High-Availability Algorithms for Distributed Stream Proc essing*

Jeong-Hyon Hwanig Magdalena BalazinskaAlexander Rasih
Ugur Cetintemél, Michael Stonebrakérand Stan Zdonik

fBrown University MIT
{jhhwang, alexr, ugur, sB#&cs.brown.edu {mbalazin, stonebrake@Ics.mit.edu

Abstract a failure causes the loss of a potentially large amount of tra

Stream-processing systems are designed to support ient information and, perhapg more importantly, prevents
emerging class of applications that require sophisticatad ~ doWnstream servers from making progress. A DSPS there-
timely processing of high-volume data streams, often origifore must incorporate a_h|gh—.ava|l_ab|l|ty mechan!sm tHat a
nating in distributed environments. Unlike traditionaltda |OWS Processing to continue in spite of server failures.sThi
processing applications that require precise recovencior aspect of stream processing, however, has received little a
rectness, many stream-processing applications can tera teNtion until now [23]. I.n this paper, we focus on approaches
and benefit from weaker recovery guarantees. In this papeWhere once a server fa|ls_, a backup server takes _overthe oper
we study various recovery guarantees and pertinent regove2tion Of the failed one. Tightly synchronizing a primary and
techniques that can meet the correctness and performance re€condary so that they always have the same state incurs high
quirements of stream-processing applications. run-time overhead. Hence, we explore approaches that relax

We discuss the design and algorithmic challenges assd!iS requirement, allowing the backupriebuild the missing
ciated with the proposed recovery techniques and describdt€ instead. _ o _
how each can provide different guarantees with proper com- Because different stream processing applications have dif
binations of redundant processing, checkpointing, anchtem ferent high-availability requirements, we define threestypf
logging. Using analysis and simulations, we quantify thetco "€COVery guarantee; that address these Qn‘ferent needs.
of our recovery guarantees and examine the performance and Precise recoverfides the effects of a failure perfectly, ex-
applicability of the recovery techniques. We also analyze h CePt for some transient increase in processing latencyisand

the knowledge of query network properties can help decreasiell-suited for applications that require the post-fasgut-
the cost of high availability. put be identical to the output without failure. Many finan-

cial services applications have such strict correctnapsre-
1 Introduction ments.
Rollback recoveravoids information loss without guaran-

Stream-processing engines (SPEs) [1, 3, 5, 6, 16, 18] a[tgeing .precise recovery. The output pr_oduced.after a failur
designed to support a new class of data processing applic- €duivalent” to that of an execution without failure, it
tions, callecstream-based applicationshere data ipushed necessarily to the output of the execution that failed. Tite o
to the system in the form of streams of tuples and queries afé!t may also contain duplicate tuples. To avoid information
continuouslexecuted over these streams. These applicatiof@SS: the system must preserve all the necessary input data
include sensor-based monitoring (car traffic, air quakigtle ' the backup server to rebuild (frc_)m its current state) the
field), financial applications (stock-price monitoringgker ~ Primary’s state at the moment of failure. Rollback recovery
failure detection), and asset tracking. Because data ssurc'S 1US appropriate for applications that cannot tolenafert
are commonly located at remote sites, stream-based applicR@tion loss but may tolerate imprecise output caused by the
tions can gain in both scalability and efficiency if the sesve Dackup server reprocessing the input somewhat differently
collectively process and aggregate data streams whilengut than the primary did. Example applications include those th
them from their origins to the target applications. As a re-2l€rt when specific conditions occue.g, fire alarms, theft
sult, recent attention has been focused on extending stredifevention through asset tracking). We show in Section 6
processing to distributed environments, resulting inatied that this recovery guarantee can be provided more effigientl
distributed stream-processing systems (DSPSs) [6, 7, 22]. than precise recovery both in terms of runtime overhead and

In a DSPS, the failure of a single server can significantlyf €cOVery speed.

disrupt or even halt overall stream processing. Indeedy suc. Gap recoveryour weakest recovery guarantee, addresses
the needs of applications that operate solely on the most re-

*This material is based upon work supported by the Nationarée cent information €.g, sensor-based environment monitor-

Foundation under Grants No. 11S-0205445, 11S-0325838,0835525, 11S- ; ; ;
0325703, and 11S-0086057. Any opinions, findings, and assiohs or rec- ing), where dropping some old data is tolerable for reduced

ommendations expressed in this material are those of the®s) and do [€COVETry t.|me and runtime Overhead.- _ .
not necessarily reflect the views of the National SciencenBation. We define these recovery semantics more precisely in Sec-

server pair (primary/secondary) innut queue PETAIOT outhut queue

tion 3. To the best of our knowledge, commercial DBMSs |
typically offer precise or gap recovery capabilities [8, 29, Node N, Node N Node N,
21] and no existing solution addresses rollback recovegy or O\ cexf o s
similar weak recovery model.

We also investigate four recovery approaches that can pro- O/
vide one or more of the above recovery guarantees. Since
each approach employs a different combination of redundantStream

. . . . ources

computation, checkpointing, and remote logging, theyroffe
different tradeoffs between runtime overhead and recovery
performance.

We first introduceamnesiaa lightweight scheme that pro- ,
vides gap recovery without any runtime overhead (Section 4) Figure 1. An example DSPS
We then presenpassive standbwnd active standby two
process-pairs [4, 10] approaches tailored to stream psecesThis model of processing data before (or instead of) storing
ing. In passive standby, each primary server (a.k.a. nogle) pit contrasts with the traditional “process-after-storebdel
riodically reflects its state updates to its secondary ndde. employed by all conventional DBMSs. In stream-processing
active standby, the secondary nodes process all tuples-n paystems [1, 3, 6], eaabperatoris a processing unit (map, fil-
allel with their primaries. We also proposestream backup ter, join, aggregate, etc.) that receives input tuplesubhats
an approach that significantly reduces runtime overhead connput queuegone for each input stream) and produces output
pared to the standby approaches while trading off a smatlples based on its execution semantics. A loop-free, @idec
fraction of recovery speed. In this approach, upstream siodeyraph of operators is calledcaery network
act as backups for their downstream neighbors by preserving A DSPS partitions its query network across multiple
tuples in their output queues while their downstream neighnodes. Each node runs a stream-processing engine (SPE).
bors process them. If a server fails, its upstream nodeayepl Figure 1 illustrates a query network distributed acrossehr
the logged tuples on a recovery node. In Section 5, we dgyodesN,,, N, andN,. In the figure, streams are represented
scribe the details of these approaches with an emphasis @ solid line arrows while operators are represented as$oxe
the unique design challenges that arise in stream progessinabeled with symbols denoting their functions. Since mes-
Upstream backup and the standby approaches provide roizages flow on streamg and I, from N, to N, N, is said
back recovery in their simplest forms and can be extendegh beupstreanof NV, andN is said to bedlownstreanof V,,.
to provide precise recovery at a higher runtime cost, as Wgve assume that the communication network ensures order-
discuss in Section 6. preserving, reliable message transpert(TCP).

