
Dynamic Load Distribution in the Borealis Stream Processor *

* This work has been supported by the NSF under grants
 IIS-0086057 and IIS-0325838.

Abstract

Distributed and parallel computing environments are

becoming cheap and commonplace. The availability of
large numbers of CPU’s makes it possible to process more
data at higher speeds. Stream-processing systems are also
becoming more important, as broad classes of applications
require results in real-time.

Since load can vary in unpredictable ways, exploiting
the abundant processor cycles requires effective dynamic
load distribution techniques. Although load distribution
has been extensively studied for the traditional pull-based
systems, it has not yet been fully studied in the context of
push-based continuous query processing.

In this paper, we present a correlation based load
distribution algorithm that aims at avoiding overload and
minimizing end-to-end latency by minimizing load variance
and maximizing load correlation. While finding the optimal
solution for such a problem is NP-hard, our greedy
algorithm can find reasonable solutions in polynomial time.
We present both a global algorithm for initial load
distribution and a pair-wise algorithm for dynamic load
migration.

1. Introduction

Stream-based continuous query processing fits a large
class of new applications, such as sensor networks, location
tracking, network management and financial data analysis.
In these systems, data from external sources flows through
a network of continuous query operators. Since stream-
based applications usually involve large volumes of data
and require timely response, they could benefit
substantially from the additional horsepower of distributed
environments [6].

Borealis [1] is a new distributed stream processing
engine that is being developed at Brandeis, Brown, and
MIT as a follow on to the Aurora project [2]. Borealis
attempts to provide a single infrastructure for distributed
stream processing that can span diverse processing
elements that can be as small as sensors and as large as
servers. As a first step in this direction, we restrict this

work to the case of clusters of servers with high-speed
interconnections.

In Borealis, as in Aurora, a query network is a collection
of operators that are linked together in a dataflow diagram.
Our operators extend the relational operators to deal with
the ordered and infinite nature of streams. A Borealis
query network cannot have loops; however, the output of an
operator can branch to multiple downstream operators
(result sharing) and can be combined by operators with
multiple inputs (e.g., Join, Union).

Query optimization in this setting is to a large extent
concerned with mapping the operators in a query network
to machines in a distributed environment. As the load
changes, this mapping will need to change in order to deal
with new hot spots. The process of forming the initial
mapping and of dynamically redistributing operators is the
topic of this paper.

While load balancing and load sharing have been
studied extensively in traditional parallel and distributed
systems [11, 16], the load distribution problem has not yet
been fully studied in the context of push-based stream
processing. Traditional load distribution strategies use total
load information in decision making because they are
designed for pull-based systems where load fluctuation
occurs as different queries are presented to the system. In a
push-based system, load fluctuation occurs in the arrival
rates of the streams. In this case, even when the average
load of a machine (or node) is not very high, a node may
experience a temporary load spike and data processing
latencies can be significantly affected by the duration of the
spike. Thus, to minimize data processing latencies we need
an approach that can avoid temporary overload as much as
possible.

For instance, consider two operator chains with bursty
input data. Let each operator chain contain two identical
operators with a selectivity of one. When the average input
rates of the two input streams are the same, the average
loads of all operators are the same. Now consider two
operator mapping plans on two nodes. In the first plan, we
put each of the two connected operator chains on the same
node (call this the connected plan). In the second plan, we
place each component of a chain on different nodes (call
this the cut plan). There is no difference between these two

Ying Xing
Brown University
yx@cs.brown.edu

Stan Zdonik
Brown University
sbz@cs.brown.edu

Jeong-Hyon Hwang
Brown University

jhhwang@cs.brown.edu

plans from the load balancing point of view. However,
suppose the load burst of the two input streams happens at
different times, i.e., when the input rate of the first chain is
high, the input rate for the second chain is low and vice
versa. Then the above two mapping plans can result in very
different performance. Figure 1 shows an example
performance graph for this kind of workload in which the
burst duration and the normal duration are both 5 seconds,
and the high (bursty) input rate is twice the low (normal)
input rate.

Putting connected operators on different nodes, in this
case, achieves much better performance than putting them
on the same node (ignoring bandwidth considerations for
now). The main difference between these two mapping
plans is that since the two input bursts are out of phase, the
cut plan ensures that the load variation on each node is very
small. In the connected plan, it is much larger. This simple
example shows that the average load level is not the only
important factor in load distribution. The variation of the
load is also a key factor in determining the performance of
a push-based system.

In this paper, we propose a new load distribution
algorithm that not only balance the average load among the
processing nodes, but also minimize the load variance on
each node. The latter goal is achieved by exploiting the
ways in which the stream rates correlate across the
operators. More specifically, we represent operator load as
fixed length time series. The correlation of two time series
is measured by the correlation coefficient, which is a real
number between -1 and 1. Its intuitive meaning is that when
two time series have a positive correlation coefficient, then
if the value of one time series at certain index is relatively
large (in comparison to its mean), the value of the other
time series at the same index also tends to be relatively
large. On the other hand, if the correlation coefficient is
negative, then when the value of one time series is
relatively large, the value of the other tends to be relatively
small. Our algorithm is inspired by the observation that if
the correlation coefficient of the load time series of two
operators is small, then putting these operators together on
the same node helps in minimizing the load variance.

The intuition of correlation is also the foundation of the
other idea in our algorithm: when making operator
allocation decisions, we try to maximize the correlation
coefficient between the load statistics of different nodes.

This is because moving operators will result in temporary
poor performance due to the execution suspension of those
operators, but if the load time series of two nodes have
large correlation coefficient, then their load levels are
naturally balanced even when the load changes. By
maximizing the average load correlation between all node
pairs, we can minimize the number of load migrations
needed.

Later, we will see that minimizing the average load
variance also helps in maximizing the average load
correlation, and vice versa. Thus, the main goal of our load
distribution algorithms is to produce a balanced operator
mapping plan where the average load variance is minimized
or the average node load correlation is maximized. Finding
the optimal solution for such a problem requires exhaustive
search and is, similar to the graph partitioning problem, NP
complete [10]. In this paper, we propose a greedy algorithm
that finds a sub-optimal solution in polynomial time. Our
experimental results show that the performance of our
algorithm is very close to the optimal solution.

In this paper, we present both a global operator mapping
algorithm and some pair-wise load redistribution algorithms.
The global algorithm is mainly used for initial operator
placement. After global distribution, we will use pair-wise
algorithms to adapt to load changes. The advantage of
using pair-wise algorithms is that it does not require as
much load migration as the global algorithm.

