
Dealing with Overload in Distributed Stream Processing Systems

Nesime Tatbul Stan Zdonik

Brown University, Department of Computer Science, Providence, RI USA
E-mail: {tatbul, sbz}@cs.brown.edu

Abstract
Overload management has been an important problem for

large-scale dynamic systems. In this paper, we study this prob-
lem in the context of our Borealis distributed stream process-
ing system. We show that server nodes must coordinate in
their load shedding decisions to achieve global control on out-
put quality. We describe a distributed load shedding approach
which provides this coordination by upstream metadata aggre-
gation and propagation. Metadata enables an upstream node
to make fast local load shedding decisions which will influence
its descendant nodes in the best possible way.

1. Introduction

Overload management has been an important challenge for
large-scale dynamic systems where workload can unexpect-
edly increase while quality of service has to be maintained.
These systems have developed various load management tech-
niques from adaptive load distribution to admission control and
load shedding. The choice of a specific technique depends on
the characteristics of the workload, available protocols that de-
fine resource allocation policies as well as requirements ofthe
application.

We consider the overload management problem in the con-
text of distributed stream processing systems. In this environ-
ment, large numbers of continuous queries in the form of a col-
lection of operator chains are distributed onto multiple servers.
These queries are essentially dataflow diagrams that receive
and process continuous streams of data from external push-
based data sources. Real-time monitoring applications arees-
pecially well-suited to this kind of systems. In this domain,
providing low-latency, high-throughput answers to queries is
highly important.

Data streams can arrive in bursts, and provisioning the sys-
tem resources for worst-case bursty load is in general not eco-
nomically worthy. On the other hand, bursts in data rates
may create bottlenecks at some points along the server chain.
Bottlenecks may arise due to excessive demand on process-
ing power at the servers or bandwidth shortage at the shared
physical network that connects these servers. Bottlenecksslow
down processing and dissemination, and cause delayed out-
puts. These bottlenecks have to be efficiently detected and
quickly resolved to maintain quality of service.

Various load shedding techniques have been proposed for

data stream processing systems (e.g., [4, 11, 15]). These
techniques focus on single-server solutions. However, in dis-
tributed stream processing systems, each server node acts like
a workload generator for its downstream nodes. Therefore, re-
source management decisions at a node will affect the charac-
teristic of the workload received by its successor nodes.

Load shedding aims at dropping tuples at certain points
along the server chain to reduce load. Unlike TCP congestion
control, there are no retransmissions and dropped tuples are
lost forever. This will have a negative effect on the qualityof
the results delivered at the query outputs. The main goal is to
minimize the quality degradation. Because of the load depen-
dency between nodes, a given node must figure out the effect
of its load shedding actions on the load levels of its descendant
nodes. Load shedding actions at all nodes along the chain will
collectively determine the quality degradation at the outputs.
This makes the problem more challenging than its centralized
counterpart.

1.1. Motivating Example

Let us illustrate our point with a simple example. Consider
the simple query network with two queries that are distributed
onto two processing nodes A and B (Figure 1). Each small box
represents a subquery with a certain cost and selectivity. Cost
represents the CPU time it takes for one tuple to complete the
subquery, and selectivity represents the ratio of the number of
output tuples to the number of input tuples. Both inputs arrive
at the rate of 1 tuple per second. Potentially each node can
reduce load at its inputs by dropping tuples to avoid overload.
Let’s consider node A. Table 1 shows various ways that A can
reduce its input rates and the consequences of this in terms of
the load at both A and B, as well as the throughput observed at
the query outputs (Note that we are assuming a fair scheduler

cost = 1
sel = 1.0 sel = 1.0

sel = 0.5
cost = 1 cost = 3

cost = 2

sel = 1.0

Node BNode A

r1 = 1

r2 = 1

Figure 1. Example



Plan Reduced rates at A A.load A.throughput B.load B.throughput Result

0 1, 1 3 1/3, 1/3 4/3 1/4, 1/4 originally, both nodes are overloaded
1 1/3, 1/3 1 1/3, 1/3 4/3 1/4, 1/4 B is still overloaded
2 1, 0 1 1, 0 3 1/3, 0 optimal plan for A, but increases B.load
3 0, 1/2 1 0, 1/2 1/2 0, 1/2 both nodes ok, but not optimal
4 1/5, 2/5 1 1/5, 2/5 1 1/5, 2/5 optimal