Interestingly, for a given high-availability approacheth gjnce we focus osingle-node fail-stop failure§.e., han-
overhead to achieve precise recovery can noticeably changgng network failures, partitions, or multiple simultanes
with the properties of the operators constitutingthe quety ¢4;res including those during recovery is beyond the scop

work. We thus develop in Section 3 a taxonomy of streamy his paper), we associate each nddeith a recovery node
processing operators, classifying them according to iheir - 7 hat s in ‘charge of detecting as well as handling the fail-

pact on recovery semantics. Section 6 shows how SUGfye of N, N in this case is called primary node For N’
knowledge helps reduce high-availability costs and affé@ e ;s the termmecovery nodgsecondary nodendbackup
choice of most appropriate high-availability technique. nodeinterchangeably. Each recovery node runs its own SPE,

Finally, by comparing the runtime overhead and recoveny 4 has the same query-network fragment as its primary, but
performance for each combination of recovery approach ang state is not necessarily the same as that of the primary.

guarantee (Section 7), we characterize _the tradeoffs among 1, getect failures, each recovery node periodically sends
the approaches and describe the scenarios when each is mgést :

appropriate. We find that upstream backup requires only 1;‘J}iiep—ahve requests to its primary and assumes that thez latt

) . . . led if a few consecutive responses do not return within a
small fraction of the runtime cost of others, while keepieg r . .
. : . ; timeout period (for example, our prototype uses three mes-
covery time relatively short for queries with moderate stat

size. The size of query state and the frequency of hig sages with 100 ms transmission interval, for an average fail

availability tasks significantly influence the recoveryfoer ure detection delay of 250 ms). When a recovery node detects

. tl?e failure of its primary, if it was not already receivingetin-
mance of upstream backup and the runtime performance g ; L
Pt streams, it asks the upstream nodes to start sending it th

passive standby. We also find that there is a fundament g . , ; .
: . ata (in Figure 1/; andI, switch tol] and} respectively).
tradeoff between recovery time and runtime overhead an L2
he recovery node also starts forwarding its output streams

that gach approach covers a complementary portion of th[% downstream nodes (in Figure@,switches ta0’).
solution space.

Because the secondary may need to reprocess some earlier
2 The System Model input tuples to bring its state up-to-date with the preuil
state of the primary, each redirected input stream must lee ab
A data streanis a sequence of tuples that are continuousliyto replay earlier tuples. For this purpose, each outpuastre
generated in real time and need to be processed on arrivélas amoutput queu@s a temporary storage for tuples sent.

S

Apps

Finally, once a failed node comes back to life, it assumes Recovery type| Before failure Atter failure

the role of the secondary. As we discuss in Section 5, each ap- | -Precise tr ta ts | la G5 e
proach requires a different amount of time for recovery and, _Sgﬁback ti t2 13 ts o
thus, for the system to tolerate a new failure. Repeating | &1 to fs | ta ts s
3 High-Availability Semantics -Convergent | t1 t2 f3 |tz t3 i

-Divergent ti ta t3 [ty tz)

In this section, we define three recovery types, based on
their effects as perceived by the nodes downstream from the Figure 2. Outputs produced by each type of recovery
failure. Since some operator properties facilitate stevng-
covery guarantees, we also devise an operator classificatio We use the configuration in Figure 1 to illustrate these con-
based on their effects on recovery semantics. cepts. We cannot discard tuples in the output queuésanid
I if N’ requires them to rebuild/’s state. Similarly, ifN” is
running ahead oW, it must preserve all tuples i?"’s output

We assume that a query-network fragme@t, is given queue until they become duplicaiee(, N, receives fromV
to a primary/secondary paiQ has a set of: input streams tuples resulting from processing the same input tuples).

3.1 Recovery Types

(I, I, ..., I,) and produces one output stre@n The defi- ~ Rollback recovery allows the secondary to forwatd-
nitions below can easily be extended to query-network fragplicate output tuplesiownstream. The characteristics @f
ments with multiple output streams. determine the characteristics of such duplicate outpuetup

Because the processing may be non-deterministic, as vi&s Well as the properties @?; + O’. We distinguish three
discuss in Section 3.2, executin@ over the same input types of rollback recovery. In the first typepeating recov-
streams may each time produce a different sequence of téfy, duplicate output tuples aiiéentical to those produced
ples on the output stream. We defineexecutiorto be the previously by the primary. With the second typenvergent
sequence of events (such as the arrival, processing or produecovery duplicate output tuples are different from those pro-
tion of a tuple) that occur while a node rugs Given an duced by the primary. The details on such situations are dis-
executione, we denote withD, the output stream produced cussed in Section 3.2 undesnvergent-capableperators. In
by e. We express the overall output stream after failure andpoth recovery types, however, the concatenatiail pand0O’
recovery as0; + O', where isf the pre-failure execution after removing duplicate tuplés identical to an output with-
of the primary and)’ is the output stream produced by the out failure,O.. Finally, the third type of recovergivergent
secondary after it took over. recovery has the same properties as convergent recovery re-
Precise Recovery: The strongest failure recovery guaran- 9arding duplicate output tuples. Eliminating these dugiés,
tee, calledprecise recoverycompletely masks a failure and however, does not produce an output that is achievable with-
ensures that the output produced by an execution with failout failure, because of the non-determinism in processing.
ure (and recovery) is identical to the output produced by af5ap Recovery: Any recovery technique that does not ensure
executiore without failure i.e, Oy + O’ = O.. both input and output preservation may result in infornratio
Rollback Recovery: A weaker recovery guarantee, called 10ss. This recovery type is calleghp recovery
rollback recoveryensures that failures do not cause informa-Example: Figure 2 shows examples of outputs produced by
tion loss. More specifically, it guarantees that the effedts each recovery type. With precise recovery, the output eorre
all input tuples are always forwarded to downstream nodes igponds to an output without failure: tuplasthroughts are
spite of failures. Achieving this guarantee requires: produced in sequence. With gap recovery, the failure causes

1. Input preservation The upstream nodes must store inthe loss of tuplety. Repeating recovery produces tuptgs
their output queues all tuples that the secondary needs &ndzs twice. Convergent recovery generates different tuples
rebuild, from its current state, the primary’s state. We re4; andt; after failure (but corresponding t andts) but
fer to such tuples aduplicate input tuplebecause they then produces tuplels and following as would an execution
have already entered the primary node. without failure. Finally, divergent recovery keeps proohe:

2. Output preservation If a secondary is running ahead of equivalent rather than identical tuples after the failure.
its primary, the secondary must store tuples in its outpuPropagation of Recovery Effects: The semantics above de-
gueues until all the downstream nodes receive the cofine the effects of failure and recovery on the output strem o
responding tuples from the primary node. The tuples athe failed query-network fragment. These effects then prop
the secondary are then considedegblicate agate through the rest of the query network until they reach

Because the secondary may follow a different executiomlient applications. Because precise recovery masksrésju
than its primary, duplicate output tuples are not necelysari no side effects propagate. Gap recovery may lose tuples. Af-
identical to those produced by the primary. We consider ater a failure, client applications may thus miss a burst ef tu
output tuplet at the secondary to bduplicateif the pri- ples. Because the query network may aggregate many tuples
mary has already processadl input tuples that “affected” into a single output tuple, missing tuples may also result in
the value of and forwarded the resulting output tuples down-incorrect output valuese.g, a sum operator may produce a
stream. We formally define rollback recovery and duplicatdower sum. Rollback recovery does not lose tuples but may
output tuples in [11]. generate duplicate tuples. The final output stream may thus

. o P per-input-tuple processing time
Union, operators with timeout d network transmission delay between any nodes
Deterministic A input tuple arrlvs_al rate
BSort, Resample, C size of checkpoint message
Convergent—capable Aggregate (no timeout) c size of queue-trimming message
M checkpoint or queue-trimming interval
D failure detection delay
Filter, Map, Join (no timeout) r time to redirect input streams
nb_ops number of operators in the query network
nb_paths number of paths from input to output streams
; A number of lost or redundant tuples
Figure 3. Taxonomy of Aurora operators K delay before processing first duplicate input tuple
))) Q average number of input tuples to re-process
contain a burst of either redundant or incorrect tupkeg, a rec_time time spent recreating the failed state (after failre
sum operator downstream may produce a higher sum value. detection) B
. . . . L. bw_overhead bandvyldth consumed for high avallab_llny
It is also pOSSIble, however, that dupllcate-lnsenSItlpera— bandwidth consumed for tuple transmission
head processing required for high availability
tors (e.g, max) downstream can always guarantee correct rg-proc-overhea processing required for ordinary uple processing

sults. In general, the recovery type for a node must be chosen .
based on the applications’ correctness criteria and theacha Table 1. Summary of notation

teristics of the operators on the node and downstream. _ .
restarting the operator from the middle of that sequence may