The rest of this paper is organized as follows. Section 2
introduces the system model and formalizes the problem.
Our algorithms are presented in Section 3. Section 4
analyzes the computation complexity of these algorithms.
The experiment results are presented in Section 5. Section
6 discusses related work. Finally, the conclusions and
future directions are summarized in Section 7.

2. Problem Description

2.1. System Model and Assumptions

In this paper, we assume a physical architecture of a
loosely coupled shared-nothing homogeneous computer
cluster. All computers are connected by a high bandwidth
network. We assume that the network bandwidth is not a
limited resource and network transfer delays as well as the
CPU overhead for data stream transfer are negligible [8],
[9]. For applications with very high steam rates that may
stress the network, connected operators can be encapsulated
into super-operators or clusters such that high bandwidth
links are internal to a super-operator and thus, do not cross
real network links. Operator clustering in the context of
fluctuating workload is itself a very challenging topic and is
a part of our ongoing work. In this paper, we assume that
necessary operator clustering has been done so that we can
directly distribute super operators without network
bandwidth concern.

In Borealis, most operators (e.g., Filter, Aggregate, Join)
provide interfaces that allow them to be moved on the fly.
For practical purposes, we consider SQL-read and SQL-

0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

Average Node CPU Utilization

A
ve

ra
ge

 E
nd

−
to

−
E

nd
 L

at
en

cy
 (

m
s) CONNECTED

CUT

Figure 1: Comparison of different operator mapping
plans with fluctuating load

write boxes to be immovable since their effective state can
be huge. When moving a set of operators, their execution
is first suspended. Then, the metadata (e.g., operator
description and topology) and the operator states (the input
queues and the internal operator data structures) are
transferred to the receiving node. The receiving node
instantiates these operators with the given information and
then resumes their execution. In this paper, we assume that
all operators with very large states (e.g., databases) are
allocated by some other algorithm according to the storage
capacities of the nodes. We only consider the mapping and
migration of movable operators whose state size is
relatively small. Even in this case, the operator migration
time is usually much longer than the end-to-end data
processing time.

2.2. Load Measurement

In this paper, we consider CPU utilization as the system
load. The load of nodes and operators is measured
periodically over fixed-length time periods. In each period,
the load of an operator is defined as the fraction of the CPU
time needed by that operator over the length of the period.
In other words, if the average tuple arrival rate in period i
for operator o is

�
 (o) and the average tuple processing time

of o is p(o), then the load of o in period i is
�
(o) p(o). The

load of a node in a given period is defined as the sum of the
loads of all its operators in that period.

We define the tuple arrival rate of a stream as the
number of tuples that would arrive on the stream when no
node in the system is overloaded. If the statistics
measurement period is large enough, such “ideal” rates
become independent of the scheduling policy. On the other
hand, the actual number of tuples that enter each stream per
time interval is usually dependent on the scheduling
algorithm, especially when some node becomes overloaded.

The ideal tuple arrival rates can be approximately
computed from the system input stream rates and the
selectivities of the operators. If no global information is
available for such computation, an upstream node can tell
its downstream nodes the ideal rates of its output streams so
that the downstream nodes can compute the ideal rates of
their internal data streams locally.

2.3. Statistics Measurement

We measure the load of each operator periodically and
only keep the statistics for the most recent k periods. Each
statistics measurement period should be long enough so that
the measured load is independent of the scheduling policy
and any high frequency load fluctuation is smoothed out.
The total time of the k statistics measurements is called the
statistics window of the system. It should be selected large
enough to avoid load migration thrashing. The k load
values of an operator/node form a load time series for the
operator/node.

Given a load time series S = (s1, s2 ,… , sk), its mean and
variance are defined as follows:

�
=

=
k

i
is

k
S

1

1
E

� �
= =

�
�

�
�
�

�−=
k

i

k

i
ii s

k
s

k
S

1

2

1

2 11
var

Given two load time series S1 = (s11, s12, … , s1k) and S2 =
(s21, s22, … s2k), their covariance cov(S1, S2) and correlation
coefficient ρ are defined as follows:

� ��
= ==

�
�

�
�
�

�
�
�

�
�
�

�−=
k

i

k

i
i

k

i
iii s

k
s

k
ss

k
SS

1 1
2

1
12121

111
),cov(,

21

21

varvar

),(

SS

SSCov

⋅
=ρ .

 In this paper, the variance of the load time series of an
operator/node is also called the load variance of that
operator/node. The correlation coefficient of the load time
series of two operators/nodes is also called the load
correlation of the two operators/nodes. The mean of the
load time series of an operator/node is called the average
load (or simply load) of that operator/node. Load balancing
algorithms attempt to balance the average load of the nodes.

Our algorithm is based on the observation that load
correlations vary among operators. This variation is a result
of more than the fluctuation of different input rates. It also
results from the nature of the queries. For example,
consider a stream with attribute A feeding different filter
operators as depicted in Figure 2. The boxes in the figure
represent operators and the arrows represent data streams.
It is not difficult to tell that no matter how the input stream
rate fluctuates, operators �1, �2 and �3 always have pair-
wise load correlation 1, and operators o4 and o5 always
have a load correlation of -1. In addition, operators o4 and
o6 tend to have a negative load correlation, and operators
o5 and o6 tend to have a positive load correlation.

Such query-determined correlations are stable or
relatively stable in comparison to input-determined
correlations. This feature is important to our algorithms
because we use the correlations to determine the locations
of the operators. If the correlations are highly volatile, the
decisions made may soon loose their effectiveness.

2.4. Optimization Goal

Our goal in load distribution is to minimize the average
end-to-end data processing latency. In this paper, we
consider two kinds of load distributions: initial operator
mapping and dynamic operator redistribution. For the

Figure 2: Stream with attribute A feeding different filters

� 1
A>3

� 3
A<4

� 2
A<3

o4

o5

o6

former one, we try to find an operator mapping plan that
can minimize the average end-to-end latency. For the latter
one, we try to achieve a good balance between the load
migration overhead and the quality of the new operator
mapping plan.

We have already seen that in a push-based system,
minimizing average end-to-end latency can be achieved by
minimizing average load variance or maximizing average
load correlation. Then our operator mapping problem can
be formalized as the follows:

Assume that there are n nodes in the system. Let Xi
denote the load time series of node Ni and � ij denote the
correlation coefficient of Xi and Xj for nji ≤≤ ,1 . We want

to find an operator mapping plan with the following
properties:

(1) EX1
� EX2

� … � EXk

 (2) �
=

n

i

Xi
n 1

var
1 is minimized or

 (3) �
≤<≤ nji

ij
1

ρ is maximized

Finding the optimal solution of this problem requires
comparison of all possible mapping plans and is NP hard.
Thus, our goal is to find a reasonable heuristic solution.

