G that is induced by S
and with E(S, T ) we denote the set of edges that are incident to a vertex in S
and a vertex in T . A cut of G is a partition C = {S, S} of the vertex set V into
two non-empty subsets S and S := V \S. We say that the cut {S, S} is induced
by S. The edges in E(C) = E(S, S) are the cut-edges of C. A minimum cut is
a cut with the minimum number of cut-edges among all cuts of G. A minimal
cut is a cut {S, S} that is inclusion-minimal, i.e. there is no cut {T, T} with
E(T, T ) ( E(S, S). Note that both G(S) and G(S) are connected if and only if
{S, S} is a minimal cut of the connected graph G.

A drawing of a cut C = {S, S} of G in a drawing D(G) is a simple closed
curve γ, such that

• γ separates S and S, i.e. the drawings of the edges and vertices in G(S)
and G(S), respectively, are in different connected regions of R2 \ γ, and

• |D(e) ∩ γ| = 1 for e ∈ E(C), i.e. the drawing of a cut-edge crosses the
drawing of the cut exactly once.

Let C be a set of cuts of a graph G. A mapping D is a (planar) drawing of a
graph G and a family of cuts C of G, if

1. D(G) is a (planar) drawing of G and

2. D(C) is a drawing of C in D(G) for every cut C ∈ C, and

3. every simple closed curve γ ⊆
⋃

C∈C D(C) is a drawing of some cut in C.

Note that the third condition is important if there are some cuts in C whose
drawings intersect. It eliminates any potential ambiguity regarding which cuts
are in the family.

A drawing D of a graph and a family C of cuts is a drawing with axis-parallel
rectangles, if every cut is drawn as an axis-parallel rectangle – more precisely,
if every simple closed curve in

⋃

C∈C D(C) is an axis-parallel rectangle. See
Fig. 2(a) for a planar drawing with axis-parallel rectangles of the set of all
minimum and minimum+1 cuts of a graph.

3 Necessity of a Cactus Model

A cactus is a connected graph in which every edge belongs to at most one cycle.
A cactus model for a set C of cuts of a graph G = (V,E) is a pair (G, ϕ) that
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Figure 2: A drawing of the family of all minimum and minimum+1 cuts of
a graph with axis-parallel rectangles. In the cactus model of the cuts, ϕ is
indicated by node labels, and cycle-replacement nodes in the inclusion tree con-
structed from the cactus are shown in grey. The auxiliary graph is shown in a
c-planar drawing of the hierarchical clustering represented by the inclusion tree.



Brandes et al., Drawing Cuts with Rectangles, JGAA, 9(1) 99–115 (2005) 103

consists of a cactus G = (V, E) and a mapping ϕ : V → V such that C is modeled
by the minimal cuts of G, i.e.,

C = {{ϕ−1(S), ϕ−1(S)}; {S, S} is a minimal cut of G}.

To avoid confusion, the vertices of the cactus G are called nodes. A node ν ∈ V
is called empty if ϕ−1(ν) = ∅.

The cactus model was introduced by Dinitz et al. [4] to model the set of
all minimum cuts of a connected graph. A cactus model for the minimum and
minimum+1 cuts of the graph in Fig. 2(a) is given in Fig. 2(b).

While not every family of cuts has a cactus model, we show that only those
that do can have a drawing with axis-parallel rectangles. Two cuts {S, S} and
{T, T} cross, if and only if the four corners S ∩ T , S ∩ T , T ∩ S, and S ∩ T
are non-empty. The four cuts induced by the four corners of two crossing cuts,
respectively, are called corner cuts. The cut induced by (S \T )∪(T \S) is called
the diagonal cut.

Theorem 1 ([6]) A set C of cuts of the graph G can be modeled by a cactus if
and only if, for any two crossing cuts {S, S} and {T, T} in C,

• the four corner cuts are in C, and

• the diagonal cut is not in C.

If a cactus model exists, there is always one with O(n) nodes.