3.2 Operator Classification yield at least one different output tuple. Aggregates awos th
not repeatable in general, whereas filter (which simply drop
We distinguish four types of operators based on theituples that do not match a given predicate) and map (which
effects on recovery semanticsarbitrary (including non- transforms tuples by applying functions to their attrita)t@re
deterministic), deterministic convergent-capableand re- repeatable as they have one input stream and process each tu-
peatable Figure 3 depicts the containment relationshipple independently of others. Join (without timeout) is akso
among these operator types and the classification of Aurongeatable because its windows defined on input streams have
operators [1, 2]. The type of a query network is determinedalignments relative to the latest input tuple being proedss
by the type of its most general operator. In the following sections, we present approaches for gap
An operator isdeterministicif it produces the same out- recovery, rollback recovery, and precise recovery, respec
put stream every time it starts from the same initial staté antively. For each approach, we discuss the impact of the query
receives the same sequence of tuples on each input streametwork type on recovery and analyze the tradeoffs between
There are three possible causes of non-determinism in opecovery time and runtime overhead. Table 1 summarizes the
erators: dependence on time (either execution time or inputotation that we use.
tuple arrival times), dependence on the arrival order ofegsip 4 Gap Recovery

on different input streamse(g, union, which interleaves tu- . : S
: -~ . The simplest approach to high availability is for the sec-

ples from multiple streams), and use of non-determinism "ndary node to restart the failed query network from an empt

processing such as randomization. Y query Pty

A deterministic operator is callezbnvergent-capablié it state and continue processing input tuples as they arrivs. T

yields a convergent recovery when it restarts from an emptapproach, calle@mnesia produces a gap recovery for all

internal state and re-processes the same input streamts, st dyggs ?:]g?aet;ys rc])?t,zﬁ 0Irle(g.oAnst?g]anmezlaéntQ?hzushijzrz gfettgt;?;]t
ing from an arbitrary earlier point in time. To be convergent Y P '

capable, an operator must thus rebuild its internal state fr of the query network determine the numbd,of lost tuples.

scratch and update it on subsequent inputs in a manner th-g?'s apprqach IMposes no overhgad at runtime (C.f. Taple 3)-
We definerecovery timeas the interval between the time

eventually converges to the execution that would haveexist ; X . _

: : h : : : when the secondary discovers that its primary failed and the
without failure. Window alignment is the only possible caus time it reaches the primary’s pre-failure state (or an eauiv
that prevents a deterministic operator from being convgrge P y'S pr gu

lent state for a non-deterministic query network). Recgpver

capable. This is because window boundaries define the Stime thus measures the time spent recreating the failegl. stat

quences of tuples over which operators perform computa- Since amnesia does not recreate the lost state and drops
tions. Therefore, a deterministic operator is convergentt- P

capable if and only if its window alignments always convergeuDIes until the secondary is ready to accept them, the Fecov

to the same alignment when restarted from an arbitrary onec?Y time is zero. It takes time to redirect the inputs to the

A convergent-capable operatorrapeatabldf it yields a secondary, but when processing restarts, the first tuptes pr
repeating recovery when it restarts from an empty intern essed are those that would have been processed at the same

state and re-processes the same input streams, starting frgme if the failure did not happen.e., there is no extra delay

. : o due to the failure or recovery.
an arbitrary earlier point in time (the operator must progluc
identical duplicate tuples). A necessary conditionforpare 5 Rollback Recovery Protocols
ator to be repeatable is for the operator to use at most one tu- We present three approaches to achieve rollback recovery,
ple from each input stream to produce an output tuple. If a seeach one using a different combination of redundant compu-
guence of multiple tuples contributes to an output tuplenth tation, checkpointing, and logging at other nodes. We first

Query-network type
Approach Repeatable Convergent-capable Deterministic ~ Arbitrary
Passive standby | Repeating Repeating Repeating Divergent
Upstream backup | Repeating Convergent Divergent Divergent
Active standby Repeating Repeating Repeating Divergent

Table 2. Type of rollback recovery achieved by each high-availfpdipproach for each query-network type

rec_time bw_overhead proc_overhead
Amnesia 0 0 0
Passive standby | K + Qp,whereK =r +d;Q = 22 f1(5£.0) f2(%,0)
Upstream backup | K +Qp, whereK = r+d; Q = |state| + MA+2d\ | f3(55,¢) f4(5;, nb_ops, nb_paths)
Active standby e (negligible) 100% + f3(5;,¢) | 100% + 2 * fa(+;, nb_ops, nb_paths)

Table 3. Recovery time and runtime overhead for each approach

presentpassive standhyan adaptation of the process-pairssweep line both upstream and downstream because these con-
model with passive backup. Passive standby relies on checkurrent tasks do not violate the consistency of the checkpoi
pointing to achieve high availability. Then, we introducemessage. Indeed, executing operators to the left of theswee
upstream backupwhere upstream nodes in the processindine is equivalent to executing them after checkpointing: E
flow serve as backup for their downstream neighbors by logecuting operators to the right of the sweep line corresponds
ging their output tuples. Finally, we describetive standby to executing them before the message composition.

another adaptation of the process-pairs model where each passive standby guarantees rollback recovery as follows:
standby performs processing in parallel with its primane W (1) input preservation each upstream primary node pre-
discuss active standby last, because it relies on conaepts iserves output tuples in its output queues until they ardysafe
troduced in upstream backup. stored at the downstream secondaries. In Figure 1, whenever
For each approach, we examine the recovery guaranteggandby nodeV’ receives a checkpoint fronV, it informs
it provides, the average recovery time, and the runtime-ovefypstream nod&’,, about the new tuples that it received on its
head. We divide the runtime overhead into processing anghput streams/| and ;. N, discards only those acknowl-
communication (or bandW|dth) overhead. Table 2 Summaedged tup|es from its output queues. @):put preservation
rizes the recovery types achieved by each approach while Ta-the secondary is always “behind” the primary because its
ble 3 summarizes their performance metrics. state corresponds to the last checkpointed sate.

5.1 Passive Standby If a primary fails, the secondary takes over and sends all
In passive standby, each primary periodically sends theuples from its output queues to the downstream nodes. The
delta of its state to the secondary, which takes over frordecondary also asks upstream nodes to start sending it their
the latest checkpoint when the primary fails. Since reakti output streams, including tuples stored in their outputgse
response is crucial for many stream-processing appliestio \When the failed node rejoins the system, it assumes the role
the main challenge in passive standby is to enable the pyimabf the secondary. Because the new secondary has an empty

to continue processing even during a checkpoint. _ state, the primary sends its complete state in the first check
The state of a query network consists of the states of inpoint message.

put queues of operators, operators themselves, and the n Scovery Type: Because the secondary node restarts from

output queues (one for each output stream). Each chec

. " past state of its primary, passive standby provides repeat
pointmessage (a.k.a. state update message) thus capmresi i recovery for de?ermin)i/stli?: query networ)ll<spand divengpen
changes to the states of those queues and operators onrthe P(é%overy for others
mary node since the last checkpoint message was composed. i C _
For each queue, the checkpoint message contains the r]e\,ﬁ@covery Time: Passive standby has a short recovery time
enqueued tuples as well as the last dequeue position. For RRcause the backup holds a complete and recent snapshot of
operator, however, the content of the message depends on € Primary’s state. Recovery time is equalfo+ (p, where
operator type. For example, the message is empty for statél IS the.delay before the recqvery_node receives its first input
less operators while it stores, for an aggregate operatbere tuple, @ is the number of duplicate input tuples it reprocesses,
some summary values (e.g., count, sum, etc.) or the actual tgndp iS the average processing time per input tupleis the
ples that newly entered the operator’s state. sum ofr. (the time to redirect input streams) addthe time

