Dealing with Overload in Distributed Stream Processing Systems

Nesime Tatbul Stan Zdonik

Brown University, Department of Computer Science, ProvideRi USA
E-mail: {tatbul, sbz}@s. brown. edu

Abstract data stream processing systems (e.g., [4, 11, 15]). These

Overload management has been an important problem fo}echniques focus on single-server solutions. Howeverjsn d

large-scale dynamic systems. In this paper, we study this-pr t”bUtek? st(;eam proce?sm_g sdystems, each s;zrver rrl]odefl@cts I
lem in the context of our Borealis distributed stream preees & Workload generator for its downstream nodes. Therefere, r
ing system. We show that server nodes must coordinate spurce management decisions at a node will affect the charac

their load shedding decisions to achieve global control att 0 teristic of the wprklo:?\d received b}’ Its successor nodgs. .

put quality. We describe a distributed load shedding appoa ~ -0ad shedding aims at dropping tuples at certain points
which provides this coordination by upstream metadata eggr along the server chain to reduc.e Ipad. Unlike TCP congestion
gation and propagation. Metadata enables an upstream noggontrol, there are no retransmissions and dropped tupées ar

to make fast local load shedding decisions which will infeeen 10St forever. This will have a negative effect on the quatity
its descendant nodes in the best possible way. the results delivered at the query outputs. The main goal is t
minimize the quality degradation. Because of the load depen

dency between nodes, a given node must figure out the effect
of its load shedding actions on the load levels of its desaend

. nodes. Load shedding actions at all nodes along the chdin wil
Overload management has been an important challenge f%r g g

| e d . ¢ h Kload ollectively determine the quality degradation at the atgp
arge-scaie dynamic systems where workioad can L_me?(pec?'his makes the problem more challenging than its centmlize
edly increase while quality of service has to be malntamedC

: ounterpart.
These systems have developed various load management tech-
nigues from adaptive load distribution to admission cdratnal A
load shedding. The choice of a specific technique depends oln'l' Motivating Example

the characteristics of the workload, available protodudd te-

fine resource allocation policies as well as requirementsef . : ! o
the simple query network with two queries that are disteblut

application. : ;
We consider the overload management problem in the conQnto two processing nodes A and B (Figure 1). Each small box

L . . . represents a subquery with a certain cost and selectivigt C
text of distributed stream processing systems. In thisrenvi g
) o represents the CPU time it takes for one tuple to complete the
ment, large numbers of continuous queries in the form of a col L .
. . S . subquery, and selectivity represents the ratio of the nummbe
lection of operator chains are distributed onto multiple/ses. ; : .
. . . .output tuples to the number of input tuples. Both inputsvarri
These queries are essentially dataflow diagrams that eeceiv

) t the rate of 1 tuple per second. Potentially each node can
and process continuous streams of data from external push- L ; ;
. o - reduce load at its inputs by dropping tuples to avoid ovefloa
based data sources. Real-time monitoring applicationssre

pecially well-suited to this kind of systems. In this domain Let's co_nsgjer node A. Table 1 shows various ways thatA can
roviding low-latency, high-throughput answers to queiie reduce its input rates and the consequences of this in tefms o
Eighly important ' the load at both A and B, as well as the throughput observed at

L th r tputs (Note that we ar min fair sch ler
Data streams can arrive in bursts, and provisioning the sys- € query outputs (Note that we are assuming a fair schedule

tem resources for worst-case bursty load is in general rt ec

1. Introduction

Let us illustrate our point with a simple example. Consider

nomically worthy. On the other hand, bursts in data rates Node A Node B
may create bottlenecks at some points along the server.chain

Bottlenecks may arise due to excessive demand on process- m=1] [cost=1 cost=3
. . sel =1.0 sel=0.5
ing power at the servers or bandwidth shortage at the shared

physical network that connects these servers. Bottlersois rp=1 Cost=2 cost=1
down processing and dissemination, and cause delayed out- sel=1.0 sel=1.0

puts. These bottlenecks have to be efficiently detected and
quickly resolved to maintain quality of service.
Various load shedding techniques have been proposed for Figure 1. Example

| Plan | Reduced rates at A A.load | A.throughput| B.load | B.throughput] Result |