3. Algorithm

3.1. Theoretical Underpinnings

Before discussing our algorithm, it is beneficial to know
how to minimize average load variance in the ideal case. In
this section, we assume that the total load time series X of
the system is fixed, and it can be arbitrarily partitioned
across n nodes (this is usually unachievable). We want to
find the load partition with minimum average load variance.
The result is illustrated by the following theorem:

Theorem 1: Let the total load of the system be denoted

by time series X. Let Xi be the load time series of node i,
ni ≤≤1 , i.e. X = X1 + X2 + … + Xn. Then among all load

balanced mapping plans with EX1 = EX2 … = EXn, the
average load variance

�
=

n

i
iX

n 1

var
1

is minimized if and only if

....21 n

X
XXX n ====

Proof: Let � ij be the correlation coefficient between Xi and
Xj. Since X = X1 + X2 + … + Xn, we have

)1(varvar2varvar
11
��

≤<≤=

+=
nji

jiij

n

i
i XXXX ρ

Since 11 ≤≤− ijρ and 2)var(varvarvar jiji XXXX +≤ we

have that

n

X
X

n

i
i

var
var

1

≥�
=

.

The above equality holds if and only if � ij=1 and

ji XX varvar = for all nji ≤≤ ,1 . Using condition

nEXEXEX === �21
, we have that � iXvar is

minimized if and only if21 nXXX === �

Notice that in the ideal case, when the average load
variance of the system is minimized, the average load
correlation of the system is also maximized. Naturally, we
want to know whether the average load variance is
monotonically decreasing with the average load correlation.
If so, minimizing average load variance and maximizing
average load correlation are then the same. Unfortunately,
such a conclusion does not hold in general. It is very easy
to find an counter example through simulation. However, in
the case of n = 2, we can prove that when � 12 > 0, the lower
bound of the average load variance is a monotone
decreasing function of the load correlation coefficient. The
conclusion is shown as follows:

Theorem 2: Given load time series X and X1, X2, with X

= X1 + X2, if � 12 > 0 then

.varvarvar
1

var
21

12

XXX
X ≤+≤

+ ρ

The proof is similar to Theorem 1 and is omitted. From

this conclusion, we can see that the smaller the correlation
coefficient, the larger the lower bound of the average load
variance, which means the more room we have for further
optimization. Because correlation coefficients are bounded
between [-1, 1], it is very easy to use them to check whether
a given mapping plan is near optimal and to determine
whether redistributing operators between a node pair is
necessary. This observation is a very important foundation
for one of our optimization techniques.

3.2. Algorithm Overview

In this section, we present a greedy algorithm which not
only balances the load of the system, but also tries to
minimize the average load variance and maximize the
average load correlation of the system.

Our algorithm can be divided into two parts. First, we
use a global algorithm to make the initial operator
distribution. Then, we switch to a dynamic load
redistribution algorithm which moves operators between
nodes in a pair-wise fashion. In the global algorithm, we
only care about the quality of the resulting mapping plan
without considering how much load is moved. In the pair-
wise algorithm, we try to find a good tradeoff between the
amount of load moved and the quality of the resulting
mapping plan.

Both algorithms are based on the basic load-balancing
scheme. Thus, if the load of the system does not fluctuate,
our algorithm reduces to a load balancing algorithm with a
random operator selection policy. When the load of the
system fluctuates, we can get load-balanced operator-
distribution plans with smaller average load variance and

larger average load correlation than the traditional load
balancing algorithms.

Since it is easier to understand how to minimize the
average load variance between a node pair than among all
nodes in the system, we will first discuss the pair-wise
algorithm, and then the global algorithm.

3.3. Pair-wise Algorithm

For simplicity, we assume that there is a centralized
coordinator in the system and the load information of all
nodes is reported periodically to the coordinator. After each
statistics collection period, the coordinator orders all nodes
by their average load. Then the i th node in the ordered list is
paired with the (n-i+1)th node in the list. In other words, the
node with the largest load is paired with the node with the
smallest load; the node with the second largest load is
paired with the node with the second smallest load, and so
on. If the load difference between a node pair is greater
than a predefined threshold � , operators will be moved
between the nodes to balance their average load. When
necessary, this pair-wise load distribution scheme can be
easily extended to a decentralized implementation.

Now, given a selected node pair, we will focus on how
to move operators to minimize their average load variance.
As we know that there is a tradeoff between the amount of
load moved and the quality of the resulting mapping plan,
we will first discuss an algorithm that moves the minimum
amount of load, and then discuss an algorithm that achieves
the best operator mapping quality, and finally, present an
algorithm that balances the two goals well.

3.3.1. One-way Correlation Based Load Balancing.
In this algorithm, only the more loaded node is allowed to
offload to the less loaded node. Therefore, the load
movement overhead is minimized.

Let N1 denote the more loaded node and N2 denote the
less loaded node. Let the load of N1 be L1 and the load of
N2 be L2. Our greedy algorithm will selects operators from
N1 one by one with total selected load less than (L1 – L2)/ 2
until no more operators can be selected. The operator
selection policy is inspired by the following observation:

Assume we have only two operators and two nodes. Let
the load time series of the operators be S1 and S2
respectively and the load correlation coefficient of the two
operators be � 12. Putting the operators on different nodes
will results in an average load variance of (varS1 + varS2)/2
and putting the operators on different nodes will results in
average load variance of var(S1+S2)/2. From the definition
of correlation coefficient, we have that

.varvar
2

varvar

2

)var(
2112

2121 SS
SSSS ρ=

+
−

+

Obviously, to minimize average load variance, when � 12 < 0,
it is better to put the operators together on the same node,
and when � 12 > 0, it is better to separate them onto different
nodes.

Now consider moving operators from N1 to N2 following
this intuition. Let � (o, N) denote the correlation coefficient

between the load time series of operator o and the total
(sum of) load time series of all operators on N except o.
Then from N1’s point of view, it is good to move out an
operator that has a large � (o, N1), and from N2’s point of
view, it is good to move in an operator that has a small � (o,
N2). Considering both nodes together, we prefer to move
operators with large � (o, N1) - � (o, N2). Define

2

),(),(
)(21 NoNo

oS
ρρ −

=

as the score of operator o with respect to N2. Our greedy
operator selection policy then selects operators from N1 one
by one with the largest score first.

As the score function in this algorithm is based on the
correlation coefficients, and the load can only be moved
from one node to the other, this algorithm is called the one-
way correlation-based load balancing algorithm.

3.3.2 Two-way Correlation-Based Redistribution.
In this algorithm, we redistribute all operators on a given
node pair without considering the former locations of the
operators. With this freedom, it is possible to achieve the
best operator mapping quality.