Table 1. Alternate load shedding plans for node A

that allocates CPU cycles among the subqueries in a round-
robin fashion). In all of these plans, A can reduce its load to
the capacity limit. However, the effect of each plan on B can be
very different. In plan 1, B stays at the same overload level.In
plan 2, B’s load increases more than twice its original load.In
plan 3, B’s overload problem is also resolved, but throughput is
low. There is a better plan which removes overload from both
A and B, while delivering the highest total throughput (plan
4). However, node A can only implement this plan if it knows
about the load constraints of B. Because from A’s point of view,
the best local plan is plan 2. This simple example clearly shows
that nodes must coordinate in their load shedding decisionsto
be able to achieve high-quality query results.

1.2. Design Goals

An effective load shedding solution for a distributed stream
processing system should have the following properties:
Fast reactivity to load. The main goal of load shedding is
to maintain low-latency query results even during load spikes.
These situations need to be detected and addressed as soon as
possible. To achieve this, the load shedding algorithm mustbe
light-weight and the load shedding plans1 must be efficiently
deployed. In a distributed setting, having even a single over-
loaded node in the query pipeline is sufficient to boost latency
at the outputs. Therefore, the solution must be equally attentive
to each individual node’s problem.
Global control on output quality. While maintaining low-
latency results, the algorithm must also ensure that the qual-
ity of the query answers does not arbitrarily degrade. As ev-
idenced by our example above, a load shedding plan that can
deliver very high-quality results at a node locally, does not nec-
essarily achieve similar quality at the global level. What even-
tually matters to the applications is the quality of the results
that they observe at the query end-points. Therefore, regard-
less of where load is being shed in the node chain, the resulting
effect at the query end-points must be kept under control.
Scalability. The load shedding algorithm should scale well
with certain important performance factors. These includethe
number of server nodes, the number of input streams, and the
amount of branching that may exist along the queries. Branch-
ing is important since it causes a stream to split and replicate
its contents into multiple streams, creating more load in the

1A load shedding plan indicates where in the query plan to reduce load and
the amount of the required reduction. Load can be reduced in various ways. In
this paper, we focus on dropping tuples.

system. Also, these replica streams may serve multiple differ-
ent end-point applications. Therefore, shedding load before or
after a split point makes a difference in output quality.

1.3. Solution Alternatives

We identify two general classes of solutions:
Centralized Approaches. In a centralized approach, a node
can be designated as the coordinator. The coordinator node
is informed about the complete query network topology. Ad-
ditionally, it periodically collects performance statistics from
each participating node. It produces a globally optimal plan
based on this information. Each node receives its piece of
the global plan and applies it. In this approach, nodes do not
directly participate in planning and decision making; rather
they passively implement the plan dictated by the coordina-
tor. Therefore, this approach can respond slowly to local
load spikes. However, high-quality outputs can possibly be
achieved due to better global control.
Distributed Approaches. In a distributed approach, each node
is responsible for detecting and handling its own overload lo-
cally. We expect this approach to react fast to load changes and
thus maintain low latency. However, nodes need to communi-
cate to come up with globally efficient solutions. If there isno
global coordination between nodes, output quality can arbitrar-
ily change. Hence, the challenge is to establish coordination
with minimal overhead.

In the rest of this paper, we first describe our system model
and the underlying assumptions that we make in Section 2.
Then we present a sketch of our metadata-based solution ap-
proach in Section 3. In Section 4, we discuss important open
issues that require further attention. We discuss related work
in Section 5, and finally conclude in Section 6.