0 1,1 3 1/3, 1/3 4/3 1/4,1/4 originally, both nodes are overloadeq
1 1/3,1/3 1 1/3,1/3 4/3 1/4, 1/4 B is still overloaded

2 1,0 1 1,0 3 1/3,0 optimal plan for A, but increases B.load
3 0,1/2 1 0,1/2 1/2 0,1/2 both nodes ok, but not optimal

4 1/5, 2/5 1 1/5, 2/5 1 1/5, 2/5 optimal

Table 1. Alternate load shedding plans for node A

that allocates CPU cycles among the subqueries in a roundystem. Also, these replica streams may serve multiplereliff
robin fashion). In all of these plans, A can reduce its load toent end-point applications. Therefore, shedding loadreefo
the capacity limit. However, the effect of each plan on B can b after a split point makes a difference in output quality.

very different. In plan 1, B stays at the same overload ldvel.

plan 2, B’s load increases more than twice its original Idad. 1.3. Solution Alternatives

plan 3, B’s overload problem is also resolved, but througigu

low. There is a better plan which removes overload from bothye identify two general classes of solutions:

A and B, while delivering the highest total throughput (plan centralized Approaches. In a centralized approach, a node
4). However, node A can only implement this plan if it knows can pe designated as the coordinator. The coordinator node
about the load constraints of B. Because from As point ofwie js jnformed about the complete query network topology. Ad-
the best local planiis plan 2. This simple example clearlysho gitionally, it periodically collects performance staitist from

that nOdeS must Coordinate in theil‘ |Oad Shedding decismns each participating node_ It produces a g|0ba”y Optimah p|a

be able to achieve high-quality query results. based on this information. Each node receives its piece of
_ the global plan and applies it. In this approach, nodes do not
1.2. Design Goals directly participate in planning and decision making; eath

they passively implement the plan dictated by the coordina-
An effective load shedding solution for a distributed stnea tor. Therefore, this approach can respond slowly to local
processing system should have the following properties: load spikes. However, high-quality outputs can possibly be
Fast reactivity to load. The main goal of load shedding is achieved due to better global control.
to maintain low-latency query results even during loadepik Distributed Approaches. In a distributed approach, each node
These situations need to be detected and addressed as soolisagsponsible for detecting and handling its own overlaad |
possible. To achieve this, the load shedding algorithm st cally. We expect this approach to react fast to load charmyes a
light-weight and the load shedding plahsust be efficiently thus maintain low latency. However, nodes need to communi-
deployed. In a distributed setting, having even a single-ove cate to come up with globally efficient solutions. If theres
loaded node in the query pipeline is sufficient to boost katen global coordination between nodes, output quality cartranbi
atthe outputs. Therefore, the solution must be equally@te ily change. Hence, the challenge is to establish coordinati
to each individual node’s problem. with minimal overhead.
Global control on output quality. While maintaining low- In the rest of this paper, we first describe our system model
latency results, the algorithm must also ensure that thé quaand the underlying assumptions that we make in Section 2.
ity of the query answers does not arbitrarily degrade. As evThen we present a sketch of our metadata-based solution ap-
idenced by our example above, a load shedding plan that cgsroach in Section 3. In Section 4, we discuss important open

deliver very high-quality results at a node locally, doesme®- issues that require further attention. We discuss relaiatk w
essarily achieve similar quality at the global level. Wharev in Section 5, and finally conclude in Section 6.

tually matters to the applications is the quality of the t&ssu
that they observe at the query end-points. Therefore, degar> Nodels and Assumptions
less of where load is being shed in the node chain, the regulti

effect at the query end-points must be kept under control. We study the overload management problem for distributed

SFa'ab”“Y- .The load shedding algorithm should spale well stream processing systems in the context of our Borealis pro
with certain important performance factors. These inclilnde totype system [1, 3]. Borealis accepts a collection of genti

number of server nodes, the number of input streams, and th, ;s queries, represents them as one large network of query
amount of branching that may exist along the queries. Branchy o at0rs (also known as a query diagram), and distribbtes t
ing is important since it causes a stream to split and relica . cessing of these queries across multiple server nodes. E
its contents into multiple streams, creating more load i th participating server runs Aurora as its underlying query-pr

