
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 9, no. 2, pp. 265–275 (2005)

Approximating Clustering Coefficient and
Transitivity

Thomas Schank Dorothea Wagner

Algorithmics
Department of Computer-Science
University of Karlsruhe, Germany

http://i11www.ira.uka.de/algo/
schank|dwagner@ira.uka.de

Abstract

Since its introduction in the year 1998 by Watts and Strogatz, the clus-
tering coefficient has become a frequently used tool for analyzing graphs.
In 2002 the transitivity was proposed by Newman, Watts and Strogatz as
an alternative to the clustering coefficient. As many networks considered
in complex systems are huge, the efficient computation of such network pa-
rameters is crucial. Several algorithms with polynomial running time can
be derived from results known in graph theory. The main contribution of
this work is a new fast approximation algorithm for the weighted cluster-
ing coefficient which also gives very efficient approximation algorithms for
the clustering coefficient and the transitivity. We namely present an algo-
rithm with running time in O(1) for the clustering coefficient, respectively
with running time in O(n) for the transitivity. By an experimental study
we demonstrate the performance of the proposed algorithms on real-world
data as well as on generated graphs. Moreover we give a simple graph gen-
erator algorithm that works according to the preferential attachment rule
but also generates graphs with adjustable clustering coefficient.
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1 Introduction

Recently, there is growing interest in understanding the structure, dynamics and
evolution of large networks like the Internet, the World Wide Web, technological
and biological networks or social networks. One way of analyzing specific prop-
erties of networks consists in computing and comparing certain local or global
network indices. Algorithmic aspects in network analysis concern the correct
and fast computation of those. Vertex indices are often easily computable in
polynomial time. However, if networks are large even polynomial running times
that are e.g. cubic in the number of nodes are not acceptable. Under some
circumstances even sublinear algorithms are desired. A frequently used tool
for analyzing graphs is the clustering coefficient introduced in [13] respectively
the transitivity proposed in [12]. This paper concentrates on the algorithmic
aspects of computing those indices. The main contribution of this work is a
constant time approximation algorithm for the clustering coefficient. We also
present a generator algorithm that follows the linear preferential attachment
principle and produces graphs with the desired clustering coefficient. Such gen-
erators have been proposed before but, they either only work for a limited set of
parameters as in [10], or they are quite complicated as in [11]. An experimental
study demonstrates the performance of the proposed algorithms on real-world
data as well as on generated graphs. These results also support the assumption
that the values of the clustering coefficient and the transitivity differ in general.

2 Definitions and Properties

2.1 Basic Definitions

Let G = (V,E) be an undirected, simple (no self-loops, no multiple edges) graph
(network) with a set of nodes (vertices) V and a set of edges E. We use the
symbol n for the number of nodes and the symbol m for the number of edges.
The degree d(v) of node v is defined to be the number of nodes in V that are
adjacent to v. A complete subgraph of three nodes of G can be considered as
a triangle ∆. Motivated by this the number of triangles of node v is defined as
δ(v) = |{{u, w} ∈ E : {v, u} ∈ E and {v, w} ∈ E}|. Since each triangle contains
three nodes (hence if we sum over all nodes each triangle is counted three times)
the following definition is intuitive

δ(G) = 1/3
∑
v∈V

δ(v). (1)

A triple Υ at a node v is a path of length two for which v is the center node.
The number of triples of node v is then defined as τ(v) =

(
d(v)
2

)
, and summing

the triples of all nodes defines

τ(G) =
∑
v∈V

τ(v). (2)
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2.2 Clustering Coefficient

The clustering coefficient was introduced by Watts and Strogatz [13] in the
context of social network analysis. Given three actors u, v and w with mutual
relations between v and u as well as between v and w, it is supposed to represent
the likeliness that u and w are also related. With the introduced notation the
clustering coefficient for a node v with d(v) ≥ 2, is defined as c(v) = δ(v)/τ(v).
The clustering coefficient C(G) of a graph G is the average over the clustering
coefficients of its nodes

C(G) =
1
|V ′|

∑
v∈V ′

c(v), (3)

where V ′ is the set of nodes v with d(v) ≥ 2. Alternatively to Eq. 3 the term
c(v) is sometimes defined to be either zero or one for nodes v with degree at most
1 and included in the sum. However, the choice of the definition is important
as can be seen from the results of our experiments in Sec. 5.