The operator selection policy in this algorithm is also a
score based greedy algorithm. We first start from two
“empty” nodes (nodes with non-movable operators only),
and then assign movable operators to these nodes one by
one. In order to balance the load of the two nodes, for each
assignment, we select the less loaded node as the receiver
node. Then from all operators that have not been assigned
yet, we compute their score with respect to the receiver
node and assign the operator with the largest score to that
node. This process is repeated until all operators are
assigned. Finally, we use the above one-way algorithm to
further balance the load of the two nodes.

The score function used here is the same as the score
function used in the one way algorithm. It can also be
generalized into the following form:

),,(
2

),(),(
),(21

ii No
NoNo

NoS ρρρ −+=

where S(o, Ni) is called the score of operator o with respect
to node Ni, i = 1,2. The intuition behind the use of S(o, Ni)
is that the larger the score, the better it is to put o on Ni
instead of on the other node.

As this algorithm will move operators in both directions,
it is called the two-way correlation-based operator
redistribution algorithm.

The final mapping achieved by this algorithm can be
much better than the one-way algorithm. However, as it
does not consider the former locations of the operators, this
algorithm tends to move more load than necessary,
especially when the former mapping is relatively good. In
the following section, we present an algorithm that can get
a good operator mapping plan by only moving a small
fraction of operators from the existing mapping plan.

3.3.3. Two-way Correlation-Based Selective Exchange.
In this algorithm, we allow both nodes to send load to each

other. However, only the operators whose score is greater
than certain threshold

�
 can be moved. The score function

used is the same as the one in the one-way algorithm.
Recall that if the score of an operator on node Ni , i = 1,2, is
greater than zero, then it is better to put that operator on Nj
(ij ≠) instead of on Ni. Thus, by choosing

�
 > 0, we only

move operators that are good candidates. By varying the
threshold

�
, we can control the tradeoff between the amount

of load moved and the quality of the resulting mapping plan.
If

�
 is large, then only a small amount load will be moved.

If
�
 is small (still greater than zero), then more load will be

moved, but better mapping quality can be achieved.
The details of the algorithm are as follows: (1) Balance

the load of the two nodes using the above one-way
algorithm. (2) From the more loaded node2, check whether
there is an operator whose score is greater than

�
. If so,

move this operator to the less loaded node. (3) Repeat step
(2) until no more operators can be moved or the number of
iterations equals to the number of operators on the two
nodes. (5) Balance the load of the nodes using the one-way
algorithm.

As this algorithm only selects good operators to move, it
is called two-way correlation-based selective operator
exchange algorithm.

3.3.4 Improved Two-way Algorithms. In all above
algorithms, operator migration is only triggered by load
balancing. In other words, if an existing operator mapping
plan is balanced, then no operator can be moved even if the
load variance of some nodes is very large. To solve this
problem and also maximize the average load correlation of
the system, we add a correlation improvement step after
each load balancing step in the above two-way algorithms.

Recall that if the load correlation coefficient of a node
pair is small, then it is possible to further minimize the
average load variance of the node pair. Thus, in the
correlation improvement step, we move operators within a
node-pair if their load correlation coefficient is below a
certain threshold � . Because we want to avoid unnecessary
load migrations, the correlation improvement step is only
triggered when some node is likely to get temporarily
overloaded. The details of this step are as follows:

We define the “divergent load level” of each node as its
average load plus its load standard deviation (i.e., square
root of load variance). For each node with divergent load
level more than one (it is likely to get temporarily
overloaded), apply the following steps: (1) compute the
load correlation coefficients between this node and all other
nodes. (2) Select the minimum correlation coefficient. If it
is less than � , then apply one of the two way algorithms on
the corresponding node pair (without moving the operators).
(3) Compute the new correlation coefficient. If it is greater
than the old one, then move the operators.

2 The load of the nodes cannot be exactly the same.

Notice that this is only for the two-way algorithms since
no operators can be moved in the one-way algorithm when
load is balanced. The resulting algorithms are called
improved two-way algorithms.

3.4. Global Operator Distribution

In this section we discuss a global algorithm which
distributes all operators on n nodes without considering the
former location of the operators. This algorithm is used to
achieve a good initial operator distribution when the system
starts. Because we need load statistics to make operator
distribution decisions, the algorithm should be applied after
a statistics collection warm up period.

The algorithm consists of two major steps. In the first
step, we distribute all operators using a greedy algorithm
which tries to minimize the average load variance as well as
balance the load of the nodes. In the second step, we try to
maximize the average load correlation of the system.

The greedy algorithm is similar to the one used in the
two-way operator redistribution algorithm. This time, we
start with n “empty” nodes (i.e., nodes with non-movable
operators only). The movable operators are assigned to the
nodes one by one. Each time, the node with the lowest load
is selected as the receiver node and the operator with the
largest score with respect to this node is assigned to it.
Finally, the load of the nodes is further balanced using one
round of the pair-wise one-way correlation-based load
balancing algorithm.

The major difference between the global algorithm and
the former pair-wise algorithm is that the score function
used here is generalized to consider n nodes together. The
score function of operator o with respect to Node Ni , i =
1, …, n, is defined as follows:

),,(),(
1

),(
1

i

n

j
ji NoNo

n
NoS ρρ −= �

=

The intuition behind S(o, Ni) is that the larger the score, the
better it is, on average, to put operator o on node Ni instead
of putting it elsewhere. It is easy to verify that the score
functions used in the pair-wise algorithms are just special
cases of this form.

After all operators are distributed, a pair-wise
correlation improvement step is then used to maximize the
average load correlation of the system. First, we check
whether the average load correlation of all node pairs is
greater than a given threshold � . If not, the node pair with
the minimum load correlation is identified and the two-way
operator redistribution algorithm is used to obtain a new
mapping plan. The new mapping plan is accepted only if
the resulting correlation coefficient is greater than the old
one. Notice that if this process is repeated without change,
the same node pair with the same set of operators on each
node can be selected repeatedly. To avoid this problem, all
selected node pairs are remembered in a list. When the
process is repeated, only node pairs that are not in the list
can be selected. If a new mapping plan is adopted by a
node pair, then all node pairs in the list that include either

of these nodes are removed from the list. This process is
repeated until the average load correlation of the system
becomes greater than � or the number of iterations reaches
the number of node pairs in the system.

4. Complexity Analysis

In this section, we analyze the computation complexity
of the above algorithms and compare it with a traditional
load balancing algorithm. The basic load balancing scheme
of the two algorithms are the same. The later algorithm
always selects operators with the largest average load first.

4.1. Statistics Collection Overhead

Assume each node has m operators on average and each
load sample takes D bytes. Then the load statistics of each
node takes (m+1)kD bytes on average. Since the standard
load balancing algorithm only uses the average load of each
statistics window, the storage needed for statistics by the
correlation based algorithm is k times that of the traditional
load balancing algorithm.