1A load shedding plan indicates where in the query plan togedoad and cgssmg englng [2] Bo_reall_s prowdes not pnly the_cqre dis-
the amount of the required reduction. Load can be reducediousaways. In tr|bUt9d operation funct|oqal|ty, but also various opaation
this paper, we focus on dropping tuples. and high availability techniques. The optimization tecjugis

include dynamic load distribution and balancing, paraljgdr- 3.1. Feasible Input Table (FIT)
ator processing, and load shedding. Depending on the néeds o
the system, one or more of these optimizations can be applied Each node maintains a Feasible Input Table (FIT). Given a
at different levels of granularity, ranging from local toghl. node withm inputs, the FIT for this node is a table with+ 1
The Borealis statistics manager, deployed at each node, conolumns. The firstn columns represent the rates for thean-
tinuously collects data on various performance metrichkssc puts, and the last column represents the resulting outlitgu
operator costs, selectivities, tuple latencies, queugtfesnand score. FIT represents the feasible input space for a node tha
so on. Statistical information is what enables most Boseali will keep this node’s and all of its descendants’ CPU load be-
components to function effectively. low their available capacities. It is a way for a node to ezpre
Data streams are modeled as append-only sequences of its load expectations from its parent. The score column of a
ples. In addition to the regular data fields, tuples alsoycarr FIT is used to compare the estimated output quality for diffe
a system-attached header with various fields such as arrivaht entries. In some cases, the node may additionally need to
timestamp. These data streams are run through the querikeep a load shedding plan associated with a feasible input en
which are composed of our well-defined set of operators, eactny. As will be described below, this plan is completely Ibca
of which performs operations such as filtering, windowed ag-and transparent to the rest of the nodes.
gregation, merging, and correlation [2]. A node with no descendants (i.e. a leaf node) generates
We mentioned earlier that bottlenecks in a distributed setits FIT from scratch; other nodes build on the FITs that they
ting may arise both due to the lack of required processingeceive from their children.
power and also due to bandwidth limitations. In this paper,
we limit our scope to the former problem. 3.2. Generating FIT
There can be various quality metrics defined for the query
outputs. For example, the goal can be to maximize the total Leaf nodes generate their FIT based on the costs of the
query throughput, or the percentage of results delivere@érd queries that they are assigned to execute. Consider suatea no
can also be priorities attached to individual queries. er t with a single query of cost time units per tuple, which is fed
purposes of this paper, we assume that the quality metric thy a single input with rate tuples per time unit. The node is

maximize is the total query throughput. overloaded unless«c < 1. Thus, it can handle an input rate of
Finally, in this paper, we focus on tree-based server tepoloup to1/c before it becomes overloaded. Any input whose rate
gies. is smaller thanl /¢ constitutes a feasible input for this node.
Next consider a node with multiple query paths from its igput
3. A Metadata-based Approach to its outputs. Assume that there areinputs, inputi having

an upper bound oR; for its rate. This upper bound can be de-
We propose a distributed load shedding approach which itermined considering the total cost of the query paths fed by
based on informing upstream nodes about their childremis co in isolation from other paths. For each inputve will select a
straints so that they can take load shedding actions theinwil ~ set of values between 0 arftj. Each different combination of
fluence their downstream nodes in the best possible way. Thiie selected rate values for the input dimensions will dortst
approach has two advantages: a row in FIT if this combination is a feasible one. Further-
more, each such combination will lead to a certain total guer

* Nodes can make local load shedding decisions on theifhroughput. This total will be the score for that feasiblptin
own, which provides fast reaction to load; combination.