To avoid the suspension of processing, the composition der the first tuple to propagate from the upstream nodes).

a checkpoint message is conducted along a virtual “swedf ON average half a checkpoint interval worth of input tu-
line” that moves from left (upstream) to right (downstream) Pl€s. The average numbe, of duplicate tuples is close to
Atevery step, an operator closest to the right of the sweep li M Aout» WhereM is the checkpoint interval andl,.; is the

is chosen and once its state difference is saved in the checiéte of tuples on output streams.

point message, the sweep line moves to the right of the ope®verhead: Passive standby imposes high runtime over-
ator. The primary is free to execute operators away from théead. The bandwidth overhead is inversely proportional to

Nu

N

App

Produce tuples t Process tuples. N
and store in Uples i 2
ACK(0,0,125
output queues T ptrSSIl:;ea:ZW) ACK§1 (0] 50))
upl Filter o
Map output w store in output| 222 Iy NV R <:Nb
nion
tuples to “TU‘?\QS ” aueues C?Sslir:e =7 O's output queue 0 == N,
input tuples received P ACK(0,0,123)
Map output ‘m / cause((0,123).!) = (1,,200) ACK(1,0,55)
Trim w tuples onto _e:{_e\ \es I, cause((0,123),! 2) = “2*100)
output et of tuples| input tuples ec\g\ledu
queues <aved at APP [{

(a) N, receives acks from downstream and new tuples
from upstream. The filter processés/900] and produces

Figure 4. Inter-node communication in upstream backup S[500]

the checkpoint interval and proportional to the size of ghec ACK(0,,901) Mo

i N . ACK(1,1,,200) -
point messages. The processing overhead consists of gen- —————|Fle [\ — "
erating and processing checkpoint messages (proportional ACK01257 nion gL 28 L. 120 ﬁm
the bandwidth overhead). The checkpoint intendal)(de- P causel(0,188).1,) = (1,00) 188

257)
900

termines the tradeoff between runtime overhead and regover 7,)
)

time. Table 3 summarizes these results.

cause((0,187),
cause((0,187),

1)=(

cause((0,188),1) = (I,
) =(
1) =,

L
Iy
l

L
b

5.2 Upstream Backup (b) N, trims its output queue atO, 50) while pushing
new tuplesO[187] and O[188] downstream. N, also
maps the lowest level-0 ack receivéd, 123), onto level-

1 acks
Figure 5. One iteration of upstream backup

In upstream backupypstream nodes act as backups for
their downstream neighbotsy logging tuples in their out-
put queues until all downstream neighbors completely pro-
cess these tuples. For instance, in Figure 1, n¥geerves
as backup for nodev: if N fails, N’ restores the lost state reduces bandwidth utilization, but increases the size tifutu
by re-processing the tuples logged\at. When a failed node queues and the recovery time.
rejoins the system, it assumes the role of the recovery node 1, compose level-1 acks, each node finds, for each out-
starting from an empty state. The system is then able to tobut stream0, the latest output tupl®[v] acknowledged at
erate a new failure without further delay. _ level-0 by all downstream neighbors. For each input stream

The main difficulty of this approach is to determine the ; ihe node map®|[v] back onto the earliest input tupléu]
maximum set of logged tuples that can safely be discardelqi',at caused|[v]. This backward mapping is conducted by
given operator no_n-determinism and the many-to-many relag functioncause((O, v), I) — (I,u), where(Z,) denotes
tionship between input and output tuples. the identifier of tuplel [u] and marks the beginning of the se-

Figure 4 shows a typical communication sequence b%uence of tuples offi necessary to regeneraidv]. We dis-
tween three nodes’,, N, and App. Each node produces ¢ss the cause function next. The node performs these map-
and sends tuples downstream while storing them in its outyings for each output stream and identifies the earliesetupl
put queues. Each node also periodically acknowledges réy, each input stream that can now be trimmed. The node pro-
ception of input tuples by sending level-0 acks to its direcjyces level-1 acks for these tuples. Each upstream neighbor
upstream neighbors. When a nodeg, V) receives level- ims jts output queues up to the position that correspoads t

0 acks from downstream neighboesg, App), it notifies its he oldest tuple acknowledged at level-1 by all downstream
own upstream neighbore.g, V,,) about the earliest logged peighbors. We present this algorithm in more detail in [11].

tuples (one peN,,’s output) that contributed to producing the Figure 5 illustrates one iteration of the upstream-backup
acknowledged tuples and are thus the oldest tuples negessafy ithms on one node. In the example, nddereceives
to re-build the current state (o¥). Discarding only earlier o010 and level-1 acks from two downstream neighbs
tples allows the system to survive single failures. The-not 5 N,. First, since both neighbors have now sent level-
fications are thus called level-1 acks (denatedK (1, S,u), 1 zcks for tuples up t®[50], N, removes from its output

where S identifies a stream and identifies a tuple on that - :

) . queue all tuples precedin@[50]. Second, since botly, and
stream). Leaf nodes in the DSPS use level-0 acks to tnr%}J rl:ave selzjrﬁ)t Iev%I-O aclg[for]tumes up(ﬂ[I>123] N, Zr)naps
their output queues. 0J123] back onto the first input tuples that caused ¥,

Since upstream nodes log all tuples necessary for the Segap, s jevel-1 acks for these tuples, identified with 200)
ondary to re-build the primary’s state from an empty state (i and(I2, 100). In the exampleN, also receives tuplef [901]

put preservation) and the secondary restarts from an eémply,q 7.1957] from its upstream neighbors and acknowledges
state (output preservation), upstream backup providds ro'their reception with level-0 acks

back recovery.

5.2.1 Queue Trimming Protocol 5.2.2 Mapping Output Tuples onto Input Tuples

To avoid spurious transmissions, nodes produce both levelde now discuss how nodes compute the cause function,
0 and level-1 acks every/ seconds. A lower ack frequency cause((O,v),I) — (I,u). This function maps an arbitrary

output tupleO[v] on streamO onto the earliest input tuple network selectivity minus the number of tuples that remain a
I[u] on input streanT that has contributed to the production part of the query-network state.
of O[v] (i.e. affected the value 0D[v]). To facilitate this Overhead: Upstream backup has the lowest bandwidth over-
mapping, we propose to keep track of the oldest input tuplelsead because queue-trimming messages, which contain only
that affect any computation, by appendingut-tuple indica- the tuple identifiers for streams crossing node boundaaies,
torsto tuples as they travel through operators on a node. Forsgignificantly smaller than checkpoint messages used by the
tuple O[v], these indicators, denoted withdicators(O,v), other approaches. The processing overhead is also small: op
contain the identifiers of the oldest tuples on input streamerators keeps track of the oldest tuple (and its indicatoms)
necessary to generatgv|. We also call these indicatolsw each of their input streams that contributes to their curren
watermarks On any stream, indicator values are monotoni-states. Furthermore, we can reduce the spatial and compu-
cally non-decreasing. tational overhead of managing indicators by processingthe
When a tuple enters a node, its indicators are initializecind appending them to tuples occasionally. In generalpthe t
to its identifier: e.g.,indicators(I,u) = {(I,u)}. Each op- tal overhead, as summarized in Table 3, is proportionalgo th
erator uses the indicators of its input tuples to compute thaumber of operators and the number of paths, where a path is
indicators for its output tuples. When it is first set up, eacha data flow connecting an input stream to an output stream.
operatoro initializes a watermark variable for each node- 5§ 3 Active Standby
wide input streand that contributes to each input streashof . . - .
o: w[I,S] = 0. As it processes tuples, the operator updates Active standbys another_ variation on t_he process-pairs
eachwI, S] to hold the indicator of the oldest tuple currently model. In contrast to passive standby, with active standby,
in the state or, for stateless operators, the indicatorhef t each secondgry hode receves tuples from upstream and pro-
last tuples processed. When it produces a tupthe oper- cesses them in parallel with the primary. The secondary; how
ator iterates through alb values and appendy., wms,) to ever, does not send any output tuples downstream. It logs

o : - these tuples in its output queues instead.
dicators(t), wherew,,;, is the minimum of altu[1, «|. . o .
indicators(?), men [. M The challenge of active standby lies in bounding the out-