2.3 Transitivity

The transitivity of a graph G as used in [12] is defined as

T (G) =
3 δ(G)
τ(G)

. (4)

It is essentially the transitivity ratio [8] restricted to undirected graphs. The
transitivity as in Eq. 4 was claimed to be equal to the clustering coefficient
as in Eq. 3 by Newman, Watts and Strogatz [12]. However this is clearly not
true and the complete graph of 4 nodes with one edge removed is the smallest
counterexample [4]. A formal relation between the two parameters will follow in
the next section. From now on we simply use C, T , δ and τ if the corresponding
graph or node is clear from context.

2.4 Generalized Clustering Coefficient

For a weight function w : V → R+ we define the weighted clustering coefficient
to be

Cw(G) =
1∑

v∈V ′
w(v)

∑
v∈V ′

w(v)c(v). (5)

Two implicit weight functions are immediate, the degree-based weight w(v) =
d(v), and the weight given by the number of triples w(v) = τ(v). In the second
case, τ(v) simply cancels out in each additive term of the numerator, and we
get Cτ (G) =

∑
δ(v)/

∑
τ(v) which can be rewritten with equation Eq. 1 and

Eq. 4 to
T (G) = Cτ (G) (6)

and we recognize the transitivity as the triple weighted clustering coefficient.
An equivalent formulation of Eq. 6 is presented in [4]. The following properties
are immediate.
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Corollary 1 The indices C and T are equal for graphs where

• all nodes have the same degree, or

• all nodes have the same clustering coefficient.

The first property is quite interesting with respect to the small-world networks
of Watts and Strogatz [13] where node degrees do not differ much. Actually in
[3] an ‘alternative formulation’ for C is introduced, claiming that it does not
alter the ‘physical significance’ for certain generated small world networks. This
‘alternative formulation’ turns out to be equivalent to the transitivity T .

2.5 Generalized Transitivity

Let Π be the set of all triples in a graph G, then τ(G) = |Π|. Further consider
the mapping X : Π→ {0, 1}, where X(Υ) equals one if there is an edge between
the outer nodes of the triple Υ, and zero otherwise. Then we can rewrite the
transitivity as

T (G) =
1
|Π|

∑
Υ∈Π

X(Υ).

This equation is similar to the definition of the clustering coefficient in Eq. 3.
Again we can consider a weight function $ : Π→ R+ and define

T$(G) =
1∑

Υ∈Π

$(Υ)

∑
Υ∈Π

$(Υ)X(Υ). (7)

Lemma 1 The weighted clustering coefficient is a special case of the weighted
transitivity.

Proof: For a node weight function w, let $(Υ) = w(v)
τ(v) where v is the center of

triple Υ. Further, let Πv be the set of triples with center v. Then accordingly
τ(v) = |Πv| and

∑
Πv

X(Υ) = δ(v). By a simple transformation we get Cw = T$

which completes the proof. �

The above proof will be useful for the approximation algorithms in Section 3.
Note that for w(v) = τ(v),∀v, i.e. $ ≡ 1, T$ = T and for w ≡ 1, i.e. $(Υ) =
1/τ(v), T$ = C, where again v is assumed to be the center of triple Υ.

3 Algorithms

We have seen that computing C and T involves the computation of the num-
ber of triangles. If we assume that w(v) is computable in O(1) time, which we
will do from now on, Cw is bounded by the complexity of counting triangles.
Triangle counting is a well studied problem in graph theory. A very simple
approach is to traverse over all nodes and check for existing edges between any
pair of neighbors. This algorithm, which we call node-iterator has running
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time O
(∑

v∈V

(
d(v)
2

))
⊂ O

(
nd2

max

)
. The currently asymptotically most efficient

algorithm with respect to the input size n + m of the graph has running time
O
(
m2γ/(γ+1)

)
⊂ O

(
m1.41

)
[1], where γ ≤ 2.376 [5] is the fast matrix multi-

plication exponent. In the following we will give linear respectively sublinear
algorithms to approximate Cw, T and C.