o Nodes are sensitive to their children’'s load constraintsPetermining Spread. Spread for an input dimension deter-
which provides the load shedding node direct control onmines how far apart the rate values should be selected for tha
total quality loss at its downstream outputs. dimension. The smaller the spread, the closer we can get to

the optimal feasible input. On the other hand, smaller sprea
In our approach, each node periodically sends metadata igquires that we consider a larger number of feasible points

the form of a Feasible Input Table (FIT) to its parent nodesyhich is more costly to store and process. We determine dprea
FIT is a summary of what a node expects in terms of its inpulyong each dimension in two alternative ways:

rates and how that translates into a quality score at the down
stream query end-points. When a node receives FITs from itse Based on a fixed maximum error from the optimal quality

children, it merges them into a single table. Furthermdre, t result: Assume that the query path from inpihas a total
parent maps the merged table from its outputs to its inpuds an path selectivity ofsel; (e.g. if we send an input of rate
removes the entries that may be infeasible for itself. Bmal tuples per second along paththe corresponding output
the parent propagates the resulting FIT to its own parertis. T rate will ber; x sel;). Givenm inputs, the total throughput
propagation continues until the input nodes receive thef6il T score will be}""" | 7; « sel;. When we divide a dimen-

all their downstream nodes. Using its FIT, a node can shed sion into units of spreasl;, then the error in the total score
load for itself and on behalf of its descendant nodes. Next we along dimension would be at most; * sel;. Given a
describe these steps in detail. bound for maximum error in score denoted &y, the

T2 cost=2]

104 " sel = 1.0
S _ _|cost=1
09 ¢..:.. - sel=1.0
— 0.8 . : cost=5
o 0.7 ¢.0- sel = 1.0
I 0.6 ¢ ¢-
T 054 ¢- . :
g 04 : Figure 3. Splits
R84
0'1 B 8 units while losing 2 output tuples. Dropping from the bot-
pod o tom branch is clearly the most beneficial. Therefore, theenod
08 2 L0l n should drqp c;ompletely frqm the bo'Ftom branch before drop-
o ocooocoo ping from its inputs. If the input rate ig then5 * r out of the
spread = 0.05 total load of8 xr should be handled locally. In other words, the
node will be able to handle an additional loadef beyond its
Figure 2. Feasible points capacity based on local drops. Hence, the node must make sure

that8 xr < 1+ 5*r. Therefore3d xr < 1. Note that now the
upper value bound for must beR = 1/3. We will generate
maximum error for each dimension must be at nfest. so-calledfeasiblepoints based omR. Also, for each feasible
Therefore, the spread aloagnust be:s; = S, point satisfying « r < 1, if it is also satisfying8 < 1, then
e Based on a fixed table size for FlGiven a boundB for no additional local drops are needed. Otherwise, we wilitere
the number of points to be stored in FIT, we can determineddditional plans where some portion of the data on the bottom
the spread along each dimension as follows. The maxibranch must be dropped locally. For example, givea 0.2,
mum error for each input dimension should be equal. Erit satisfies the extended load constraiht(< 1), but it does
ror on dimensioni is s; * m * sel;. We know thatR; is the ~ not satisfy the original load constraint(r < 1). We must ad-
upper value bound for dimensian Therefore, the num- ditionally shed 60% of the load on the bottom branch. In this
ber of points along should beB; = [%1 + 1. Hence, case, the total throughput score becomes 0.28. If we instead
s = ity Thereforengty «m o« sels must be equal 10 S o e point 0,125, which would
along all dimensions. We also know thét, = [[;_, 5:. give us the highest possible score of 0.25. In other words, by

From these, we can easily compu#galong one of the di- . e i
mensions, using which we can compute the error for that'Sing theladdmonal.local plan, we can shed sufficient loadl a
rovide higher-quality output.

dimension. Since errors should be equal on all dimensionso,
we can then computg for all of the dimensions.

3.3. Propagating FIT Upstream

To illustrate, consider node B in Figure 1. The rate upper
bounds for this node arB; = 1/3 andR, = 1. Assume that When a node A receives the FIT from its child node B, the
€maz 1S given to be 0.1. Thens; = 0.1/(2 « 0.5) = 0.1, feasible points in this table are expressed in terms of B's in
ands, = 0.1/(2 % 1.0) = 0.05. The set of feasible points is puts. As we assume that the network bandwidth is sufficient
shown in Figure 2. Thus, the FIT for this node has 46 entriesand the transmission is reliable, these rates directlyespond
The entry (0, 1.0) provides the highest total throughputesco to the rates at A's outputs. However, to be able to propagate t
of 1.0. FIT further upstream, A has to express FIT in terms of its own
Handling Splits via Local Plans. The query network may in- inputs.
clude operators whose output may split to multiple pathehEa Each inputi of A follows a query path to produce a certain
such path may have a different cost and a different path-seleoutput. Along this path, the rate efchanges by a factor de-
tivity. Due to this difference, dropping from some branchestermined by the product of the operator selectivies (gdy).
may be more desirable. However, this is completely a loeal isTherefore, given an output ratethe corresponding input rate
sue and need not be exposed to the parent. Instead, we alldor i is ser- 10 obtain A's FIT, we first apply this reverse-