:) rBElt queues on each secondary, while ensuring output preser-
but only a few of them actually contribute to any smglg Ou.t'vation. Because the primary and secondary may have non-
put tuple. These operators can reduce the number of indica;

tors on output tuples by appending only indicators for inpu& eterministic operators, they may have different tuples in

heir output queues. To identify duplicate output tuples, w
streams that actually affected_ th? output tuple value. Thu dd a second set of input-tuple indicators to each tupleaFor
cause((O,v), I) refers to the indicator 0O[v] that corre-

sponds to streanh, or to the indicator of the last preceding tuple, O[u], this second set contains for each input stréam
tuple affected by, if O[v] was not affected by. Note that the identifier(I, «) of themost recentuple that contributed to

indicators are not sent to downstream nodes. More detaif%he production oD[v]. We call these identifiersigh water-
o . : arks A tuple at the secondary is duplicate if it has a lower-
about the use of indicators can be found in [11].

) L ..valued high watermark than a tuple at the primary. Indeed,
Figure 5 §hows an example of managing input-tuple indiypg tuple results from processing the same or even older in-
cators. In Figure 5(a), the filter processg$00] and pro- sy ples. Each secondary thus trims all logged outpuegipl
ducesS[500]. Hence,indicators(S, 500)={(1,900)}. N nat have a high watermark lower than the high watermarks
Figure 5(b), the union operator processes tl_Jpﬂ{fE)O] and ofihe tuples already received by downstream nodes. For high
1,[257] to produceO[187] and O[188] respectively. Hence,

1214 = watermarks to be correct, we need to distinguish inputetupl
indicators(0,187) = {(11,900)} andindicators(0,188) jgicators that travel on different paths through a node. We
= {(I2,257)}. Thereforecause((O, 188),1;) = (I1,900),

\ / discuss these details furtherin [11].
cause((0,188), Ir) = (I2,257), andcause((0, 187), 1) = Watermarks are never sent between upstream and down-
(11,900). cause((O, 187), I5) depends on the indicators of

. stream nodes but they are sent between primary and sec-
the tuples preceding. ondary nodes, as illustrated in the following example. We
Recovery Type: Upstream backup restarts from an emptyyse Figure 5 to illustrate active standby but we assume in-
state producing a repeating recovery for repeatable quEFy n dicators are high watermarks. WherCK (0,0, 125) and
works, a convergent recovery for convergent-capable querxCK (0, 0, 123) arrive, nodeN,, determines tha©[123] is
networks and a divergent recovery for all others. These-guahow acknowledged at level-0 by both downstream neigh-
antees are weaker than those of the standby approaches. pors. Since tupleD[123] maps onto input tuples iden-
Recovery Time: The time, K, to receive the first tuple is the tified with (I3,200) and (I3,100), the set of identifiers
same as for passive standby but the recovery node may réfly, 200), (I2,100)} is added to the queue-trimming mes-
process significantly more tuples. It must re-process (1) akage as the entry value f@». When the secondary re-
tuples that contributed to the lost state, (2) a completeigue ceives the queue-trimming message, it discards tuples
trimming interval worth of tuples on average (due to the pe{from the output queue corresponding @) for which
riodic transmission of both level-0 and level-1 acks), ad (cause((O,u), ;) returns a tuple older thard;[200] and
some extra tuples that account for the propagation delays efuse((O, u), I2) returns a tuple older thaf[100].
level-0 acks. The numbedy, of redundant tuples is the prod- If the primary fails, the secondary takes over by sending
uct of the number of tuples to reproces3)(@nd the query- the logged tuples to all downstream neighbors, and then con-

S remoi | Broveriead Pasrs(il‘gvztr?]g‘;%y R can only forward checkpointed tuples downstream. This con-
Seterminisid none negligible one straint causes bursty output while also increasing thetend-
Arbitrary none negligible none end_ latency. o _
Active standby Active Standby: For a deterministic query network, active
Q. network | bw-overhead praoverhead _redime standby also makes recovery precise by asking downstream
geg,‘?fm'”'s“c o it ”jgt“g'b!e e oa t nodes for the identifiers of the latest tuples they receildu:
roirary ererminants y te ermt')”az s 1+ f5(l0g. freq) delay imposed by this request cannot be masked and thus ex-
pstream backup .
O hetwork | bw.overhead Sramverhead Tedime tends the recovery time by F_or other query networks, we
TR wsize(tuple1d) — must ensure that both the primary and secondary follow the
Repeatable S Setiuplo) negligible none . e
c X £k v taploid) doubl bl same execution. To do so, whenever a non-deterministic op-
onvergen Size(tuplo) ouble - neglgio’e erator executes, the primary must collect all informatiea-n
Arbitrary determinants determinants negligible

essary to replay the execution of the operator. The primary
accumulates such information, called determinants [8]a
log message. Determinants affect both bandwidth and pro-

tinuing its processing. When the failed node rejoins the syscessing overhead. The logging frequency affects (1) the re-
tem as the new secondary, it starts with an empty state arf@Very time, because non-deterministic operators on tbe se
becomes up-to-date with respect to the new primary only afondary cannot execute until they obtain appropriate determ
ter processing sufficiently many input tuples. Active stand Nants, and (2) the end-to-end delay, because the primary can
guarantees rollback recovery since each secondary always 0t send tuples downstream until the secondary receives all
ceives what its primary receivesput preservatiopand each ~ determinants involved in generating these tuples.

secondary discards logged output tuples only when they b&lpstream Backup: In repeatable query networks, operators
come duplicatequtput preservation produ_ce output tuples by comb_inir!g at most one tuple from
Recovery Type: Because the secondary processes tuples igach input stream. Input-tuple indicators therefore uaigu
parallel with the primary, active standby provides repegti identify tuples and can serve for duplicate eliminatiorienf
recovery for all deterministic query networks and divergeniNg precise recovery with negligible extra processing ever
recovery for others. head. For a convergent query network, the secondary must

Recovery Time: Because the standby continues processinﬁe able to remove duplicate output tuples during recovery.
during failure, it only needs to transmit all duplicate tespl 1t @chieves this by using the additional high watermarks as

in its output queue to reach a state equivalent to that of thiScussed in Section 5.3. This approach thus doubles the
primary. Recovery time is therefore negligible. The numberProcessing overhead. For repeatable query networks, nodes
A, of redundant tuples is on averag&est + 24\, for forward low watermarks downstream while for convergent-

1 2 ou

each output streamV/ determines the trimming interval for caPable query networks, nodes forward high watermarks in-
the secondary’s output queues. stead. In both cases, the extra bandwidth overhead is approx

. . . f(k)xsize(tuple_id) . .
Overhead: Because all processing is replicated by thelMately —=FZ 5=, wheref (k) is a function of the av-

standby node, botproc_overhead andbw_overhead are ap- ~ erage number of input streams (at a node) that contribute to
proximately 100%. The overheads are actually somewha&n output stream. As in active standby, upstream backup can
higher due to the processing of input-tuple indicators andprovide precise recovery for more complex query networks
transmitting queue-trimming messages. Table 3 summarizé® logging determinants from primary to secondary. Unlike

Table 4. Added overhead for precise recovery

these results. active standby, these determinants are processed only when
. . the secondary takes over. The details of the protocol are pre
6 Precise-Recovery Extensions sented in [11].