A constructive proof of Theorem 1 is given by Dinitz and Nutov in [5].
An algorithm for constructing a cactus model from another representation of
a family of cuts can easily be deduced from their construction. However, the
running time of such a construction is not discussed.

The properties of crossing cuts in the characterization in Theorem 1 are
implied by overlapping axis-parallel rectangles.

Lemma 1 If a set of cuts has a drawing with axis-parallel rectangles, it has a
cactus model.

Proof: Let D be a drawing of a set C of cuts with axis-parallel rectangles and
suppose that C contains crossing cuts {S, S} and {T, T}. There are essentially
the seven cases indicated in Fig. 3 for the drawings of two crossing cuts by axis-
parallel rectangles. Since the cases in Fig. 3(a) contain simple closed curves that
are not axis-parallel rectangles, only the case in Fig. 3(b) needs to be considered.

Let DS ,DT ⊆ R2 be the rectangular regions bounded by D({S, S}) and
D({T, T}), respectively. Then regions DS∩DT , DS \DT , DT \DS , and DS∪DT

are bounded by axis-parallel rectangles in D({S, S}) ∪ D({T, T}). These are
drawings of the four corner cuts of {S, S} and {T, T}. Hence, they are in C.

On the other hand, suppose the diagonal cut C induced by (S \T )∪ (T \S)
is in C and let DC be the rectangular region bounded by its drawing D(C).
Without loss of generality, suppose that D(G(S)) ⊂ DS and D(G(T )) ⊂ DT .
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(a) union contains non-axis-parallel rectangles

S \ T S ∩ T T \ S

(b) axis-parallel only

Figure 3: Drawings of two crossing cuts {S, S} and {T, T} with axis-parallel
rectangles.

Either DC contains D(G(S \ T )) and D(G(T \ S)), but not D(G(S ∩ T )), or it
contains D(G((S \ T ) ∪ (T \ S))), but not D(G((S \ T ) ∪ (T \ S))). In the first
case, the drawing contains a simple closed curve bounding the region DC ∩DS ∩
DT (thus inducing an empty cut), and in the second case the union of the three
rectangles contains a simple closed curve that is not an axis-parallel rectangle.

�

4 Cactus-Induced Hierarchical Clusterings

Since a cactus model is necessary for a drawing to exist, we can make use of
a transformation originally developed for drawing the particular family of all
minimum cuts of a planar connected graph [1]. Given a cactus model (G, ϕ)
of a family C of cuts of G, we use the tree T = T (G, ϕ) that is constructed as
follows.

1. Replace each cycle c of G by a star, i.e. delete every edge of c, add a new
empty node νc – called cycle-replacement node of c – to G, and for every
node ν of c, add an edge {νc, ν} to G.

2. For each v ∈ V , add v to the vertex set of G and add an edge {v, ϕ(v)}
to G.

The construction is illustrated in Fig. 2(c). We will consider T as a rooted tree,
i.e., we will fix an inner vertex r of T as the root. This yields a triple (G,T, r)
of

• a graph G = (V,E),

• a tree T , and

• an inner vertex r of T

• where the set of leaves of T is exactly V .

This is the hierarchically clustered graph model introduced by Feng et al. [7].
G is called the underlying graph and T the inclusion tree of (G,T, r). Inner
vertices of T are called nodes. We denote the tree T rooted at r by (T, r). Each
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node ν of T represents the cluster Vr(ν) of leaves in the subtree of (T, r) rooted
at ν. Note that {{Vr(ν), Vr(ν)}; ν 6= r node of T (G, ϕ)} equals the subset C‖
of non-crossing cuts of C, i.e. the set of cuts in C that do not cross any other
cut in C. A common representation of a rooted tree (T, r) is the inclusion
representation: Each node or leaf of T is represented by a simple closed region
bounded by a simple closed curve. Leaves may also be represented as points.
The drawing of a node or leaf ν of T is contained in the interior of the region
representing a node µ of T if and only if µ is contained in the path from ν to r
in T . The drawings of two nodes µ and ν are disjoint if neither µ is contained
in the path from ν to r nor ν is contained in the path from µ to r in T . A
c-planar drawing [7] of a hierarchically clustered graph (G,T, r) consists of

• a planar drawing of the underlying graph G and

• an inclusion representation of the rooted tree (T, r) such that

• each edge crosses the boundary of the drawing of a node of T at most
once.