On a high bandwidth network, the network delay for
statistics transfer is usually negligible with regard to the
load distribution time period. For example, we test the
statistics transfer time on an Ethernet with 100Mbps
connection between the machines. Establishing the TCP
connection takes 2ms on average. When m = 20, k = 20, the
statistics transfer time is 1ms per node on average.
Considering the TCP connection time together with the
data transfer time, the difference between the correlation
based algorithm and the traditional load balancing
algorithm is not significant.

4.2. Computation Complexity

First, consider the one-way correlation based load
balancing algorithm. In each load distribution period, it
takes O(nlogn) time to order the nodes and select the node
pairs. For a given node pair, before selecting each operator,
the scores of the candidate operators must be computed.
Computing the correlation coefficient of a time series takes
time O(k). Thus, in a pair-wise algorithm, computing the
score of an operator also takes time O(k). There are O(m)
operators on the sender node, thus the total operator
selection time is at most O(m2k). In the traditional load
balancing algorithm, it is not necessary to compute the
scores of the operators, thus the operator selection time of
the one-way correlation based algorithm is O(k) times that
of the traditional load balancing algorithm.

In the asymptotic sense, the two-way correlation based
load balancing algorithms also takes time O(m2k) to
redistribute the operators. But their computation time is
several times that of the one-way algorithm as they consider
twice as many operators as the later one considers.

For the global algorithm, the score computation takes
O(nk) time for each operator. As there are mn operators all
together, its operator distribution time is O(m2n3k). Thus
the computation time of the greedy operator distribution

step of the correlation based global algorithm is O(nk)
times that of the traditional load balancing algorithm.

Finally, consider the computation complexity of the
correlation improvement steps. In the pair-wise algorithms,
computing the divergent load level of all nodes takes time
O(nk). If a node is temporarily overloaded, selecting a node
pair takes time O(nk), and to redistribute load between
them takes time O(m2k). There are at the most n
temporarily overloaded nodes. Thus the whole process
takes time at most O(n2k+ m2nk)

In the global algorithm, it takes time O(n2k) to compute
the correlation matrix in the first iteration. In the following
iterations, whenever operators are redistributed between a
node pair, it take O(nk) time to update the correlation
matrix. Selecting a node pair takes time O(n2).
Redistributing operators on a node pair takes time O(m2k).
Thus, each complete iteration takes time O(nk + n2 + m2k).
There are at most n(n-1) iterations. The total correlation
improvement step takes time at most O(n3k + n4 + m2n2k).

Although the correlation based algorithms are in
polynomial time. They can still be very expensive when m,
n, k are large. Thus, we must work with reasonable m, n, k
to make these algorithms feasible.

4.3. Parameter Selection

Obviously, the global algorithm and the centralized pair-
wise algorithm can not scale when n is large. However, we
can partition the whole system into either overlapping or
non-overlapping sub-domains. In each domain, both the
global and the pair-wise algorithm can be applied locally.

In addition, as the pair-wise algorithm is repeated
periodically, we must make sure that its computation time is
small in comparison to the load distribution period.
Obviously, when m is large, a lot of operators must have
very small average load. As it is not necessary to consider
each operator with small load individually, the operators
can be clustered into super-operators such that the load of
each super-operator is no less than certain threshold. By
grouping operators, we can control the number m on each
node.

Moreover, we can also choose k to achieve a tradeoff
between the computation time and the performance of the
algorithm. For larger k, the correlation coefficients are
more accurate, and thus the distribution plans are better. At
the other extreme, when k is 1, our algorithm reduces to
load balancing with a random operator selection policy.

Finally, we would like to point out that it is not hard to
find reasonable m, k, and domain size n. For example, we
tested the algorithms on a machine with an AMD Athlon™
3200+ 2GHz processor and 1GB memory. When m=10,
k=10, the computation time of the pair-wise operator
redistribution algorithm is only 6ms for each node pair. If

Table 1: Computation time with different n

n 10 20 50
Computation Time 0.5sec 3.4sec 0.9min

the load distribution interval is 1 second, the pair-wise
algorithms only take a small fraction of the CPU time in
each distribution period. Since the pair-wise algorithm can
be easily extended to a decentralized and asynchronous
implementation, it is potentially scalable. The computation
time of the global algorithm with different n is shown in
Table 1. Note that the global algorithm runs infrequently
and on a separate node. It would only be used to correct
global imbalances.

5. Experiments

In this section, we present experimental results based on
a simulator that we built using the CSIM library [12].

5.1. Experimental Setup

5.1.1. Queries. For these experiments, we use several
independent linear operator chains as our query graphs. The
selectivity of each operator is randomly assigned based on a
uniform distribution and, once set, never changes. The
execution cost of each operator is at most 0.1 second. We
also treat all operators in the system as movable.

5.1.2. Workload. We used two kinds of workloads for our
experiments. The first models a periodically fluctuating
load for which the average input rate of each input stream
alternates periodically between a high rate and a low rate.
Within each period, the duration of the high rate interval
equals the duration of the low rate interval. In each interval,
the inter-arrival times follow an exponential distribution
with a mean set to the current average data rate. We
artificially varied the load correlation coefficients between
the operators from –1 to 1 by aligning data rate modes of
each input stream with a different offset.

The second workload is based on the classical On-Off
model that has been widely used to model network traffic
[3, 18]. We further simplified this model as follows: each
input stream alternates between an active period and an idle
period. During an active period, data arrives periodically
whereas no data arrives during an idle period. The
durations of the active and idle periods are generated from
an exponential distribution. This workload models an
unpredictably bursty workload. In order to get different
load correlations from -1 to 1, we first generate some input
streams independently and then let the other input streams
be either the opposite of one of these streams (when steam
A is active, its opposite stream is idle and vise versa) or the
same as one of these streams with the initial active period
starting at a different time.

We use the periodically fluctuating workload to evaluate
the global algorithm alone and to compare the pair-wise
algorithms with the global algorithm. The bursty workload
is used to test both algorithms together, as the global load
distribution easily becomes ineffective under such
workload.

5.1.3. Algorithms. We compare the above correlation
based algorithms with a traditional load balancing

algorithm which always selects the operator with largest
load first, and a randomized load balancing algorithm
which randomly picks the operators. Each of the latter two
algorithms has both a global version and a pair-wise
version. Operators are only moved from the more loaded
nodes to the less loaded nodes.