2. Models and Assumptions

We study the overload management problem for distributed
stream processing systems in the context of our Borealis pro-
totype system [1, 3]. Borealis accepts a collection of contin-
uous queries, represents them as one large network of query
operators (also known as a query diagram), and distributes the
processing of these queries across multiple server nodes. Each
participating server runs Aurora as its underlying query pro-
cessing engine [2]. Borealis provides not only the core dis-
tributed operation functionality, but also various optimization
and high availability techniques. The optimization techniques



include dynamic load distribution and balancing, paralleloper-
ator processing, and load shedding. Depending on the needs of
the system, one or more of these optimizations can be applied
at different levels of granularity, ranging from local to global.
The Borealis statistics manager, deployed at each node, con-
tinuously collects data on various performance metrics such as
operator costs, selectivities, tuple latencies, queue lengths, and
so on. Statistical information is what enables most Borealis
components to function effectively.

Data streams are modeled as append-only sequences of tu-
ples. In addition to the regular data fields, tuples also carry
a system-attached header with various fields such as arrival
timestamp. These data streams are run through the queries
which are composed of our well-defined set of operators, each
of which performs operations such as filtering, windowed ag-
gregation, merging, and correlation [2].

We mentioned earlier that bottlenecks in a distributed set-
ting may arise both due to the lack of required processing
power and also due to bandwidth limitations. In this paper,
we limit our scope to the former problem.

There can be various quality metrics defined for the query
outputs. For example, the goal can be to maximize the total
query throughput, or the percentage of results delivered. There
can also be priorities attached to individual queries. For the
purposes of this paper, we assume that the quality metric to
maximize is the total query throughput.

Finally, in this paper, we focus on tree-based server topolo-
gies.

3. A Metadata-based Approach

We propose a distributed load shedding approach which is
based on informing upstream nodes about their children’s con-
straints so that they can take load shedding actions that will in-
fluence their downstream nodes in the best possible way. This
approach has two advantages:

• Nodes can make local load shedding decisions on their
own, which provides fast reaction to load;

• Nodes are sensitive to their children’s load constraints,
which provides the load shedding node direct control on
total quality loss at its downstream outputs.

In our approach, each node periodically sends metadata in
the form of a Feasible Input Table (FIT) to its parent nodes.
FIT is a summary of what a node expects in terms of its input
rates and how that translates into a quality score at the down-
stream query end-points. When a node receives FITs from its
children, it merges them into a single table. Furthermore, the
parent maps the merged table from its outputs to its inputs and
removes the entries that may be infeasible for itself. Finally,
the parent propagates the resulting FIT to its own parents. This
propagation continues until the input nodes receive the FITfor
all their downstream nodes. Using its FIT, a node can shed
load for itself and on behalf of its descendant nodes. Next we
describe these steps in detail.

3.1. Feasible Input Table (FIT)

Each node maintains a Feasible Input Table (FIT). Given a
node withm inputs, the FIT for this node is a table withm+1
columns. The firstm columns represent the rates for them in-
puts, and the last column represents the resulting output quality
score. FIT represents the feasible input space for a node that
will keep this node’s and all of its descendants’ CPU load be-
low their available capacities. It is a way for a node to express
its load expectations from its parent. The score column of a
FIT is used to compare the estimated output quality for differ-
ent entries. In some cases, the node may additionally need to
keep a load shedding plan associated with a feasible input en-
try. As will be described below, this plan is completely local
and transparent to the rest of the nodes.

A node with no descendants (i.e. a leaf node) generates
its FIT from scratch; other nodes build on the FITs that they
receive from their children.

3.2. Generating FIT

Leaf nodes generate their FIT based on the costs of the
queries that they are assigned to execute. Consider such a node
with a single query of costc time units per tuple, which is fed
by a single input with rater tuples per time unit. The node is
overloaded unlessr∗c ≤ 1. Thus, it can handle an input rate of
up to1/c before it becomes overloaded. Any input whose rate
is smaller than1/c constitutes a feasible input for this node.
Next consider a node with multiple query paths from its inputs
to its outputs. Assume that there arem inputs, inputi having
an upper bound ofRi for its rate. This upper bound can be de-
termined considering the total cost of the query paths fed byi
in isolation from other paths. For each inputi, we will select a
set of values between 0 andRi. Each different combination of
the selected rate values for the input dimensions will constitute
a row in FIT if this combination is a feasible one. Further-
more, each such combination will lead to a certain total query
throughput. This total will be the score for that feasible input
combination.
Determining Spread. Spread for an input dimension deter-
mines how far apart the rate values should be selected for that
dimension. The smaller the spread, the closer we can get to
the optimal feasible input. On the other hand, smaller spread
requires that we consider a larger number of feasible points,
which is more costly to store and process. We determine spread
along each dimension in two alternative ways:

• Based on a fixed maximum error from the optimal quality
result: Assume that the query path from inputi has a total
path selectivity ofseli (e.g. if we send an input of rateri

tuples per second along pathi, the corresponding output
rate will beri ∗ seli). Givenm inputs, the total throughput
score will be

∑m

i=1
ri ∗ seli. When we divide a dimen-

sion into units of spreadsi, then the error in the total score
along dimensioni would be at mostsi ∗ seli. Given a
bound for maximum error in score denoted byεmax, the



0.1

0.3
0.4
0.5

0.7
0.8
0.9
1.0

0.6

0.2

0.
05

0.
1

0.
15

0.
2

0.
25

0.
3

0.
33

0

0

sp
re

ad
 =

 0
.1

spread = 0.05

r1

r2

Figure 2. Feasible points

maximum error for each dimension must be at mostεmax

m
.

Therefore, the spread alongi must be:si = εmax

m∗seli
.

• Based on a fixed table size for FIT:Given a boundB for
the number of points to be stored in FIT, we can determine
the spread along each dimension as follows. The maxi-
mum error for each input dimension should be equal. Er-
ror on dimensioni is si ∗m ∗ seli. We know thatRi is the
upper value bound for dimensioni. Therefore, the num-
ber of points alongi should beBi = dRi

si

e + 1. Hence,

si = Ri

Bi−1
. Therefore, Ri

Bi−1
∗ m ∗ seli must be equal

along all dimensions. We also know that,B =
∏m

i=1
Bi.

From these, we can easily computeBi along one of the di-
mensions, using which we can compute the error for that
dimension. Since errors should be equal on all dimensions,
we can then computesi for all of the dimensions.

To illustrate, consider node B in Figure 1. The rate upper
bounds for this node areR1 = 1/3 andR2 = 1. Assume that
εmax is given to be 0.1. Then,s1 = 0.1/(2 ∗ 0.5) = 0.1,
ands2 = 0.1/(2 ∗ 1.0) = 0.05. The set of feasible points is
shown in Figure 2. Thus, the FIT for this node has 46 entries.
The entry (0, 1.0) provides the highest total throughput score
of 1.0.
Handling Splits via Local Plans.The query network may in-
clude operators whose output may split to multiple paths. Each
such path may have a different cost and a different path selec-
tivity. Due to this difference, dropping from some branches
may be more desirable. However, this is completely a local is-
sue and need not be exposed to the parent. Instead, we allow
a node to create FIT entries which are in fact not feasible and
support these entries with additional local load shedding plans
that drop tuples at split branches. By doing this, the node can
achieve higher output scores.

We will illustrate this idea with a simple example. Con-
sider the query network in Figure 3. The input splits into two
branches. The top branch saves 2 units per dropped tuple at the
expense of 1 output tuple, whereas the bottom branch saves 5
units per output tuple lost. Also, dropping from the input saves

sel = 1.0

sel = 1.0

cost = 5
sel = 1.0

cost = 1

cost = 2

r

Figure 3. Splits

8 units while losing 2 output tuples. Dropping from the bot-
tom branch is clearly the most beneficial. Therefore, the node
should drop completely from the bottom branch before drop-
ping from its inputs. If the input rate isr, then5 ∗ r out of the
total load of8∗r should be handled locally. In other words, the
node will be able to handle an additional load of5∗r beyond its
capacity based on local drops. Hence, the node must make sure
that8 ∗ r ≤ 1 + 5 ∗ r. Therefore,3 ∗ r ≤ 1. Note that now the
upper value bound forr must beR = 1/3. We will generate
so-calledfeasiblepoints based onR. Also, for each feasible
point satisfying3 ∗ r ≤ 1, if it is also satisfying8 ∗ r ≤ 1, then
no additional local drops are needed. Otherwise, we will create
additional plans where some portion of the data on the bottom
branch must be dropped locally. For example, givenr = 0.2,
it satisfies the extended load constraint (3 ∗ r ≤ 1), but it does
not satisfy the original load constraint (8∗r ≤ 1). We must ad-
ditionally shed 60% of the load on the bottom branch. In this
case, the total throughput score becomes 0.28. If we instead
used the original constraint, then we would have to shed load
to reduce to the nearest feasible pointr = 0.125, which would
give us the highest possible score of 0.25. In other words, by
using the additional local plan, we can shed sufficient load and
provide higher-quality output.