Note that the vertices of G are the leaves of T and thus have the same drawing.
Also note, that a c-planar drawing of (G, T (G, ϕ), r) contains a planar drawing
of the set of all non-crossing cuts C‖. A hierarchically clustered graph (G,T, r) is
c-planar if it has a c-planar drawing. It is completely connected, if each cluster
and the complement of each cluster induces a connected subgraph of G. A
hierarchically clustered graph with planar underlying graph does not have to
be c-planar. However, a completely connected hierarchically clustered graph is
c-planar if and only if the underlying graph is planar [2].

According to the construction in [1, 10], we associate an auxiliary graph
GD with a c-planar drawing D of a hierarchically clustered graph. Let V ′

be the set of points, in which drawings of edges and boundaries of drawings
of clusters intersect. Then the vertex set of GD is V ∪ V ′. The edge set of
GD contains two types of edges. For an edge e = {v, w} of G, let v1, . . . , vk

be the points in D(e) ∩ V ′ in the order they occur in the drawing of e from
v to w. Then GD contains the edges {v, v1}, {v1, v2}, . . . , {vk, w}. Let ν 6=
r be a node of T . Let v1, . . . , vk be the points in ∂D(ν) ∩ V ′ in the order
they occur in the boundary ∂D(ν) of the drawing of ν. Then GD contains the
edges {v1, v2}, . . . , {vk−1, vk}, {vk, v1}. The cycle v1, . . . , vk of GD is called the
boundary cycle of ν. (To avoid loops and parallel edges, additional vertices of
degree two may be inserted into boundary cycles). See Fig. 2(d).

5 Towards a Characterization

Another necessary condition for families of cuts that have a drawing with axis-
parallel rectangles depends also on the edges in the graph. Let (G, ϕ) be the
cactus model of a set C of cuts of a graph G. For a cycle c : ν1, . . . , νk in G
we consider the tree T = T (G, ϕ) rooted at the cycle-replacement node νc. Let
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Figure 4: The dashed edge in G crosses the only cycle in the cactus model G
towards a root labeled r or R of the inclusion tree T = T (G, ϕ) but not to a
root labeled v. The nodes labeled R are exactly the rootable nodes.

Vi := Vνc
(νi), i = 1, . . . , k. An edge {v, w} of G crosses the cycle c if there are

1 ≤ i, j ≤ k, i 6= j such that

v ∈ Vi, w ∈ Vj , and i − j 6≡ ±1 mod k.

For example, in the cactus model G in Fig. 4 there is one cycle c : ν1 = 7, ν2 =
9, ν3 = 4, ν4 = 8, ν5 = 5, 6. The corresponding subsets of the set of vertices of
G are V1 = {7}, V2 = {9}, V3 = {4}, V4 = {8}, and V5 = {1, 2, 3, 5, 6}. The
dashed edge of G is incident to V5 and V3. Hence it crosses c. The only other
edge that crosses c is the dotted edge {3, 9}.

If (G, ϕ) is the cactus of all minimum cuts of G, then no edge of G crosses
a cycle of G (see, e.g., [1, Lemma 7]). In general, it depends on the edges that
cross a cycle of the cactus model, whether a set of cuts has a drawing with
axis-parallel rectangles. More precisely, if C has a drawing D with axis-parallel
rectangles and e crosses the cycle c then there exists an i ∈ {1, . . . , k} such that
e is incident to a vertex in Vi and the drawing of Vi is contained in the simply
connected region bounded by D(Vi, Vi).