5.1.4 Experiments. Unless specified, the operators are
randomly placed on all nodes when a simulation starts. All
experiments have an initial warm up period, when the load
statistics can be collected. In this period, a node only
offloads to another node if it is overloaded. The receiver
node is selected using the same algorithm described in
Section 3.3. After the warm up period, different load
distribution algorithms are applied and the end-to-end
latencies at the output are recorded.

We test each algorithm at different system load levels.
The system load level is defined as the ratio of the sum of
the busy time of all nodes over the product of the number
of nodes and the simulation duration. For each simulation,
we first determine the system load level, then compute the
average rate of each input streams (to achieve the given
load level) as follows: (1) Randomly generate a rate from a
uniform distribution. (2) Compute the system load level
using the generated steam rates. (3) Multiply each stream
rate by the ratio of the given system load level over the
computed system load level.

 To avoid bias in the results, we repeated each
experiment five times with different random seeds, and we
report the average result. In order to make the average end-
to-end latency of different runs comparable, we make each
operator chain contain the same number of operators each
with the same processing delay. In this setting, the end-to-
end processing delay of all output tuples is the same. (i.e.,
no dependency on the randomly generated query graph).

Table 2: Simulation Parameters

Number of nodes (n) 20

Average # of operators per node (m) 10

Number of operators in each chain 10

Operator selectivity distribution U (0.8, 1.2)

Operator processing delay (per tuple) 1ms

Input rate generating distribution U(0.8, 1.2)

Input rate fluctuation period 10sec

Input rate fluctuation ratio (high rate/low rate) 4

Operator migration time 200ms

Network bandwidth 100Mbps

Statistics window Size 10sec

of samples in statistics window (k) 10

Load distribution period 1sec

Load balancing threshold (�) 0.1

Score threshold for operator exchange (
�
) 0.2

Correlation improvement threshold (�) 0.8

Because the average end-to-end latency depends on the
number of operators in each chain as well as the processing
delay of each operator, we use the ratio of the average end-
to-end latency over the end-to-end processing delay as the
normalized performance measurement. This ratio is called
the latency ratio.

Unless otherwise specified, all the experiments are
based on the simulation parameters summarized in Table 2.

5.2. Experiments and Results

5.2.1. The Global Algorithms. First, we compare the three
global operator allocation algorithms. They are the
correlation based algorithm (COR-GLB), the randomized
load balancing algorithm (RAND-GLB) and the largest-
load-first load balancing algorithm (LLF-GLB).

In the first experiment, the global algorithms are applied
after the warm up period and no operator is moved after
that. The latency ratios of these algorithms at different
system load levels are shown in Figure 3. Obviously, the
correlation based algorithm performances much better than
the other two algorithms. Figure 4 depicts the average load
standard deviation of all nodes in the system after the
global algorithms are applied. The COR-GLB algorithm
results in load variance that is much smaller than the other
two algorithms. This further confirms that small load
variance leads to small end-to-end latency. We also show
the lower bound of the average load standard deviation
(marked by MINIMUM) in Figure 4. It is the standard
deviation of the overall system load time series divided by
n (according to Theorem 1). The results show that the
average load variance of the COR-GLB algorithm is very
close to optimal in this experiment.

In addition, we measured the average load correlation of
all node pairs after the global distributions. The results of

one algorithm at different load levels are similar to each
other and the average results are shown in Table 3. Notice
that the average load correlation of the RAND-GLB and
the LLF-GLB algorithms are around zero, showing that
their performance is not worst case. If an algorithm tends to
put highly correlated operators (for instance, connected
operators with fixed selectivity) together, it may result in an
average load correlation close to -1. This would get much
worse performance under a fluctuating workload.

The benefit of having large average load correlation is
not obvious in the first experiment. The above results seem
to indicate that when the system load level is lower than 0.5,
it does not matter which algorithm is used. However, this is
not true. In the second experiment we show the effect of the
different average load correlations achieved by these
algorithms.

In this experiment, we first set the system load level to
be 0.5 and use different global algorithms to get initial
operator distribution plans. Then, we increase the system
load level to 0.8 and use the largest-load-first pair-wise
load balancing algorithm to balance the load of the system.
The latency ratios and the amount of load moved 3 after the
load increase are shown in Figure 5. Because the COR-
GLB algorithm results in large average load correlation, the
load of the nodes is naturally balanced even when the
system load level changes. On the other hand, the RAND-
GLB and the LLF-GLB algorithms are not robust to load
changes as they only have average load correlations around
zero. Therefore, the correlation based algorithm is still
potentially better than the other two algorithms even if the
current system load level is not high.

5.2.2. The Pair-wise Algorithms. For the pair-wise
algorithms, we want to test how fast and how well they can
adapt to load changes. Thus, in the following experiments,
we let the system start from connected mapping plans
where a connected query graph is placed on a single node.

3 Whenever an operator is moved, its average load is added to the amount
of load moved.

0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

System Load Level

La
te

nc
y

R
at

io

RAND−GLB
LLF−GLB
COR−GLB

Figure 3: Latency ratio of the global algorithms

0.8 0.85 0.9 0.95 0.98
0

0.05

0.1

0.15

0.2

0.25

System Load Level

A
ve

ra
ge

 L
oa

d
S

ta
nd

ar
d

D
ev

ia
tio

n

MINIMUM
COR−GLB
RAND−GLB
LLF−GLB

Figure 4: Average load variance of the global algorithms

Table 3: Average load correlation of the global algorithms

COR-GLB RAND-GLB LLF-GLB
0.65 -0.0048 -0.0008

0 5 10 15 20
0

2

4

6

8

10

12

Simulation Time (sec)

La
te

nc
y

R
at

io

RAND−GLB
LLF−GLB
COR−GLB

0 5 10 15 20

0

2

4

6

8

10

Simulation Time (sec)

A
cc

um
ul

at
ed

 A
m

ou
nt

 o
f L

oa
d

M
ov

ed RAND−GLB
LLF−GLB
COR−GLB

Figure 5: Dynamic performance of the global algorithms

Different pair-wise algorithms are applied after the warm
up period and the worse case recovery performance of
these algorithms is compared.

One-way Pair-wise Load Balancing Algorithms: First
the three one-way pair-wise algorithms are compared. They
are the correlation based load balancing algorithm (COR-
BAL), the randomized load balancing algorithm (RAND-
BAL) and the largest-load-first load balancing algorithm
(LLF-BAL). Figure 6 depicts the latency ratios of these
algorithms at different system load levels. Obviously, the
COR-BAL algorithm has the best performance. Because the
amount of load moved for these algorithms is almost the
same, the result indicates that the operators selected by the
correlation base algorithm are better than those selected by
the other two algorithms. The latency ratios of the
correlation based global algorithm are added in Figure 6 for
comparison. It shows that the performance of these pair-
wise algorithms is much worse than that of the correlation
based global algorithm.