a node to create FIT entries which are in fact not feasible anchapping to each row of B’s FIT; the corresponding score for
support these entries with additional local load sheddlagp each row stays the same. Then, we eliminate from the regultin
that drop tuples at split branches. By doing this, the noae caFIT the entries which may be violating A's load constraint.
achieve higher output scores. If there is a split along the path from an inputo multi-

We will illustrate this idea with a simple example. Con- ple outputs, and if all child branches of the split map to the
sider the query network in Figure 3. The input splits into twosame input rate value, then we just propagate that value-as de
branches. The top branch saves 2 units per dropped tuple at thcribed above. Otherwise, we propagate the maximum of all
expense of 1 output tuple, whereas the bottom branch savesifput rates. The assumption here is that any additionalcredu
units per output tuple lost. Also, dropping from the inputesa tion will be performed by applying tuple drops at remaining

branches of the split. The additional reduction is stored as in exchange for much higher throughput that can be achieved
local plan associated with that particular FIT entry, andche from lower-cost ones. Some applications may care about fair
not be propagated to the upstream nodes. quality degradation across queries. Additionally, pties can

If node A has multiple child nodes, then the FITs of thesebe assigned on the basis of queries, sources, or tuples. An im
children are combined by merging rows from each FIT withportant point to note here is that as the quality model get&emo
the rows from the other FITs. Any new entry violating A's complicated, it gets more difficult to capture and propatfate
load constraint has to be eliminated. The resulting scattgeis score from a downstream node to it parents. The hard part is
sum of the children’s row scores. figuring out the reverse mapping.

i Handling Generalized Server TopologiesMetadata merging

3.4. FIT-based Load Shedding and propagation works well with tree-based server topem®gi

Each node monitors its input rates. Based on these rateg/,here each server node has at most one parent node. In this

it locates a row in its FIT and adopts a local load shedding"S€: metadata from children can be merged, revised, and for

plan that matches that row. More specifically, given inptgga varded to the parent in an incremental fashion. Therefore, i
r1...rm, if FIT has at least one entdy where for alli, F.r; > enough for each node to communicate just with its immediate
s Imy ’ hl

r; (with no local plan associated with it), then the node is notdpwnstream and upstream neighbors. In more general topolo-

overloaded and no load needs to be shed. Otherwise, we firfieS Where a node can have multiple parent nodes, to achieve
the FIT entry F with the highest score for which, for all global coordination, nodes that are not immediate neighbor

F.r; < ;. Then we adjust input rates by dropping tuples sucHmay also need to communicate. The reason is that two nodes
that for alli, r; == F.r;. In other wordsy; must be reduced MaY have a common descendant about which each one has only
1 . e (]

by 1 — F.r;/r;. Additionally, if there is a local plan associated partial FIT information. In this case, the load sheddingidec
with 7, then that plan is also adopted. sions made at one of these nodes would influence the decisions

To illustrate, if node B in Figure 1 observes input rates (0.2 & the other one. L
0.35), then it is not overloaded since (0.2, 0.4) is a feasip| Addressing Bandwidth Bottlenecks. In bandwidth-limited

point (as shown in Figure 2). Therefore, no drops are necese_nvironments, there are several additional issues to d@ensi

sary. However, if it observes input rates (0.5, 0.5) indiggan T I'St: metadata propagation also takes up bandwidth, amcehe
overload, then the best FIT entry is (0.15, 0.5), which resuc metadata exchange has to be kept to a minimum. Second, the

load to 0.95 and provides a total throughput score of o0.575feasible rate points in the FIT, which are defined in terms of