To formalize this statement, we say that an edge e of G that crosses a cycle
c of the cactus model G crosses c towards a root r of the inclusion tree T (G, ϕ)
if e is incident to a vertex in V \ Vr(νc). See Fig. 4 for an example.

Lemma 2 A family of cuts that has a cactus model (G, ϕ) has a drawing with
axis-parallel rectangles only if the root r of T (G, ϕ) can be chosen such that

(R) each edge of G that crosses a cycle of G crosses it towards r.

Proof: Suppose that the set of cuts modeled by (G, ϕ) has a drawing D with
axis-parallel rectangles. Let r be a node of T = T (G, ϕ) such that for every
node ν 6= r of T the set Vr(ν) is contained in the simple region bounded by
D({Vr(ν), Vr(ν)}). Using the fact that Vr(µ) = Vµ(r) for two adjacent nodes r
and µ of T , it can be shown that such a node r exists: Let r be such that for the
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maximum number of nodes ν 6= r of T the drawing of Vr(ν) is contained in the
simple region bounded by D({Vr(ν), Vr(ν)}). It suffices to show that all adjacent
nodes µ of r have the above mentioned property. So suppose there is an adjacent
node µ of r such that the drawing of Vr(µ) is not contained in the simple region
bounded by D({Vr(µ), Vr(µ)}). Hence, on one hand, Vr(µ) = Vµ(r) is contained

in the simple region bounded by D({Vr(µ), Vr(µ)}). On the other hand, for
every node ν /∈ {µ, r} it holds that the drawing of Vr(ν) is contained in the
simple region bounded by D({Vr(ν), Vr(ν)}) if and only if the drawing of Vµ(ν)

is contained in the simple region bounded by D({Vµ(ν), Vµ(ν)}) – contradicting
the choice of r.

Let c be a cycle of G and let e be an edge of G that crosses c. Let ν1, . . . , νk

be the children of νc such that ν1, . . . , νk is a path in c. Suppose that e is
not incident to a vertex in V \ Vr(νc). Then e ∈ E(Vr(νi), Vr(νj)) for some

1 < i + 1 < j ≤ k. Let S =
⋃i+1

ℓ=1 Vr(νℓ) and T =
⋃k

ℓ=i+1 Vr(νℓ). Then {S, S}

and {T, T} are both modeled by (G, ϕ), more precisely by the two minimal cuts

{S′, S′} and {T ′, T ′} of G such that E(S′, S
′
) = {{ν0, ν1}, {νi+1, νi+2}} and

E(T ′, T
′
) = {{νi, νi+1}, {νk, ν0}}, where ν0 is the predecessor of νc in T .

Now, on one hand, e ∈ E(S \ T, T \ S). But, on the other hand, {S, S}
and {T, T} are two crossing cuts that are modeled by (G, ϕ) such that S and
T are contained in the simple closed region DS and DT bounded by D({S, S})
and D({T, T}), respectively. Analogously to the argumentation in Lemma 1, we
have again the situation as indicated in Fig. 3(b). By the definition of drawings
of cuts, the drawing of the edges and vertices of G(S ∪ T ) has to be contained
inside DS ∪DT and the drawing of the edges and vertices of D(G(S ∩ T )) may
not intersect DS ∩ DT . This implies that E(S \ T, T \ S) = ∅. �

In the following, a node of the inclusion tree T = T (G, ϕ) is called rootable, if it
fulfills Condition (R) of the previous lemma. We give an algorithm for finding
all rootable nodes of the inclusion tree T = T (G, ϕ). We assume that the size
of G is in O(n).