3.3. Propagating FIT Upstream

When a node A receives the FIT from its child node B, the
feasible points in this table are expressed in terms of B’s in-
puts. As we assume that the network bandwidth is sufficient
and the transmission is reliable, these rates directly correspond
to the rates at A’s outputs. However, to be able to propagate the
FIT further upstream, A has to express FIT in terms of its own
inputs.

Each inputi of A follows a query path to produce a certain
output. Along this path, the rate ofi changes by a factor de-
termined by the product of the operator selectivies (sayseli).
Therefore, given an output rater, the corresponding input rate
for i is r

seli
. To obtain A’s FIT, we first apply this reverse-

mapping to each row of B’s FIT; the corresponding score for
each row stays the same. Then, we eliminate from the resulting
FIT the entries which may be violating A’s load constraint.

If there is a split along the path from an inputi to multi-
ple outputs, and if all child branches of the split map to the
same input rate value, then we just propagate that value as de-
scribed above. Otherwise, we propagate the maximum of all
input rates. The assumption here is that any additional reduc-
tion will be performed by applying tuple drops at remaining



branches of the split. The additional reduction is stored asa
local plan associated with that particular FIT entry, and need
not be propagated to the upstream nodes.

If node A has multiple child nodes, then the FITs of these
children are combined by merging rows from each FIT with
the rows from the other FITs. Any new entry violating A’s
load constraint has to be eliminated. The resulting score isthe
sum of the children’s row scores.

3.4. FIT-based Load Shedding

Each node monitors its input rates. Based on these rates,
it locates a row in its FIT and adopts a local load shedding
plan that matches that row. More specifically, given input rates
r1 . . . rm, if FIT has at least one entryF where for alli, F.ri ≥
ri (with no local plan associated with it), then the node is not
overloaded and no load needs to be shed. Otherwise, we find
the FIT entryF with the highest score for which, for alli,
F.ri ≤ ri. Then we adjust input rates by dropping tuples such
that for all i, ri == F.ri. In other words,ri must be reduced
by 1− F.ri/ri. Additionally, if there is a local plan associated
with F , then that plan is also adopted.

To illustrate, if node B in Figure 1 observes input rates (0.2,
0.35), then it is not overloaded since (0.2, 0.4) is a feasible
point (as shown in Figure 2). Therefore, no drops are neces-
sary. However, if it observes input rates (0.5, 0.5) indicating an
overload, then the best FIT entry is (0.15, 0.5), which reduces
load to 0.95 and provides a total throughput score of 0.575.
Node B should reducer1 by a factor of 0.7 by placing a drop
at its top input. Note that once node B’s FIT is properly propa-
gated to node A, A will ensure, through its own load shedding
mechanism, that node B never gets an input that would violate
its FIT. Therefore, the second case we illustrated should not be
observed.

It is important to note that FIT-based load shedding is very
simple and efficient. Essentially, the table needs to be searched
for the entry that matches the observed input rates. Since a
FIT is ordered in descending order of the rates, the search can
be performed efficiently. As a result, nodes can respond to
overload very quickly.