All recovery approaches can achieve precise recovery fo_; .
convergent-capable query networks, by eliminating diptic Evaluation
tuples during convergence. It is also possible, though much
more costly, to provide precise recovery for arbitrary net-
works. Table 4 summarizes the extra runtime overhead angh-iied simulator of a DSPS. Table 5 summarizes the main

recoyery time reqwred-for precise recoyery.) simulation parameters. The parameter values were obtained
Passive Stand_by:Ffasswe standby provides repeating recovom our prototype implementation, which currently suptsor

ery for deterministic query networks. To make recovery préy|| our recovery types for simple repeatable query networks
cise, before sending any output tuples, the failover nod&mug4ch point shown in the figures is the average of 25 simula-
ask downstream neighbors for the identifiers of the last tugon runs. at least one simulated minute each. Because am-
ples they received and then discard all tuples preceding thessja has no overhead and a zero recovery time, but provides
ones identified. These requests can be made while the re-
covery node regenerates the failed state, achieving gresis IThe representation of a determinant depends on the opéyatar For

covery without additional overhead. For a non-determinist S*@mple. the determinant for a random filter could be reprieseas a bit
vector where each bit shows whether the corresponding pgssed or was

query ne_twork, because the Secondary may prOduce_diﬁeH'ropped. For a union operator, the determinant must indlne@xact inter-
ent duplicate output tuples when it takes over, the primaryeaving of tuples.

We evaluate and compare the performance of each ap-
proach through simulations. Using CSIM [17], we built a

[Parameter [Meaning

Default Looking at the overhead, upstream backup is the clear

/\D Z*pl”t tt“pée ?”it\’f‘r'] r"’]}tfj‘l(t“p'efs’s) S %ggo winner with an overhead close to zero. Even with a 25 ms
elay 10 aeteC e 1aliure or a node (Ims _
M queue-trimmingcheckpoint interval (ms) 50 Comm.umcat.lon interval, the node transmlt.s only One B-byte
- fime to redirect Input streams (ms) 20 tuple identifier for every 25 tuples it receives, yielding an
Tuple size of a tuple and size of a tuple id (bytes) | 50, 8 overhead of 0.64%. Upstream backup, however, has the slow-
Network bandwidth(Mbps) and delay(ms) 16,5 est recovery as it must recreate the complete state of tleel fai
Proc. Ei?tsetr avg. processing time per input tuples) 10 query network. Upstream backup’s recovery time is also most
Aggregate | (Proc. Cost of Filtey + Window * ;1 | 100 sensitive to '_[he duration of the communication |r_1t¢rvab-Fr
Selectivity | expected value of JoUPI DS emited. 01 quent timming redu_ces recovery time for a negligible gdded
puliup overhead until the size of the query network and the time to

redirect the input streams {s 40 ms in our prototype) even-

Table 5. Simulation parameters and their default values - . ! -
tually limits the recovery speed. Recovery time is stillarel

100¢ tively short compared with the 250 ms failure detection gela
S Active standby has an overhead of at least 100% because
g | the secondary receives all input tuples in parallel with the
£ Goi T primary. Queue-trimming messages used to discard output
= tuples from the secondary make the overhead slightly exceed
s 40f , & 100%. Active standby has a negligible recovery time, though
o -©- Passive Standby . .
& -5~ Active Standby (rollback) The secondary only needs to resend half a queue-trimming
200 % D i) interval worth of duplicate tuples stored in its output gesu
o= Upstream Backup (precise) | Passive standby’s recovery time is between that of the
0 50 75

other approaches because the secondary already has a snap-
shot of the last checkpoint but must ask upstream nodes to
Figure 6. Recovery time and runtime overhead for rollback ~ "€direct their output streams and must re-process on aserag
and precise recovery as the communication interval varies half @ checkpoint worth of tuples. Passive standby’s owthe
from 25 ms to 200 ms (indicated by the arrows) varies significantly with the communication interval asteac
checkpoint message contains an update of the query-network
state. When operators have a selectivity of less than 1.0,
increasing the interval between checkpoints also inceease
only gap recovery, we focus our evaluation on the other threghe number of tuples processed and dropped without being
approaches. checkpointed. The knee at 100 ms corresponds to the 100 ms
We first examine the overhead and recovery performancgindow size. The curve would be smoother for a larger query
of each approach for rollback recovery and a convergeninetwork.
capable query network (Section 7.1). We then evaluate the
added overhead of achieving precise recovery (Section 7.2).2 Cost of Precise Recovery
and examine the effect of query-network types and other Fi 6 al h . d .
guery-network properties on the performance of each ap- igure © also presents the recovery time and runtime

proach (Section 7.3). We finally examine how performancé?verhtea%gf Precise recovery. Ffor passive ?tandbybll and ac-
changes as a function of query network size (Section 7.4). Ve standby, precise recovery of convergent-capableyguer

For the overhead measurements, we only present bangetworks adds no runtime overhead compared with roll-

25 100
Bandwidth Overhead for High Availability (%)

width overhead because processing overhead poses simi ack recovery. Precise recovery increases the runtime over

: 0 _
tradeoffs while being more difficult to reproduce and evidua k*es?z(z(t?lf lgg?tre"f‘m backup bysi";‘c('t'tj'?c i(()i;/er 15 % (equal to:
pedd), with k = 1, and 2219 — 8 — ().16)

accurately in simulations. We refer the reader to Sections 4 size(tuple) ' size(tuple) 50
through 6 for a detailed discussion of processing overheadsbecause watermarks are now sent downstream. The overhead
thus remains much lower than that of the process-pair based
7.1 Runtime Overhead vs Recovery Time approaches.
For upstream backup and passive standby, the precise re-
To examine the runtime overhead and recovery time tradezovery time is almost the same as the rollback recovery time.
offs for rollback recovery and a convergent-capable querypstream backup must now process additional offset indica-
network, we simulate an aggregate with 100 ms windowtors but this adds negligible delay. For all approaches, re-
10 ms advance (this aggregate consumes 10% of a nod&svery nodes must now ask downstream neighbors for the
processing capacity) and default values for other paramete latest tuples they received. For upstream backup and gassiv
The only tunable parameter for each approach is the constandby this communication proceeds in parallel with tuple
munication interval, which is the queue-trimming interf@ re-processing (or input stream redirection). Active stand
upstream backup and active standby and the checkpointim@nnot mask this delay and recovery extends by the constant
interval for passive standby. Figure 6 shows the relation bevaluer (40 ms in our prototype). Overall, all approaches can
tween recovery time and bandwidth overhead as the commuwffer precise recovery for convergent-capable query nekta/o
nication interval varies from 25, to 50, 100, 150, and 200 msat a negligible incremental cost.

Query Net- | Result Upstream Active Passive Window size (tuples) 100 200 300 400 509

work Type Backup Standby Standby PS overhead (%) 111,55 11155 11154 11154 111.%4

Repeatable | Bw overhead (%) | 0.64 100.96 101.27 PS rec. time (ms) 48.9 51.7 54.6 60.0 63.
Rec. time (ms) 47.62 1.80 45.88 UB rec. time (ms) 69.9 98.9 138.7 188.5 248.