We use a node and edge array crossed on T to store the information about
edges of G that cross a cycle of the cactus. Let c be a cycle of G. crossed(νc)
is true if and only if there is an edge of G that crosses c. crossed({νc, ν}) is
true for an edge {νc, ν} of T if and only if crossed(νc) is true and each edge
that crosses c is incident to a vertex in Vνc

(ν). For all other edges and nodes
of T crossed is false. In the example tree T in Fig. 4, crossed(νc) is true
for the only cycle c of G and crossed({νc, R}) is true for the adjacent node of
νc labeled R. For all other edges and nodes of T , crossed is false. Clearly,
it can be tested in linear time, which cycles are crossed by an edge. Hence,
crossed can be computed in O(mn) time. The next remark is a reformulation
of Condition (R).

Remark 1 A node r of T is rootable if and only if for each node ν of T with
crossed(ν) = true there exists a node µ adjacent to ν with crossed{ν, µ} =
true such that µ is in the path from ν to r.
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Hence, we can obtain the possible roots for constructing a drawing with axis-
parallel rectangles of C – possibly including some cycle-replacement nodes – by
deleting for all marked nodes ν the subtrees of (T, ν) rooted at those adjacent
nodes µ of ν for which {ν, µ} is not marked. Proceeding first from the leaves to
an arbitrary root and then from this root to the leaves of T , this can be done
in time O(n).

By constructing a drawing, we show in the next section that the conditions
in Lemma 2 are also sufficient.

6 The Drawing

Let (G, ϕ) continue to be a cactus model of a set C of cuts of the graph G and
let T = T (G, ϕ) be the inclusion tree constructed in Sect. 4. We assume that
the root r of T is a rootable node. Without loss of generality, we may assume
that r is not a cycle-replacement node. We show how to construct a drawing
with axis-parallel rectangles for C. In a first step, we consider the case that C
is a set of minimal cuts of a connected planar graph. Using planarization, we
generalize the result to general sets of cuts of not necessarily planar graphs.

6.1 Planar Graphs

In this section, we assume that C is a set of minimal cuts of a planar connected
graph G. We show how the ideas for drawing the set of all minimum cuts of a
planar graph [1] yield a drawing with axis-parallel rectangles of C. We briefly
sketch the general construction and explain in more details the parts that differ
from the case of drawings for the set of minimum cuts. The construction starts
with a c-planar drawing D of the hierarchically clustered graph (G,T, r). Such
a c-planar drawing always exists: Since C is a set of minimal cuts of a connected
graph it follows that (G,T, r) is completely connected and hence c-planar.

Let c : ν1, . . . , νℓ be a cycle of G. Suppose that νc is a child of νℓ in the tree T
rooted at r. Let Vi = Vνc

(νi), i = 1, . . . , ℓ and let V0 = Vℓ. Let i ∈ {1, . . . , ℓ− 1}
and let e1, . . . , ek be the sequence of edges incident to any vertex in Vi in the
cyclic order around the boundary of Vi. Recall that by hypothesis E(Vi, Vj) is
empty for j 6= i− 1, i + 1, ℓ. We will now show that E(Vi, Vi−1) and E(Vi, Vi+1)
are non-empty subsequences of e1, . . . , ek, i.e. suppose e1 ∈ E(Vi, Vi−1) and
ek /∈ E(Vi, Vi−1), then there are indices 1 < k1 ≤ k2 < k3 ≤ k such that

e1, . . . , ek1
︸ ︷︷ ︸

E(Vi,Vi−1)

, ek1+1, . . . , ek2
︸ ︷︷ ︸

E(Vi,Vℓ)

, ek2+1, . . . , ek3
︸ ︷︷ ︸

E(Vi,Vi+1)

, ek3+1, . . . , ek
︸ ︷︷ ︸

E(Vi,Vℓ)

. (1)

Further, E(Vℓ, V1) and E(Vℓ, Vℓ−1) are non-empty subsequence of the edges
around V \ Vℓ. We prove the observation in two steps.