4. Open Challenges

In this section, we briefly discuss some of the important open
issues that we are planning to address as part of our future
work.
Metadata Maintenance.FIT is constructed based on cost and
selectivity statistics. As these statistics change, FIT has to be
updated accordingly. If the FIT becomes stale, then parent
nodes may lose effectiveness in shedding load in the best in-
terest of their descendant nodes. As a result, we may end up
with lower quality outputs than we can otherwise achieve. On
the other hand, the size of a FIT can be large, and it can be
inefficient to frequently update and propagate the whole table.
Instead, an incremental maintenance approach is required.
Fairness and Priorities. Maximum total throughput is not a
fair metric. It will penalize some of the costly query paths

in exchange for much higher throughput that can be achieved
from lower-cost ones. Some applications may care about fair
quality degradation across queries. Additionally, priorities can
be assigned on the basis of queries, sources, or tuples. An im-
portant point to note here is that as the quality model gets more
complicated, it gets more difficult to capture and propagatethe
score from a downstream node to it parents. The hard part is
figuring out the reverse mapping.
Handling Generalized Server Topologies.Metadata merging
and propagation works well with tree-based server topologies
where each server node has at most one parent node. In this
case, metadata from children can be merged, revised, and for-
warded to the parent in an incremental fashion. Therefore, it is
enough for each node to communicate just with its immediate
downstream and upstream neighbors. In more general topolo-
gies where a node can have multiple parent nodes, to achieve
global coordination, nodes that are not immediate neighbors
may also need to communicate. The reason is that two nodes
may have a common descendant about which each one has only
partial FIT information. In this case, the load shedding deci-
sions made at one of these nodes would influence the decisions
at the other one.
Addressing Bandwidth Bottlenecks. In bandwidth-limited
environments, there are several additional issues to consider.
First, metadata propagation also takes up bandwidth, and hence
metadata exchange has to be kept to a minimum. Second, the
feasible rate points in the FIT, which are defined in terms of
the inputs of a node, do not directly map to the rates at the
outputs of its parent, because rates may also slow down due
to network delays. Lastly, we should also consider that un-
der bandwidth limitations, shedding load at the earliest node
in the server chain (even though that node itself may not be
overloaded) is especially necessary. Bandwidth should notbe
wasted for tuples that will eventually be dropped down in the
chain. Therefore, having parents shed load on behalf of their
children is important. We are planning to tackle the CPU and
the bandwidth problems under a common framework by treat-
ing the network slow-down as just another query operator with
a certain time cost (selectivity = 1 since the network is reli-
able). Of course, this may not be so easy to achieve in shared
networks due to frequent variations in cost.
Centralized vs. Distributed Tradeoffs. Lastly, we need to
study the tradeoffs between the centralized and the distributed
approaches. We speculated about how these approaches may
behave in terms of meeting the design goals that we defined in
Section 1. These hypotheses require experimental verification.

5. Related Work

The overload management problem in distributed stream
processing systems has close relevance to the congestion con-
trol problem in computer networks [8]. Congestion in com-
puter networks mainly arises when routers run out of buffer
space, either because their processors can not keep up with
the incoming input traffic, or because the outgoing link has a
smaller bandwidth capacity than the incoming link [14]. Vari-



ous IP-layer architectures have been proposed to maintain In-
ternet QoS including IntServ [6] and DiffServ [5]. More re-
cently, Subramanian et al proposed OverQoS, an overlay-based
QoS architecture, which does not require any support from the
IP-layer [13]. OverQoS can prioritize packets that are more
important to the application at the expense of the others.

Our upstream metadata propagation approach somewhat
resembles the pushback mechanism developed for aggregate
congestion control [9]. In this approach, a congested router
can request its upstream routers to limit the rate of an aggre-
gate (i.e. a certain collection of packets sharing a common
property). The main purpose is to defend the network against
DoS attacks. In our approach, nodes also specify their feasible
input rates to their parents, but it is the parent that decides how
to reduce rates on each stream.

The overload management problem has also been studied in
the context of push-based data dissemination systems. For ex-
ample, the Salamander data dissemination system provides a
publish/subscribe substrate for push-based data delivery[10].
Salamander supports application-level QoS policies by allow-
ing clients to plug in their data flow manipulation modules at
any point in the data dissemination tree. These modules can
prioritize, interleave, or discard certain data objects. This way
the channel traffic can be adapted to the available client and
network resources. Unlike our approach, Salamander does not
try to coordinate the flow modification actions performed at
different points of the data distribution tree. Another exam-
ple is the data stream dissemination system studied by Shah et
al [12]. This system selectively disseminates data updatesbe-
tween a network of data repositories to preserve user-defined
coherency requirements.