Convergent- | Bw overhead 0.64 100.96 111.55

capable Rec. time 6986 0.07 48.88 Table 7. Effects of query-network state size

Non- Bw overhead 1.28 101.91 101.90

deterministic | Rec. time 5092 182 47.24 Advance (tuples) | 100 50 25 10 5

PS overhead (%) | 102.6 103.6 105.6 111.6 121.p
PSrec. time (ms)| 47.5 47.5 47.6 48.8 51.6

Table 6. Effects of query-network type UBrec. time (ms)| 626 614 613 699 834

7.3 Effects of Query-Network Type Table 8. Effects of rate of query-network state change

We now examine the effects of query-network types on the e .))
basic performance of rollback recovery. Table 6 summarize@99regate operator with increasing window size (100 to 500

the recovery time and bandwidth overhead of each approadHP!€s), but a constant 10-tuple advance. Table 7 shows the
when the query network consists of a repeatable filter with€sSulting passive standby (PS) overhead and both passive
selectivity 1.0, our default convergent-capable aggeegatd ~ Standby and upstream backup (UB) recovery times.
a non-deterministic union operator that merges two streams !ncreasing the size of the query-network state does not
(500 tuples/s each) into one. Interestingly, the resultsvsh nepessanly increase the rate at which that state changes._ I
that neither the overheads nor the recovery times of the aﬁh's experiment, the overhead of passive standby remains
proaches are affected by the query netwiype constant at ;12%. The recovery time of passive standby due

Upstream backup and active standby use queue-trimmirf§ "eProcessing tuples (the part in excess of 40 ms) incsease
messages. Their overheads thus depend on the relative raf¥sabout a factor of three when the size of the state quintu-
of these messages and tuples on input streams rather than S This increase is due to the heavier per-tuple prougssi
other property of the query network. In Table 6, the unionc0St, due to computing aggregate values over larger numbers
has a slightly higher overhead with these approaches becad®f tuples. The increase in recovery time is more_pronouncgd
it has two input streams at half the rate each. The overhead 8" Upstream backup. The time spent reprocessing tuples in-
passive standby is proportional to the size of the checkpoirf€@ses roughly linearly with the size of the state. Upstrea
messages, which does not depend on the type of the quel@ckup_ must mdeeq reprocess a number of tuples directly
network but on the magnitude of changes in query-networlRToportional to the size of the query-network state.
state between two checkpoints. Because the aggregate has
the greatest differences in state between checkpointyéts 7.3.2 Rate of Query-Network State Change
head is highest with passive standby.] .) .]

Active standby recovers by retransmitting output tuplesWe examine the impact of increasing the rate at which the
In Table 6, the output rate is ten times lower for the aggreState of a query network changes using an aggregate operator
gate because of the 10 ms advance, resulting in a faster ré¢ith decreasing window advance from 100 ms to 5 ms and
covery for that operator. The other two approaches recovdpus increasing selectivity from 0.01 to 0.2. Table 8 shows
by re-processing tuples. Passive standby re-processies halthe impact of this increase in query-network state-updgtte r
checkpoint worth of tuples on average. Its recovery perforon the overhead of passive standby and the recovery times of
mance is thus independent of the type of the query networROth passive standby and upstream backup. _
but rather depends on processing complexity (during recov- As expected, the overhead of passive standby increases
ery tuples are re-processed at the maximum rate). Upstreaith the magnitude of changes in query-network state. The
backup’s recovery also depends on processing Comp|exit?_dvance determines the number of tUpleS that the Operator
There is, however, a second parameter. The number of tupl@oduces during a checkpointinterval. This number ineeas
that upstream backup must re-process depends on the sizefm 1 to 20 as the advance decreases from 100 to 5 ms.
the query-network state. For these reasons, the aggregste h The increased per-input-tuple processing cost due to
the longest recovery time with these approaches, especial@ smaller advance, slightly prolongs recovery for passive
with upstream backup. For passive standby the increase $andby (visible for an advance of 10 tuples of less). We
negligible compared with the stream redirection delay. might expect the same effect to cause a slight increase in the

Hence, for rollback recovery, the query network type doegecovery time of upstream backup. We measure a decrease
not affect recovery time or runtime overhead. Rather, the si instead. Upstream backup periodically updates the identi-
of the query-network state and the rate and magnitude of thiéers of the oldest tuples on each input stream that congribut
state changes affect recovery time of upstream backup ari@l the current query-network state. When the state changes

overhead and somewhat recovery time of passive standby. more rapidly, the older tuples are discarded faster andweco
ery restarts from a later point. This in turn results in adast

recovery. For a small enough advance, however, the added
processing cost dominates recovery time. As the advance
We examine the effects of increasing the size of the queryeaches 10 ms, the recovery time starts increasing.

network state by simulating the failure and recovery of an In summary, for rollback recovery, the size of the query-

7.3.1 Size of Query-Network State

180r

L & Passive Standby Additionally, both in our prototype and simulator, we make
160 -5~ Active Standby (rollback) the first nodes in the system adopt the passive-standby model
1404 -5~ Active Standby (precise) . th h . t . t t
2 - Upstream Backup (rollback) since other approaches impose extra requirements on stream
=120 —— Upstream Backup (precise) sources. Active standby requires that each source sends the
-ElO({é stream to two different locations and upstream backup re-
g 80} quires that each source loggs the tuples it produces.
3 60 — Upstream backup provides precise recovery for most
G—6—6—"o-9o))
© a0t <& guery networks with the lowest runtime overhead but at the
20t cost of a longer recovery. The recovery time of this approach
% = = 50 200 however, can be significantly reduced by distributing the re
Bandwidth Overhead for High Availability (%) covery load over multiple nodes. In general, upstream backu

_ is appropriate when short recovery delays are tolerablésand
Figure 7. Effects of the number of operators. The arrows thys particularly suitable for sensor-based environment a
indicate the directions of the trends infrastructure monitoring applications. In contrast togess-

pair approaches, recovery nodes can be chosen among live
nodes allowing all servers to process data streams at rantim
network state increases upstream backup’s recovery tim
while the rate and magnitude at which that state changes in¥ Related Work

pacts the runtime overhead of passive standby. Reliability through redundant processing, checkpoint-

7.4 Effect of Network Size ing, and logging has been widely studied in the context
' of traditional applications [9]. Recently, there has been

Increasing the size and complexity of the query networkhuch work on data-stream processing (e.g., Aurora [1, 5],
translates into increasing the size of the query-netwatest STREAM [18], TelegraphCQ [6]), including proposals for
the rate at which this state changes, and the processing coffistributed engines [7, 22]. In this paper, we investigate h
plexity. As an example, Figure 7 shows the performance of0 achieve high availability in these new systems. o
each approach for a chain of 1 to 5 aggregate operators (with "€ process-pairs model is adopted by many existing
the parameter values from Table 5). Other configuration®BMSs [8, 19, 21, 20]. Oracle}lDataGuard [19] is one
yield similar results. such facility built on top of Oracle Streams [20]. The lat-

As expected, increasing the number of operators increasé@' enables cross-database event propagation and trigiger-
the overhead of passive standby because the number of tupfe@sed processing of event streams. DataGuard suppors thre
that are produced inside or at the output of the query networl€Covery modes: maximum protection (MPR), availability
increases. Larger query networks also slightly increase rdMAV), and performance (MPE). MPR synchronously ap-
covery time for passive standby because the processing comies the same update to multiple machines as part of the
plexity of each tuple increases. The recovery time of upS&@me ftransaction, providing precise recovery. MPE asyn-
stream backup increases rapidly as the state of the query néironously transmits redo logs to the standby, providing ga
work increases with each extra aggregate. It reaches 170 rigcovery only. MAV switches between MPR and MPE based
for 5 operators, which is still relatively short comparedtwi O the accessibility of the standby. Our approaches provide
the 250 ms failure detection delay. Interestingly, everait Precise recovery at a lower overhead because checkpognts ar
larger query network, upstream backup still provides Eeci asynchronous and they also offer rollback recovery.