1. First, we show that the sets E(Vi−1, Vi), i = 1, . . . , ℓ are non-empty. Else
suppose without loss of generality that E(Vℓ, V1) = ∅. Let C = {Vℓ ∪
V1, V2 ∪ . . . ∪ Vℓ−1}. Then it follows that E(C) is the disjoint union of
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E(V1, V1) and E(Vℓ, Vℓ). Since G is connected it follows that ∅ 6= E(Vℓ, Vℓ).
Hence, on one hand, E(V1, V1) ( E(C). On the other hand, C is modeled
by G and hence it is contained in the set C of minimal cuts – a contradic-
tion.

2. Second, we show that E(Vi, Vi−1), E(Vi, Vi+1), i = 1, . . . , ℓ − 1 are subse-
quences of the cyclic sequence of edges around Vi. Recall that by the con-
nectedness of G and the minimality of the cuts in C all sets Vi, i = 1, . . . ℓ
are connected. Let W = Vi−1 or W = Vi+1, respectively. Now suppose
that in the cyclic order around a cluster Vi, i = 1, . . . , ℓ− 1 there is a sub-
sequence e1, e2, e3, e4 such that e1, e3 ∈ E(Vi,W ) and e2, e4 /∈ E(Vi,W ).
Let ej = {vj , wj}, j = 1, . . . , 4 with vj ∈ Vi. Let p be a path in Vi

from v1 to v3 and let q be a path in W from w3 to w1. Then the cycle
{w1, v1}p{v3, w3}q divides the plane into two connected regions such that
w2 and w4 are in different regions. By Step 1 and the connectivity of the
sets Vi, i = 1, . . . ℓ, there is a path from w2 to w4 in G that does not inter-
sect Vi or W . But this contradicts planarity. Analogously, it can be shown
that E(Vℓ, V1) and E(Vℓ, Vℓ−1) are subsequences of the cyclic sequence of
the edges around V \ Vℓ.

Besides, let e ∈ E(Vi, Vj) for some i, j ∈ {1, . . . , ℓ}, i 6= j. Then c-planarity
implies that the two vertices in the auxiliary graph GD that represent the inter-
section of e with the boundary of νi and νj (or the boundary of νc, if i = ℓ or
j = ℓ), respectively, are adjacent. Hence the situation in the auxiliary graph GD

is as indicated in Fig. 5(a). For i ∈ {1, . . . , ℓ−1}, let p±i be the path in GD that
is induced by the intersection of the edges in E(Vi, Vi±1) with the boundary of
νi. Similarly, let p+

0 (p−ℓ ) be the path in GD that is induced by the intersection
of the edges in E(Vℓ, V1) (E(Vℓ, Vℓ−1)) with the boundary of νc.

A planar drawing of C with axis-parallel rectangles can now be obtained as
follows. First, for each i, paths p+

i and p−i+1 are united to one path. The parts

of the boundary-cycle of νc that are not in p+
0 or p−ℓ are removed. The result

can be seen in Fig. 5(b). Finally, at each end of each thus united path p+
i /p−i+1,

i = 1, . . . , ℓ− 2, an additional vertex is inserted as indicated in Fig. 5(c). In the
following, we refer to these vertices as cycle-path end-vertices. Let G′ be the
graph that results from GD by doing this for every cycle of G. Applying a min-
cost flow approach for quasi-orthogonal drawings [11, 9, 8, 12] with appropriate
restrictions on the flow to G′ yields a drawing of C with axis-parallel rectangles.
There are two restrictions on the flow necessary:

1. the flow over a boundary edge from outside a boundary cycle into the
inside of a boundary cycle is zero;

2. the flow from a cycle-path end-vertex into the inside of a boundary cycle
is minimum, i.e. there is a rectangle.

As demonstrated in [1, Lemma 19], it can be shown that there is always a
feasible flow for the thus restricted flow network. Note that now the corners of
the drawings of the cuts of C are either at the cycle-path end-vertex or at bends.
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a)

V \ Vℓ

V1
Vℓ−1

p+
0

p−ℓ

b) c)

Figure 5: Constructing a drawing for a set of cuts from a c-planar drawing.