There has been a great deal of recent work on data stream
processing systems [7]. Several research prototypes have been
built, each providing various techniques for load shedding. We
give a few examples here. In our previous work, we have de-
veloped QoS-based load shedding algorithms within the con-
text of the Aurora system, which achieved load reduction by
inserting drop operators into running query plans [15]. We fo-
cused on where in the query plan to insert drops, how much
load to shed at those points, and how to select the tuples to
be dropped. The STREAM system has also developed several
techniques, one of which is the statistical approximation ap-
proach for reducing load on aggregation queries [4]. The Tele-
graphCQ system’s adaptive load shedding approach, called
data triage, summarizes data instead of dropping it [11]. As
we mentioned earlier in Section 1, these are all single-server
approaches, and therefore they do not take the load dependen-
cies between nodes into account.

6. Summary

In this paper, we have described the load shedding problem
that arises in distributed stream processing systems. In order
to address problems of scale, we presented a novel solution
that allows nodes to make local decisions about how to shed
load when the system is under stress. This approach requires

nodes to periodically forward load information in the form of
Feasible Input Tables (FITs) to their upstream neighbors. We
have further described some of the challenges that remain in
creating a solution that is widely deployable.

Acknowledgments.We would like to thank Ŭgur Çetintemel
for his valuable input. This work has been supported in part by
NSF under the grants IIS-0086057 and IIS-0325838, and by
Army contract DAMD-17-02-2-0048.

References

[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cher-
niack, J. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina,
N. Tatbul, Y. Xing, and S. Zdonik. The Design of the Borealis
Stream Processing Engine. InCIDR Conference, Asilomar, CA,
January 2005.

[2] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Con-
vey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora:
A New Model and Architecture for Data Stream Management.
VLDB Journal, 12(2), August 2003.

[3] Y. Ahmad, B. Berg, U. Çetintemel, M. Humphrey, J. Hwang,
A. Jhingran, A. Maskey, O. Papaemmanouil, A. Rasin, N. Tat-
bul, W. Xing, Y. Xing, and S. Zdonik. Distributed Operation in
the Borealis Stream Processing Engine (demo). InACM SIG-
MOD Conference, Baltimore, MD, June 2005.

[4] B. Babcock, M. Datar, and R. Motwani. Load Shedding for
Aggregation Queries over Data Streams. InIEEE ICDE Con-
ference, Boston, MA, March 2004.

[5] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An Architecture for Differentiated Services. IETF
RFC 2475, December 1998.

[6] R. Braden, D. Clark, and S. Shenker. Integrated Services in
the Internet Architecture: An Overview. IETF RFC 1633, June
1994.

[7] L. Golab and M. T. Ozsu. Issues in Data Stream Management.
ACM SIGMOD Record, 32(2), June 2003.

[8] V. Jacobson. Congestion Avoidance and Control.ACM SIG-
COMM Computer Communication Review, 18(4), August 1988.

[9] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson,
and S. Shenker. Controlling High Bandwidth Aggregates in the
Network. ACM SIGCOMM Computer Communication Review,
32(3), July 2002.

[10] G. R. Malan, F. Jahanian, and S. Subramanian. Salamander:
A Push-based Distribution Substrate for Internet Applications.
In USENIX Symposium on Internet Technologies and Systems,
Monterey, CA, December 1997.

[11] F. Reiss and J. Hellerstein. Data Triage: An Adaptive Architec-
ture for Load Shedding in TelegraphCQ. InIEEE ICDE Con-
ference, Tokyo, Japan, April 2005.

[12] S. Shah, S. Dharmarajan, and K. Ramamritham. An Efficient
and Resilient Approach to Filtering and Disseminating Stream-
ing Data. InVLDB Conference, Berlin, Germany, September
2003.

[13] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz.
OverQoS: An Overlay Based Architecture for Enhancing In-
ternet QoS. InSymposium on Networked Systems Design and
Implementation (NSDI), San Francisco, CA, March 2004.

[14] A. S. Tanenbaum.Computer Networks. Prentice Hall, 1996.
[15] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and

M. Stonebraker. Load Shedding in a Data Stream Manager. In
VLDB Conference, Berlin, Germany, September 2003.


