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ABSTRACT
Medusa [3, 6] is a distributed stream processing system based on
the Aurora single-site stream processing engine [1]. We demon-
strate how Medusa handles time-varying load spikes and provides
high availability in the face of network partitions. We demonstrate
Medusa in the context of Borealis, a second generation stream-
processing engine based on Aurora and Medusa.

1. INTRODUCTION
Over the past few years stream processing has emerged as an

important area for data management. Many single-site continu-
ous query processing engines have been developed, including Au-
rora [1], STREAM [2], TelegraphCQ [4], and NiagaraCQ [5]. Our
work is in the area of distributed stream processing, with the goal
of developing a system comprised of many single-site query pro-
cessors working in concert. Distributing stream processing across
multiple machines and sites has many advantages:

1. Distribution allows stream processing performance to be in-
crementally scaled to handle increasing input loads.

2. Distribution enables high availability (HA) because the pro-
cessing nodes can monitor and take over for each other when
failures occur.

3. Geographic and administrative distribution is inherent in cer-
tain stream processing applications such as financial ser-
vices, network health monitoring, and wireless sensor net-
works. The system can gain in efficiency by leveraging this
distribution. The composition of stream feeds from different
participants also enables the creation of complete end-to-end
services from these feeds.

4. Distribution and collaboration between participants in differ-
ent administrative domains allows participants to cope with
sudden load spikes without individually having to maintain
the computing, network, and storage resources required for
peak operation.

Medusa is a distributed stream-processing system that aims to
provide the above benefits. Our work focuses in particular on (1)
wide-area distribution and collaborations between autonomous par-
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Figure 1: Example of a distributed stream-processing query.

ticipants, (2) load management, and (3) high availability.
Figure 1 illustrates a query for a network intrusion detection ap-

plication. Suspicious hosts are identified by monitoring the number
of connection attempts and protocols used by any given IP source
within a short period of time. The query crosses node and adminis-
trative boundaries. We use this query in the Medusa demonstration.

2. LOAD MANAGEMENT
Medusa assumes a federation of autonomous participants, each

operating one or more nodes with computing, storage, and network
resources. Autonomous participants do not collaborate for the ben-
efit of the whole system, but rather aim to maximize their own ben-
efit. In Medusa, we therefore adopt an agoric model to create the
right incentives for participants to handle each other’s load.

Many computational economies have been proposed in the past
(e.g., [7, 12]), but their deployment has remained limited due to
their complexity, excessive overhead, and overly optimistic as-
sumptions on participants’ level of collaboration. To address these
issues, in Medusa, we instead propose an approach based on pair-
wise contracts.

Medusa’s approach is called the bounded-price mechanism [3].
Participants negotiate pairwise contracts offline. These contracts
set tightly bounded prices for migrating each unit of load and spec-
ify the set of tasks that each participant is willing to execute on
behalf of its partner. At runtime, a participant moves load to an-
other only if it has a contract with that participant and the cost of
processing a task locally is larger than the payment the participant
would have to make to its partner for the same processing.

In contrast to other approaches, this mechanism has a low run-
time overhead and remains stable under variable load conditions,
minimizing load migrations. Participants have tight control over
their collaborations, prices, and the tasks they move. Participants
can also easily extend Medusa contracts to further customize their
load management agreements by adding, for instance, performance
and availability requirements.
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Figure 2: Load at three Medusa nodes running the network
intrusion detection query over network connection traces.

Medusa does not distribute load optimally but it guarantees ac-
ceptable allocations: i.e., either no participant operates above its
capacity, or, if the system as a whole is overloaded, then all par-
ticipants operate at or above capacity. We argue that autonomous
participants value privacy and service customization, as offered by
Medusa, more than optimal load balance. An important result of
the Medusa mechanism is that only small contract price-ranges are
required for the system to always converge to an acceptable alloca-
tion. Our demonstration explains how and why this works.

Medusa relies on remote definitions to move operators between
nodes. Remote definitions specify how operators on different nodes
map onto one another. At runtime, when a path of operators
needs to be moved, the origin node simply instantiates the oper-
ators remotely and diverts the incoming streams to the appropri-
ately named inputs on the new node. As we demonstrate, remote
definition is fast and lightweight compared to process migration.

Figure 2 shows the result of running Medusa on three machines,
each one executing the query shown in Figure 1. Each machine
processes traces of network connections collected at MIT and an
ISP in Utah. As load varies ((1) and (5)), nodes exchange load ((2),
(3), (4), and (6)) and converge to acceptable allocations. We use a
similar setup in the demonstration.

3. HIGH AVAILABILITY
High availability is an important goal for many Medusa appli-

cations. A multi-site deployment can improve the availability of
a single-site system because sites can monitor and take over for
each other [9, 11]. Wide-area queries, however, are also vulnera-
ble to network failures and more importantly to network partitions.
Medusa addresses this second problem, which has received little
attention in the distributed stream processing community.

Designing a distributed system that is always available, provides
consistent access to replicated data, and is resilient to network par-
titions is known to be impossible [8]. Because stream process-
ing applications tolerate non-deterministic results and value low
processing-latency and availability, approaches that favor availabil-
ity over consistency are more appropriate in this domain. Exist-
ing approaches (e.g., [10]), however, are not designed to work-well
with the high replica update rate common in stream-processing ap-
plications. Furthermore, in stream processing, in addition to recon-
ciling replica state, we also need to correct the information previ-
ously sent by each replica to its clients.

To achieve availability in face of network partitions and min-
imize information loss and inconsistencies at the client, Medusa
proposes the following approach. Each replica of a query-network
fragment is also a different version of its primary. Versioning al-
lows the system to keep track of all replicas and allows client ap-

plications that can hear from multiple partitions to disambiguate
the duplicate information.

When a partition heals, the system has multiple copies of iden-
tical query-network fragments. Each copy could be in a different
state due to the unavailability of different inputs during the par-
tition. To reconcile replica states, the system could wait for the
convergence to occur naturally or it could rollback all queries to a
state before the partition and reprocess all the data. With the firs ap-
proach, clients lose information, while the overhead of the second
approach is prohibitive in practice.

To reconcile replica states with less overhead and without infor-
mation loss, Medusa selects one of the replicas to reprocess input
streams. Medusa then compares the new output stream with that
produced by other replicas and either rolls-back the output stream
alone or produces selected updates. Medusa’s network partition
handling capabilities leverage stream versioning, time travel and
revision tuples, three of the new stream processing features intro-
duced by Borealis, the second generation distributed stream pro-
cessing engine developed at Brown, Brandeis, and MIT.

To show how Medusa handles network partitions, we disconnect
the network cable between two machines running the intrusion de-
tection query and show that the query continues within each parti-
tion albeit missing a fraction of the input data. Reconnecting the
machines, we show how Medusa reconciles the inconsistencies.
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U. Çetintemel, Y. Xing, and S. Zdonik. Scalable distributed
stream processing. In Proc of the CIDR Conf., Jan. 2003.

[7] B. N. Chun. Market-Based Cluster Resource Management.
PhD thesis, University of California at Berkeley, 2001.

[8] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web
services. ACM SIGACT News, 33(2), 2002.

[9] J.-H. Hwang, M. Balazinska, A. Rasin, U. Çetintemel,
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