Improved two-way pair-wise algorithms: In this
experiment, we compare two improved correlation based
two-way algorithms. They are the improved operator
redistribution algorithm (COR-RE-IMP) and the improved
selective operator exchange algorithm (COR-SE-IMP).
The latency ratios of the COR-BAL and the COR-GLB
algorithms are added in Figure 7 for comparison. The
results show that the latency ratios of the improved two-
way pair-wise algorithms are much smaller than the one-
way algorithm. Thus, the benefit of getting better operator
distribution plans exceeds the penalty of moving more
operators.

To look at these algorithms more closely, we plot
several metrics with respect to the simulation time when the
system load level is 0.9 in Figure 8. Obviously, the COR-
RE-IMP algorithm moves much more load than the COR-
SE-IMP algorithm. Thus although the quality of its final
plan is closer to that of the global algorithm, its average
performance is worse than that of the COR-SE-IMP
algorithm. For different applications, which two-way
algorithm performs better on average usually depends on
the workload of the system and the operator migration time.

We can also see from Figure 8 that the global algorithm
moves less load than the COR-RE-IMP algorithm but
achieves better performance. Thus, although it is possible
to use pair-wise algorithms only, it is still sensible to use a
global algorithm for initial operator distribution.

5.2.3. Sensitivity Analysis. Here, we inspect whether the
correlation based algorithms are sensitive to different
simulation parameters. In these experiments, the COR-GLB
and the COR-SE-IMP algorithms are compared with the
LLF-GLB and the LLF-BAL algorithms when the system
load level is 0.9. We vary the number of nodes (n), the
average number of operators on each node (m), the size of
the statistics window, the number of samples in each
statistics window (k), the input rate fluctuation period, and
the input rate fluctuation ratio (high rate / low rate).

The results in Figure 9 show that the correlation based
algorithms are not sensitive to these parameters except
when m is very small, in which case, the load of the system
cannot be well balanced. On the other hand, the largest-
load-first load balancing algorithms are sensitive to these
parameters. They perform badly especially when the
number of nodes is small, or the average number of

0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

70

System Load Level

La
te

nc
y

R
at

io

RAND−BAL
LLF−BAL
COR−BAL
COR−GLB

Figure 6: Latency ratio of the one-way pair-wise algorithms
and the correlation based global algorithm

0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

System Load Level

La
te

nc
y

R
at

io

COR−BAL
COR−RD−IMP
COR−SE−IMP
COR−GLB

Figure 7: Latency ratio of correlation based algorithms

20 40 60 80 100
0

5

10

15

20

Simulation Time (sec)

La
te

nc
y

R
at

io

COR−BAL
COR−RD−IMP
COR−SE−IMP
COR−GLB

20 40 60 80 100

0

5

10

15

20

25

30

35

Simulation Time (sec)

A
cc

um
ul

at
ed

 A
m

ou
nt

 o
f L

oa
d

M
ov

ed COR−BAL
COR−RD−IMP
COR−SE−IMP
COR−GLB

20 40 60 80 100

0

0.05

0.1

0.15

0.2

0.25

Simulation Time (sec)

A
ve

ra
ge

 L
oa

d
S

ta
nd

ar
d

D
ev

ia
tio

n

COR−BAL
COR−RD−IMP
COR−SE−IMP
COR−GLB

20 40 60 80 100

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Simulation Time (sec)

A
ve

ra
ge

 L
oa

d
C

or
re

la
tio

n

COR−BAL
COR−RD−IMP
COR−SE−IMP
COR−GLB

Figure 8: Performance of the correlation based algorithms
when system load is 0.9

operators on each node is small, or the load fluctuation
period is long, or the load fluctuation ratio is large,

Notice that when m is large, the static performance of
the largest-load-first algorithm is almost as good as the
correlation based algorithms. This is because when each
operator has only a small amount of load and the load of all
operators fluctuate differently, putting a lot of operators
together can smooth out load variation. However, when the
dynamic performance is considered, the correlation based
algorithm still performs better than the largest-load-first
algorithm because it results in a positive average load
correlation and can naturally balance the load when the
load changes.

In addition, these results show that the correlation based
algorithms are not very sensitive to the precision of the
measured correlations. They work pretty well even when
the size of the statistics window is only half of the load
fluctuation period (i.e., when load fluctuation period is 20
in Figure 9). Thus, when the precision of the load
correlations must be sacrificed to reduce the computation
overhead, we can still expect relatively good performance.

5.2.4. Bursty Workload. Finally, we use the bursty
workload to test the robustness of our algorithms. The
mean of the active period durations and the mean of the idle
periods are both 5 seconds, and the statistics window size is
still 10 seconds. As the duration of the active periods and
the idle periods are exponentially distributed, the measured
load correlations vary over time, and they are not precise..
In this experiment, the global algorithms are combined with
their corresponding pair-wise algorithms. The combined
algorithms are identified by the names of the pair-wise
algorithms with GLB inserted. The experimental results in
Figure 10 confirm the effectiveness of the correlation based
algorithms under such workload.

6. Related Work

Load distribution is a classical problem in distributed
and parallel computing systems [7, 11, 20]. In most of the
traditional systems, load balancing or load sharing is
achieved by wisely allocating new tasks to processing units
before their execution [16]. Due to the high overhead of
load migration, the applications of dynamic load
distribution algorithms (which redistribute running tasks on
the fly) are usually restricted to large scientific simulations
and computations [15, 17]. Stream based data processing
systems [2, 5, 13] are different from traditional database
systems in that they are push-based and the tasks in these
systems are continuous queries. Because the input data
rates of such systems do not depend on the resource
utilization, the load distribution algorithms for these
systems are also different from traditional works.

Dynamic load balancing has been studied in the context
of continuous query processing. Shah et al. studies how to
process a single continuous query operator on multiple
shared-nothing machines [14]. In this work, load balancing
is achieved by adjusting the data partitions on the servers
dynamically. Our work is complementary to theirs since we
focus on inter-operator load distribution instead of intra-
operator data partition.