3.1 Approximating Cw

Roughly speaking our approximation algorithm samples triples with appropriate
probability. It then checks whether an edge between the non center nodes of
the triple is present. Finally, it returns the ratio between the number of existing
edges and the number of samples. The pseudo code is presented in Algorithm 1.
We restrict the node weights to the strictly positive integers for simplicity.

Algorithm 1: Cw-Approximation
Input: integer k; array A1,...,|V ′| of nodes V ′ = {v ∈ V : d(v) ≥ 2}

node weights w : V ′ → N>0; adjacency array for each node
Output: approximation of Cw

Data: node variables: u, w; integer variables: r, l, j, W0,...,|V ′|

W0 ← 0
1 for i = (1, . . . , |V ′|) do

Wi ←Wi−1 + w(Ai)
l← 0

2 for i ∈ (1, . . . , k) do

3 r ← UniformRandomNumber( {1, . . . ,W|V ′|})
4 j ← FindIndex( j : Wj−1 < r ≤Wj)
5 u← UniformRandomAdjacentNode(Aj)

repeat
w ← UniformRandomAdjacentNode(Aj)

until u 6= w
6 if EdgeExists( u, w) then

l← l + 1

return l/k

Theorem 1 For a graph G with given node weights w(v), a value Capprox
w (G)

that is in [Cw(G)− ε, Cw(G) + ε] with probability at least ν−1
ν can be computed

in time O
(
n + ln ν

ε2 lnn
)
.

Proof: We prove that Algorithm 1 has the requested properties. Let us first
consider the time complexity. The running time of the first for loop (starting
at line 1) is obviously in O(n). For the second for loop (line 2), the FindNode
function (line 4) can be executed in lnn steps by performing binary search.
Choosing two adjacent nodes (line 5 to line 6) is expected to be in constant
time. The EdgeExists function (line 6) is expected to be in constant time as
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well if an efficient hash data structure is used for the edges. Finally, defining
k = dln(2ν)/(2ε2)e gives total expected running time of O

(
ln ν
ε2 lnn

)
for the

second for loop.
In order to prove the correctness for our choice of k, we make use of Ho-

effding’s bound [9]. Let Xi be independent real random variables bounded by
0 ≤ Xi ≤ M for all i. With k denoting the number of samples, and ε some
error, the bound states:

Pr

(∣∣∣∣∣1k
k∑

i=1

Xi − E

[
1
k

k∑
i=1

Xi

]∣∣∣∣∣ ≥ ε

)
≤ 2e

−2kε2

M2 (8)

We have to prove that the expectation E(l/k) is equal to Cw and that the bounds
on ε and ν−1

ν are fulfilled for our choice of k. The proof of Lemma 1 implies
that Cw can be computed by testing for each triple whether it is contained in
a triangle or not. With the same notation as in Sec. 2.5 and particularly as in
the proof of Lemma 1, we get

Cw(G) =
1∑

u∈V ′
w(u)

∑
v∈V ′

∑
Υ∈Πv

w(v)
τ(v)

X(Υ)

where w(v)/τ(v) is the weight of the corresponding triple. This corresponds to
the probability of w(v)/ (τ(v)

∑
w(u)) that a triple is chosen in one single loop

starting at line 2. Hence, by linearity of the expectation E(l/k) = Cw. The
random variable X(Υ) is a mapping from Π to {0, 1}, and consequently M = 1.
We can now immediately see that the bounds on ε and the probability ν−1

ν are
fulfilled for our choice of k. �

One may regard the error bound ε and the probability ν as fixed parame-
ters. The number of triples τ(v) can be computed in O(1) time, if e.g. adjacency
arrays are used. With this assumptions, we get immediately the following corol-
lary.

Corollary 2 Under the above assumptions the weighted clustering coefficient
Cw and particularly the transitivity T can be approximated in O(n) time.

3.2 Constant Time Approximation of C

If m grows more than linearly in n we have achieved a sublinear algorithm.
However, to approximate C an even further improved bound can be achieved
with some modifications of Algorithm 1: The first for loop (starting at line 1)
and line 3 is removed. The node j (line 4) is now sampled uniformly from all
nodes in V ′.