Node B should reduce; by a factor of 0.7 by placing a drop the inputs of a node, do not directly map to the rates at the
at its top input. Note that once node B's FIT is properly propa outputs of its parent, because rates may also slpw down due
gated to node A, A will ensure, through its own load sheddingl® Network delays. Lastly, we should also consider that un-

mechanism, that node B never gets an input that would violatde" Pandwidth limitations, shedding load at the earliesteno

its FIT. Therefore, the second case we illustrated shouitheo 1" the server chain (even though that node itself may not be
observed. overloaded) is especially necessary. Bandwidth shouldaot

It is important to note that FIT-based load shedding is veryVasted for tuples that will eventually be dropped down in the
simple and efficient. Essentially, the table needs to behedr chain. Therefore, having parents shed load on behalf of thei

for the entry that matches the observed input rates. Since §ildren is important. We are planning to tackle the CPU and
FIT is ordered in descending order of the rates, the search céhe bandwidth problems under a common framework by treat-

be performed efficiently. As a result, nodes can respond t§'9 the network slow-down as just another query operatdr wit
overload very quickly. a certain time cost (selectivity = 1 since the network is-reli

able). Of course, this may not be so easy to achieve in shared
4. Open Challenges networks due to frequent variations in cost.

Centralized vs. Distributed Tradeoffs. Lastly, we need to
In this section, we briefly discuss some of the important operstudy the tradeoffs between the centralized and the digérib
issues that we are planning to address as part of our futurgpproaches. We speculated about how these approaches may
work. behave in terms of meeting the design goals that we defined in

Metadata Maintenance.FIT is constructed based on cost and Section 1. These hypotheses require experimental veidficat
selectivity statistics. As these statistics change, FI thabe

updated accordingly. If the FIT becomes stale, then parer§. Related Work

nodes may lose effectiveness in shedding load in the best in-

terest of their descendant nodes. As a result, we may end up The overload management problem in distributed stream
with lower quality outputs than we can otherwise achieve. Orprocessing systems has close relevance to the congestien co
the other hand, the size of a FIT can be large, and it can b&ol problem in computer networks [8]. Congestion in com-
inefficient to frequently update and propagate the wholketab puter networks mainly arises when routers run out of buffer
Instead, an incremental maintenance approach is required. space, either because their processors can not keep up with
Fairness and Priorities. Maximum total throughput is not a the incoming input traffic, or because the outgoing link has a
fair metric. It will penalize some of the costly query paths smaller bandwidth capacity than the incoming link [14]. iVar

ous IP-layer architectures have been proposed to mainmtain | nodes to periodically forward load information in the forin o
ternet QoS including IntServ [6] and DiffServ [5]. More re- Feasible Input Tables (FITs) to their upstream neighbors. W
cently, Subramanian et al proposed OverQoS, an overlagdbas have further described some of the challenges that remain in
QoS architecture, which does not require any support fram thcreating a solution that is widely deployable.

IP-layer [13]. OverQoS can prioritize packets that are moréacknowledgments. We would like to thank @ur Cetintemel
important to the application at the expense of the others. for his valuable input. This work has been supported in part b

Our upstream metadata propagation approach somewhgisF under the grants 11S-0086057 and 11S-0325838, and by
resembles the pushback mechanism developed for aggregatemy contract DAMD-17-02-2-0048.

congestion control [9]. In this approach, a congested route
can request its upstream routers to limit the rate of an aggrdReferences
gate (i.e. a certain collection of packets sharing a common
property). The main purpose is to defend the network against

DosS attacks. In our approach, nodes also specify theirliasi N. Tatbul, Y. Xing, and S. Zdonik. The Design of the Borealis

input rates to their parents, but it is the parent that decdiasy Stream Processing Engine.@iDR ConferenceAsilomar, CA,
to reduce rates on each stream. January 2005.