Finally, let us briefly mention the case where a combinatorial embedding E
for G is given. By [2], the c-planar drawing D of (G,T, r) can be chosen such
that the underlying drawing of G is according to E . Note, however, that the
outer face has to be chosen in a suitable way. Since the rest of the construction
does not effect the embedding, it follows that a drawing of a set of minimal cuts
of a planar graph with a fixed combinatorial embedding can be constructed such
that the embedding (but not necessarily the outer face) is respected.

6.2 General Graphs

In this section, we extend the results on planar drawings for families of mini-
mal cuts to not necessarily planar drawings. Similar to the method described
in [3] for hierarchically clustered graphs, the idea for the construction uses pla-
narization techniques. Recall that (G, ϕ) is a cactus model for a family of cuts
of G. We assume again that the root r of T = T (G, ϕ) is rootable and not a
cycle-replacement node.

1. Let GP = (V,EP ) be a planar connected graph on the same set of vertices
as G, such that G models a set of minimal cuts and each edge of GP that
crosses a cycle G crosses it towards r.

2. Construct the auxiliary graph G′
P for (GP ,G, ϕ) as it is described in

Sect. 6.1.

3. Construct a planar graph G′, by inserting the remaining edges of G into
G′

P such that each edge crosses the boundary cycle of a cut at most once.

4. Apply an algorithm for quasi-orthogonal drawings with the restrictions
indicated in Sect. 6.1 to G′.

5. Delete the edges that do not correspond to original edges in G.

Remarks to Step 1. Note that even if G models a set of minimal cuts of G,
it is not always possible to choose the graph GP with the properties required
in Step 1 as a subgraph of G. For example consider that G is constructed from
a K3,3 by inserting three vertices into each edge and that (G, ϕ) is the cactus
of all minimum cuts of G. The following lemma shows, however, that at least
some graph with the properties required in Step 1 exists.
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Lemma 3 Let (G, ϕ) be a cactus model for a set of cuts of a graph with vertex
set V . Then there exists a planar connected graph H with vertex set V such
that:

1. G models a set of minimal cuts of H and

2. no edge of H crosses a cycle of G.

Proof: Let µ be a node of T that is adjacent to a leaf v. In a first step, we
start with an empty graph. Proceeding from bottom to top of the tree T rooted
at µ, we can construct a graph H0 = (V,E0) such that:

1. for any node ν 6= µ the subgraph of H0 induced by Vµ(ν) is a path,

2. no edge of H0 crosses a cycle of G, and

3. E0(Vµ(ν), Vµ(ν)) = ∅ if ν is adjacent to µ.

Let ν 6= µ be a node of T and let ν1, . . . , νk be the children of ν that are adjacent
to ν. If ν is a cycle-replacement node, suppose that we ordered the νi such that
ν1, . . . , νk is a path in G. If νi is a leaf for some i, let Vµ(νi) = {νi}. We
assume that Vµ(ν1), . . . , Vµ(νk) already induce paths in G0. Now, for each i =

1, . . . , k−1, let v1 ∈ Vµ(νi) be a vertex of degree one or zero in G0(
⋃i

j=1 Vµ(νj))
and let v2 be a vertex of degree one or zero in G0(Vµ(νi+1)). Add {v1, v2} to G0.

In a second step, for each node ν of T that is adjacent to µ let v1 and v2 be
the two vertices of degree one or let v1 = v2 be the vertex of degree zero in the
subgraph of H0 induced by Vµ(ν), respectively. Add edges {v, v1} and {v, v2}
to H0. Finally, for all leaves w 6= v of T that are adjacent to µ, add an edge
{v, w} to H0.

It is now easy to see that no edge of the thus constructed graph H crosses a
cycle of G and that G models a set of minimal cuts. H is a cactus and hence it
is planar and connected. �

Let H = (V,EH) be the graph from the previous lemma and let GP be a
maximal planar subgraph of (V,E ∪ EH) such that H is a subgraph of GP .
Then GP is planar and connected, G models a set of minimal cuts of GP and r
is rootable. Hence, GP fulfills the properties required in Step 1.