recovery at a fraction of the cost of the other approaches. ~~ Commercial workflow systems [13] also rely on redun-
dant components to achieve high availability. A variation
7.5 Discussion of the process-pairs approach is used in the Exotica work-

flow system [14]. Instead of backing up process states, Ex-

The results show that each approach poses a clear tradatica logs changes to the workflow components, which store
off between recovery time and processing overhead. Activinter-process messages. This approach is similar to ugrstre
standby, with its high overhead and negligible recoveretim backup in that the system state can be recovered by repro-
appears particularly well suited for systems where quiek recessing the component backups. Unlike upstream backup,
covery justifies high runtime cost®.g, financial services, however, this approach does not take advantage of the data-
military applications). flow nature of processing, and therefore has to explicitigkba

Passive standby does not seem well suited to streanup the components at remote servers.
processing systems as its performance is worse than that of The DR scheme [15], which efficiently resumes failed
active standby for both recovery time and runtime overheadwvarehouse loads, is also similar to upstream backup. Idstea
Passive standby, however, is the only approach that easibf offset-indicators, DR uses output tuples and propedfes
provides precise recovery for arbitrary query networks. Itoperators to compute, during recovery, the trimming bounds
is thus best suited for applications, such as patient menitoon input streams. In contrast to DR, our scheme supports in-
ing and other medical applications, that impose a somewhéinite inputs by trimming output queues at runtime. We also
lower load on the system but necessitate precise recoversupport failure recovery at the granularity of nodes indtefa

the whole system. We do not require that input streams havd2] A. Arasu, S. Babu, and J. Widom. The CQL continuous query

any property such as order on some attribute.

In parallel processing systems, router nodes distribute in 3
coming messages across a set of parallel servers [12, 22f.]
If a server fails, the router re-directs incoming messages t
other nodes. These approaches address how to select failovi4]
nodes and re-route messages to them, whereas we focus on
replicating and recovering state. In MQSeries [12], messag
that are being processed by a server when the failure happer‘g’]
are trapped until the server recovers. Flux [23] introduces
a technique similar to our active-standby method. It tr@es t
accomplish loss-free and duplication-free failure/resxg\se- [6]
mantics by exploiting sequence numbers assigned to tuples.
It currently only considers order-preserving or set-preisg 7]
operators though and thus cannot support convergent-tapab
and divergent queries discussed in this paper.

8
9 Conclusion el

In this paper, we argue that the distributed and data-flow
nature of stream processing applications raises novet chall€]
lenges and opportunities for high availability. We defineth
recovery types that provide increasingly stronger guaest 10]
We also define four classes of operators and query networks
based on their impact on the cost of providing various recovfl1]
ery guarantees. Within this framework, we introduce these r
covery approaches that provide the proposed guaranteles wit
different combinations of redundant processing, chealpoi [12]
ing, and logging.

Using analysis and simulations, we quantitatively char-
acterize the runtime overhead and recovery time tradeoffs
among the approaches. We find that each approach coli3]
ers a complementary portion of the solution space. Process-
pair based approaches, especially active standby, pravide [14]
fastest recovery but at a high cost. Active standby is thus
best suited for environments where fast failure recovegy (i
minimal disruptions) justifies higher runtime costs. Passi
standby is best suited to provide precise recovery for iamtyit [15]
guery networks. In contrast, upstream backup has a signifi-
cantly lower runtime overhead but a longer recovery time tha{le]
depends mostly on the size of the query-network state. This
approach is thus best suited for an environmentwhere &slur
are infrequent and short recovery delays are tolerable. [17

We currently have a basic prototype implementation thahs]
can provide the proposed recovery types for repeatableyquer
networks. We will extend our prototype to support arbi-
trary query networks and perform experiments on real de-
ployments. We also plan to investigate how to simultane-
ously use different recovery approaches at nodes in a DSP§,
and, thus leverage the benefits of all schemes. We also plg)
to study network partitions, multiple failures, and theeiratc-
tion between high availability and load balancing. [21]

References [22]

[1] D.J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, @rc 23]
vey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora

A new model and architecture for data stream management.
The VLDB JournglSep 2003.

language: Semantic foundations and query execution. Techn

cal Report 2003-67, Stanford University, 2003.]
B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.

Models and issues in data stream systemsPriyc. of 2002

ACM PODS June 2002.)
J. Barlett, J. Gray, and B. Horst. Fault tolerance in Temnd

computer sytems. Technical Report 86.2, Tandem Computers,

Mar. 1986.])
D. Carney, U. Cetintemel, M. Cherniack, C. Convey, Sel e

G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik. Moni-
toring streams: A new class of data management applications

In Proc. of the 28th VLDBAug. 2002.)
S. Chandrasekaran, A. Deshpande, M. Franklin, and JeHel

stein. TelegraphCQ: Continuous dataflow processing for an

uncertain world. IrProc. of the 1st CIDRJan. 2003.
M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney

U. Cetintemel, Y. Xing, and S. Zdonik. Scalable distrilaite

stream processing. IRroc. of the 1st CIDR2003.
E. Cialini and J."Macdonald. Creating hot snapshots and

standby databases with IBM DB2 Universal Databa4e
V7.2 and EMC TimeFindéf ™). DB2 Information Manage-

ment White Papers, Sept. 2001.
E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson

A survey of rollback-recovery protocols in message-pagsin

systems ACM Comput. Sury34(3):375-408, 2002.
J. Gray. Why do computers stop and what can be done about

it? Technical Report 85.7, Tandem Computers, 1985.
J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel,

M. Stonebraker, and S. Zdonik. High-availability algonth
for distributed stream processing. Technical Report C®84

Department of Computer Science, Brown Univers,i\tkf 2004.
IBM Corporation. =~ Getting the most out of MOSeries.

White paper. http://vww bne. comresour cecent er/
par t ner s/ nyser i es/ get ti ngt henost out of %

mﬁeri es. htnh, 2003.
IBM Corporation. IBM WebSphere V5.0: Performance,lsca

ability, and high availability: WebSphere Handbook Series

IBM Redbook, July 2003. o
M. Kamath, G. Alonso, R. Guenthor, and C. Mohan. Prawydi

high availability in very large workflow management systems
In Proc. of 5th Int. Conf. on Extending Database Technalogy

1996.
W. Labio, J. L. Wiener, H. Garcia-Molina, and V. Gorelikf-

ficient resumption of interrupted warehouse loadsPtac. of

the 2000 ACM SIGMOPMay 2000. .
S. Madden and M. J. FranKlin. Fjording the stream: Arharc

tecture for queries over streaming sensor dataPrisc. of the
18th ICDE_2002.

] Mesquite Software, Inc. CSIM 18 user guidatt p: / / vwwy

nesqui te.com
R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,

M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.
Query processing, approximation, and resource management
in a data stream management systenProc. of the 1st CIDR

Jan. 2003.

9] Oracle Inc. Oracle 1@high availability solutions.http://

otn. oracl e_conidepl oy/ avai l abi lity.)
Oracle Inc. Oracleigstreams - online documentatioht t p

[/ waw or acl e. com o
A. Ray. Oracle data guard: Ensuring disaster recoveryte

enterprise. An Oracle white paper, Mar. 2002.
M. Shah, J. Hellerstein, S. Chandrasekaran, and M.Kfiran

An adaptive partitioning operator for continuous query-sys

tems. Technical Report CS-02-1205, UC. Berkeley, 2002.
M. A. Shah, J. M. Hellerstein, and E. Brewer.” Highly-

available, fault-tolerant, parallel dataflows. Rroc. of the
2004 ACM SIGMODJune 2004.