Our previous work [19] studies dynamic load
distribution in stream processing systems when the network
transfer delays are not negligible. In this work, connected
operators are clustered as much as possible to avoid
unnecessary network transfers. When load redistribution is
necessary, operators along the boundary of the sub-query

5 10 20
0

10

20

30

40

50

Number of Nodes

La
te

nc
y

R
at

io

COR−GLB
COR−SE−IMP
LLF−GLB
LLF−BAL

5 10 20

0

10

20

30

40

50

60

70

80

Avg # of Operators Per Node
La

te
nc

y
R

at
io

COR−GLB
COR−SE−IMP
LLF−GLB
LLF−BAL

6 10 16
0

10

20

30

40

50

60

Statistics Window Size (sec)

La
te

nc
y

R
at

io

COR−GLB
COR−SE−IMP
LLF−GLB
LLF−BAL

10 20 40

0

5

10

15

20

25

30

35

40

of Samples in Statstics Window

La
te

nc
y

R
at

io

COR−GLB
COR−SE−IMP
LLF−GLB
LLF−BAL

2 10 20
0

10

20

30

40

50

60

70

80

Input Rate Fluctuation Period (sec)

La
te

nc
y

R
at

io

COR−GLB
COR−SE−IMP
LLF−GLB
LLF−BAL

2 4 8

0

10

20

30

40

50

Input Rate Fluctuation Ratio

La
te

nc
y

R
at

io

COR−GLB
COR−SE−IMP
LLF−GLB
LLF−BAL

Figure 9: Experiments with different parameters

0.8 0.85 0.9 0.95 1
0

50

100

150

System Load Level

La
te

nc
y

R
at

io

RAND−GLB−BAL
LLF−GLB−BAL
COR−GLB−BAL
COR−GLB−RD−IMP
COR−GLB−SE−IMP

Figure 10: Latency ratio of different algorithms with on-
off input model

graphs are migrated in order to achieve a good balance
between the operator distribution quality and the load
migration overhead. Our current work is based on different
assumptions where we consider frequently fluctuating
workloads with abundant network resources.

Another dynamic load management algorithm for
distributed federated stream processing systems is
presented in [4]. In this system, the autonomous
participants do not collaborate for the benefit of the whole
system. A price must be paid if one node wants to offload
to another node. Using pre-negotiated pair-wise contracts,
these participants can handle each other’s excess load. Our
work is different from this work in that we consider stream
processing servers in the same administrative domain where
all nodes fully cooperate with each other. In addition, our
algorithm considers the load variation of the operators and
tries to find load distribution plans with small average load
variance and large average load correlation. To the best of
our knowledge, this problem has not been addressed by any
of the former work yet.

7. Conclusions and Future Directions

We have studied in-depth a class of algorithms that
statically finds a good initial operator placement in a
distributed environment and that dynamically moves
operators to adapt to changing loads. We have shown that
by considering load correlations and load variations, we
can do much better than conventional load balancing
techniques. This illustrates how the streaming environment
is fundamentally different from other parallel processing
approaches. The nature of the operators and the way that
data flows through the network can be exploited, as we
have, to provide a much better solution for minimizing end-
to-end latency.

The work presented here focuses on high-performance
computing clusters such as blade computers. An obvious
direction for future work is to relax this constraint, and to
move toward a more heterogeneous computing
environment in which bandwidth and power consumption
are important resources that must be conserved as well.
This will radically change the optimization algorithms. We
believe that by starting with the more familiar and, in its
own right, useful case in this study, we will be better
informed to tackle the next set of problems.

8. References
[1] D. Abadi, Y. Ahmad, H. Balakrishnan, M. Balazinska, U.

Cetintemel, M. Cherniack, J. Hwang, J. Jannotti, W. Lindner,
S. Madden, A. Rasin, M. Stonebraker, N. Tatbul, Y. Xing, S.
Zdonik, The Design of the Borealis Stream Processing
Engine. In Proc. of the Second Biennial Conference on
Innovative Data Systems Research (CIDR), Jan. 2005.

[2] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C.
Convey, S. Lee, M. Stonebraker, N. Tatbul and Stan Zdonik.
Aurora: A New Model and Architecture for Data Stream
Management. VLDB Journal, Sep. 2003.

[3] A. Adas, Traffic models in broadband networks. IEEE
Communications, 35(7):82--89, July 1997.

[4] M. Balazinska, H. Balakrishnan, and M. Stonebraker.
Contract-based load management in federated distributed
systems. In USENIX Symposium on Net-worked Systems
Design and Implementation (NSDI), March 2004.

[5] S. Chandrasekaran, A. Deshpande, M. Franklin, J.
Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V.
Raman, F. Reiss, and M. Shah. TelegraphCQ: Continuous
dataflow processing for an uncertain world. In Proc. of the
CIDR Conference, Jan. 2003.

[6] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing and S. Zdonik. Scalable Distributed
Stream Processing. In Proc. of the CIDR Conference, 2003.

[7] R. Diekmann, B. Monien, and R. Preis, Load balancing
strategies for distributed memory machines. Multi-Scale
Phenomena and Their Simulation, 255--266. World
Scientific, 1997

[8] A. Foong, T. Huff, H. Hum, J. Patwardhan, G. Regnier, TCP
performance re-visited. In Proc. of IEEE Intl Symposium on
Performance of Systems and Software, March 2003.

[9] A. Gallatin, J. Chase, and K. Yocum, Trapeze/IP: TCP/IP at
near-gigabit speeds. In Proc. of USENIX Technical
Conference, June 1999.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, Freeman, New
York, 1979.

[11] D. Gupta and P. Bepari, Load sharing in distributed systems,
In Proc. of the National Workshop on Distributed
Computing, January 1999.

[12] Mesquite Software, Inc. CSIM 18 Simulation Engine.
http://www.mesquite.com/

[13] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M.
Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.
Query processing, approximation, and resource management
in a data stream management system. In Proc. of the CIDR
Conference, 2003.

[14] M.A. Shah, J.M. Hellerstein, S. Chandrasekaran, and M.J.
Franklin. Flux: An Adaptive Partitioning Operator for
Continuous Query Systems. In Proc. of the ICDE
Conference, pages 25--36, 2003.

[15] K. Schloegel, George Karypis and Vipin Kumar. Graph
Partitioning for High Performance Scientific Simulations.
CRPC Parallel Computing Handbook. Morgan Kaufmann,
2000.

[16] B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and
load balancing in parallel and distributed systems. IEEE
Computer Science Press, 1995.

[17] C. Walshaw, M. Cross, and M. G. Everett, Dynamic load
balancing for parallel adaptive unstructured meshes. Parallel
Processing for Scientific Computing, 1997. 10

[18] W. Willinger, M.S. Taqqu, R. Sherman, and D.V. Wilson,
Self-similarity through high variability: statistical analysis of
Ethernet LAN traffic at the source level. IEEE/ACM
Transactions on Networking, 5(1):71--86, 1997.

[19] Ying Xing. Load Distribution for Distributed Stream
Processing. In Proc. of the ICDE Ph.D. Workshop, 2004.

[20] C. Xu, B. Monien, R. Luling, and F. Lau. Nearest neighbor
algorithms for load balancing in parallel computers.
Concurrency: Practice and Experience, 9(12):1351--1376,
1997.