Remarks to Step 3. We use an extension of planarization-techniques that is
similar to the method introduced by Di Battista et al. [3] for drawing non-planar
hierarchically clustered graphs. Edges in G that are not represented in GP are
routed iteratively through the dual graph of G′

P , replacing every crossing of an
edge and a dual in the route by a vertex of degree four. Suppose, we want
to insert an edge {v, w}. Let F be the set of faces of G′

P . Let E∗
{v,w} be the

following set of arcs. For every edge e of G′
P , let f1, f2 ∈ F be the faces that

are incident to e. Then E∗
{v,w} contains the dual arcs (f1, f2)e and (f2, f1)e.

Further, E∗
{v,w} contains the arcs (f, x), (x, f), x ∈ {v, w}, f ∈ F , f incident

to x. There are no other arcs contained in E∗
{v,w}.
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G:
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3
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6 (G, ϕ):

1

2

3,5

4

6
(T (G, ϕ), r): 1 2

4

6

3 5

Figure 6: A non-planar graph G and a cactus model. Deleting the grey edge
yields a maximal planar subgraph. Solid thick black edges induce a spanning
path in every cluster S 6= V of (G, T (G, ϕ), r). All solid black edges indicate
the graph H constructed in the proof of Lemma 3.

a) b)

1

2

5 3

6

4

Figure 7: a) Black edges show a connected component of the restricted extended
dual for adding the edge {5, 4} from 5 to 4 of the graph in Fig. 6. Bidirected
edges are indicated by simple curves without arrows. b) A drawing with axis-
parallel rectangles for the family of cuts modeled by (G, ϕ) in Fig. 6.

In general, any simple path in the extended dual G∗
{v,w} = ({v, w}∪F,E∗

{v,w})

from v to w can be used as a route for the edge {v, w}. To achieve that the
drawing of {v, w} does not cross a boundary cycle twice, we use a restricted
version of the extended dual. Let v = ν1, ν2 . . . , νℓ = w be the path in T
between v and w. Let k ∈ {2, . . . , ℓ − 1} be such that νk−1 and νk+1 are
children of νk. For each boundary edge e of G′

P :

• if e is contained in the drawing γ of {Vr(νi), Vr(νi)}, i = 2, . . . , k−1, delete
the dual arc of e that is directed from the outside of γ to the inside of γ
from E∗

{v,w};

• if e is contained in the drawing γ of {Vr(νi), Vr(νi)}, i = k + 1, . . . , ℓ − 1,
delete the dual arc of e that is directed from the inside of γ to the outside
of γ from E∗

{v,w};

• if e is contained in the drawing of a cut {Vr(ν), Vr(ν)} for a node ν 6=
νi, i = 2, . . . , k − 1, k + 1, . . . , ℓ − 1 of T , delete both dual arcs of e from
E∗

{v,w}.
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Thus the restricted dual (see Fig. 7 for an illustration) guarantees that any
path from v to w crosses any boundary cycle at most once. On the other hand,
there is a path from v to w in the restricted dual if and only if either νk is
not a cycle-replacement node or νk is a cycle-replacement node and νk−1, νk+1

are adjacent in G. Hence, by Condition (R), there is a path from v to w.
Summarizing, we have shown the following characterization

Theorem 2 A family C of cuts of a graph G has a drawing with axis-parallel
rectangles if and only if

1. C has a cactus model (G, ϕ) and

2. the root r of T (G, ϕ) can be chosen such that each edge that crosses a cycle
of G crosses it towards r.

Provided a cactus model is given, it can be tested in time O(nm) whether a
drawing with axis-parallel rectangles exists.

Moreover, if a set of minimal cuts of a planar graph has a drawing with axis-
parallel rectangles, then it has a planar drawing with axis-parallel rectangles.
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