The overload management problem has also been studied irj2] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Con-
the context of push-based data dissemination systemsxFor e vey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora:
ample, the Salamander data dissemination system provides a A New Model and Architecture for Data Stream Management.
publish/subscribe substrate for push-based data deljtély & ¥'—Er‘13 rrf:gf%al égg)’ UAugng’]tzeor?]zl M. Humphrey, J. Hwang
g clints 0 plug i ther daca low manpulaton modules ac & ingan. A Maskey O. Papaemmanoui, A Rasin,N. Tat

L) S bul, W. Xing, Y. Xing, and S. Zdonik. Distributed Operation in
any p_omt in the data d|s_sem|nat|on f[ree. The_se m_odules Can ihe Borealis Stream Processing Engine (demo)AQM SIG-
prioritize, interleave, or discard certain data objectsisTway MOD ConferenceBaltimore, MD, June 2005.
the channel traffic can be adapted to the available client and[4] B. Babcock, M. Datar, and R. Motwani. Load Shedding for
network resources. Unlike our approach, Salamander ddes no Aggregation Queries over Data Streams.|E&EE ICDE Con-
try to coordinate the flow modification actions performed at ference Boston, MA, March 2004.
different points of the data distribution tree. Anothermxa [5] S- Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
ple is the data stream dissemination system studied by Shah e W. Weiss. An Architecture for Differentiated Services. IETF
al [12]. This system selectively disseminates data updzes RFC 2475, December 1998.

k of d o defi [6] R. Braden, D. Clark, and S. Shenker. Integrated Services in
tween a network of data repositories to preserve user-afine the Internet Architecture: An Overview. IETF RFC 1633, June

[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cher-
niack, J. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina,

coherency requirements. 1994,

There has been a great deal of recent work on data streanj7] L. Golab and M. T. Ozsu. Issues in Data Stream Management.
processing systems [7]. Several research prototypes lesre b ACM SIGMOD Record32(2), June 2003.
built, each providing various techniques for load sheddikg [8] V. Jacobson. Congestion Avoidance and ContraCM SIG-

give a few examples here. In our previous work, we have de- gol\';’”\ﬂc?om%“ﬁﬂr CBOfﬂmlﬂniCSaﬂl(:’ln Rdeleel:8(4), %‘ﬂgu\jt é988-
veloped QoS-based load shedding algorithms within the con-[*! mod g gﬁenr;ke-r (ﬁonirgl\llil:’ o hogaﬁ d\;vig;nz' Isr’e éteixiflc;:e
text of the Aurora system, which achieved load reduction by i : grg ggreq

. . . . Network. ACM SIGCOMM Computer Communication Review
inserting drop operators into running query plans [15]. b/ f 32(3), July 2002.

cused on where in the query plan to insert drops, how much10] G. R. Malan, F. Jahanian, and S. Subramanian. Salamander:
load to shed at those points, and how to select the tuples to A Push-based Distribution Substrate for Internet Applications.
be dropped. The STREAM system has also developed several In USENIX Symposium on Internet Technologies and Systems
techniques, one of which is the statistical approximatipn a Monterey, CA, December 1997.

proach for reducing load on aggregation queries [4]. The-Tel [11] F. Reiss andJ. HeIIe_rste_in. Data Triage: An Adaptive Architec-
graphCQ system’s adaptive load shedding approach, called ture for Load Shedding in TelegraphCQ. IEBEE ICDE Con-
data triage, summarizes data instead of dropping it [11]. A5[12] ference Tokyo, Japan, April 2005.

- d lier | . h Il sinal S. Shah, S. Dharmarajan, and K. Ramamritham. An Efficient
we mentioned earlier in Section 1, these are all singleeserv and Resilient Approach to Filtering and Disseminating Stream-

approaches, and therefore they do not take the load dependen ing Data. INVLDB ConferenceBerlin, Germany, September

cies between nodes into account. 2003.
[13] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz.
6. Summary OverQoS: An Overlay Based Architecture for Enhancing In-

ternet QoS. InrSymposium on Networked Systems Design and
In this paper, we have described the load shedding problem Implementation (NSDJ)San Francisco, CA, March 2004.
that arises in distributed stream processing systems. deror [14] A.S. TanenbaumComputer NetworksPrentice Hall, 1996.
. [&5] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and
to address problems of scale, we presented a novel solutio =
that all des t ke | | decisi bout how to shed M. Stonebraker. Load Shedding in a Data Stream Manager. In
at aflows nodes to m,a € loca eC'S'OnS, about how 1o s ,e VLDB ConferenceBerlin, Germany, September 2003.
load when the system is under stress. This approach requires