Theorem 2 The clustering coefficient C can be approximated in constant time.
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To see the correctness one simply verifies easily that a triple at center node
v is sampled with probability 1/ (τ(v)|V ′|) which corresponds to the correct
weight w ≡ 1 or $ = 1/τ for obtaining C (compare to the last paragraph of
Sec. 2.5). The rest follows analogously as in the proof of Theorem 1. Note, that
the clustering coefficient can also be approximated with Θ(log n) samples using
standard Chernoff bounds [6].

4 A Preferential Attachment Graph Generator
with Adjustable Clustering Coefficient

Algorithm 2: Graph Generator
Input: initial graph G: two connected nodes

integer: n ≥ 3, d ≥ 2, o

Output: graph G

for i = (3, . . . , n) do
v ← NewNode()
for 1, . . . ,Min(i− 1, d) do

repeat
u← RandomNode(with prob du/

∑
V d(v))

until not EdgeExists( v, u)
AddEdge(v, u)

for 1, . . . , o do
u← RandomAdjacentNode(v)
repeat

w ← RandomAdjacentNode(v)
until w 6= u
if not EdgeExists( u, w) then

AddEdge(u, w)

We give a graph generator algorithm that works according to the preferential
attachment rule but also generates graphs with adjustable clustering coefficient.
The sketch of a preferential attachment generator was introduced in [2] mainly
to achieve graphs with the so called power law degree distribution found in many
real networks [7]. However, the approach in [2] does not achieve the relatively
high clustering coefficients found in many networks. Several methods were pro-
posed to amend this. The generator presented in [10] is quite simple. However,
high values for C are only verified for a restricted class of preferential attach-
ment graphs, i.e., for the case where exactly 3 edges are added in every so called
PA step. The authors expect that ‘other values should give qualitatively the
same behavior’. However, this is not confirmed by our preliminary experiments
(not presented here for brevity). In contrast the approach proposed in [11] is
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quite complicated. Additionally it functions by post-processing a given graph
and hence does not model a growing process. The pseudo code of Algorithm 2
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Figure 1: C and T for the generator with d = 10 and several o

presents a generator that is very simple. It runs in linear time with respect to
the output size n + m for fixed parameters d and o. The clustering coefficient
of the output graph is adjustable, see Fig. 4. Algorithm 2 serves mainly as a
generator to be used in the next section where the algorithms are experimentally
evaluated.

5 Experiments

This section demonstrates the efficiency of the proposed algorithms in execution
time. We compare an implementation approx of Algorithm 1 with running time
O(n) to an implementation of node-iterator, with running time in O

(
nd2

max

)
and an implementation of a algorithm ayz3/2 derived from the algorithm in [1].
In this case we did not use fast matrix multiplication for Vhigh as described in
[1] but the standard method node-iterator. The running time of ayz3/2 is
therefore in O

(
m3/2

)
. The parameters of approx were set to ε = 0.001 and

ν = 0.5 · 1010, throughout. The implementations were programmed in c++ and
compiled with the GNU-compiler version 3.3. The experiments were carried out
on a 2.4 GHz Intel-Xeon running Linux as the operating system. Figure 2 shows
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the execution times for a series of graphs generated with gen, an implementation
of Algorithm 2. Table 5 shows results for two real networks. The first one is
based on the movie actor database 2002 and the second corresponds to the
autonomous system graph of the Internet.
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Figure 2: Execution Times

Movie Actor AS-Graph
n 382 · 103 13164
m 15 · 106 28510

node-iterator (exec/sec) 3369 2
ayz3/2 (exec/sec) 3265 0
approx (exec/sec) 125 70

T 0.166 0.012
C 0.785 0.458

C0 (c ≡ 0 for d ≤ 1) 0.780 0.311
C1 (c ≡ 1 for d ≤ 1) 0.786 0.632

Table 1: Experiments on Real Networks

Figure 2 clearly demonstrates the efficiency of gen and also of approx. As
to be expected approx starts with a already relatively high constant and than
grows very slowly with n.
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