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Abstract
We present a collaborative, self-configuring high avail-

ability (HA) approach for stream processing that enables
low-latency failure recovery while incurring small run-time
overhead. Our approach relies on a novel fine-grained check-
pointing model that allows query fragments at each server to
be backed up at multiple other servers and recovered collec-
tively (in parallel) when there is a failure.

In this paper, we first address the problem of determining
the appropriate query fragments at each server. We then dis-
cuss, for each fragment, which server to use as its backup
as well as the proper checkpoint schedule. We also intro-
duce and analyze operator-specific delta-checkpointing tech-
niques to reduce the overall HA cost. Finally, we quantify
the benefits of our approach using results from our prototype
implementation and a detailed simulator.

1 Introduction
Recently, there has been significant interest in a new class

of applications where high-volume, continuous data streams
need to be processed with low latency. Such applications in-
clude sensor-based patient monitoring, asset tracking, traffic
monitoring, real-time stock analysis, battlefield monitoring,
etc. Since these applications monitor real-time events, the
value of a result decays rapidly over time. Thus, processing
latency is a significant issue.

As a response to these applications, several stream pro-
cessing research prototypes [6, 4, 7] and commercial prod-
ucts have appeared. In these systems, processing is typically
expressed as a dataflow graph of operators. The streaming
input data passes through these operators while being trans-
formed on its way to the outputs. This model of processing
data before (or instead of) storing it sharply contrasts with the
traditional “process-after-store” model employed in conven-
tional database management systems (DBMSs). There has
also been recent effort in the area to enhance system scalabil-
ity by use of inexpensive, commodity clusters [9, 20, 24, 23].

In a distributed stream processing system (DSPS), de-
ploying more servers in general improves the system per-
formance. However, it also increases the risk of failure. In
this setting, a failure indeed has a serious negative impact
as it blocks the processing that should take place at the failed
server. The intrinsic real-time nature of stream processing ne-
cessitates a high-availability (HA) solution that enables fast
recovery and minimal slow-down of regular processing.

In this paper, we introduce a novel self-configuring HA
approach that significantly outperforms existing ones during
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both recovery and normal processing. Whereas the previous
approaches [19, 13, 5] mask a server failure by failing over
to a standby server, our solution enables a set of servers to
collectively take over the failed execution, realizing signif-
icantly faster recovery. Our solution also has low negative
impact on regular processing as it strives to use idle cycles to
execute short-duration HA tasks.

To maintain the backups spread over multiple machines,
we use checkpointing, which incrementally copies any
change in state to the backups. This is because checkpoint-
ing effectively works for a larger set of workload and usage
cases than other alternatives that are based on either replay or
redundant parallel execution (see Sections 2.2 and 8.3 for a
detailed discussion). For example, checkpointing can grace-
fully deal with increasing load, while redundant execution
always requires at least half the processing cycles to be avail-
able and devoted to it.

Our solution involves the following subproblems.
Query Partitioning. Each server needs to partition its query
graph into several subgraphs so that each subgraph can be as-
signed a different backup server. We refer to these subgraphs
as HA units. We study the problem of forming HA units as
well as preserving safety against failures while the system
reforms HA units.
Backup Assignment. We need an algorithm that finds an
appropriate backup server for each HA unit. Our backup as-
signment algorithm balances the checkpoint load and mini-
mizes the expected recovery time.
Checkpoint Scheduling. As we rely on checkpointing for
HA, we need a method that determines the order and the fre-
quency of checkpoint for HA units. Our scheduling algo-
rithm takes into account the characteristics of HA units such
as processing load and checkpoint cost.

In summary, our cooperative, fine-grained HA approach
has the following advantages.

1. Since the recovery load is distributed and balanced over
multiple servers, the approach facilitates faster recovery
than previous ones.

2. Each server checkpoints only a small fraction of its
query graph at each step. Therefore, the additional la-
tency incurred by HA tasks is kept significantly lower
than that of previous ones.

3. Each server strives to fully use its spare CPU cycles (i.e.,
those left after regular processing) to optimize the re-
covery performance.

4. If a server fails, each backup server takes over only a
fragment of the query graph from the failed server. For
this reason, after recovery, each server is likely to expe-
rience only a small increase in its processing load, thus
keeping its latency under control.

5. The framework is adaptive and does not require human



administration (e.g., no primary/backup designation).
In addition to the HA solution, we dissect the execution

details of stream operators and develop low-cost checkpoint
mechanisms. We also construct analytic models for both
checkpoint cost and expected recovery time. Finally, we
present prototype- and simulation-based results that substan-
tiate the utility of our work.

The rest of this paper is organized as follows. We provide
an overview of the topic in Section 2 and devise our backup
framework in Section 3. We discuss HA unit formation in
Section 4 and present algorithms for checkpoint scheduling
and backup assignment in Sections 5 and 6, respectively. In
Section 7, we analyze stream operators and design efficient
delta-checkpointing techniques. We demonstrate the exper-
imental results in Section 8 and cover the related work in
Section 9. We conclude in Section 10.

2 Background
In stream processing, a query is expressed in the form of a

directed acyclic graph of operators that define how to trans-
form the stream data [6, 4, 7]. Some stream operators are
directly borrowed from relational algebra (e.g., filter, map,
union) and others are adapted to operate over continuous data
streams (e.g., aggregate, join) [3]. The latter execute based on
their bounded views, called windows, over the data streams
to cope with the infinite nature of streams.

In a DSPS, the stream operators are distributed over mul-
tiple servers in a scalable manner [9, 20, 24]. We call the
mapping between the operators and the servers that execute
them a query deployment plan. Formally, given a set of
servers {Si}n

i=1 and a query network Q (i.e., the union of
all queries submitted), we denote a query deployment plan
with {Qi}n

i=1, where each Qi represents the set of operators
that server Si runs. We call Qi the query on server Si.

2.1 Previous HA Solutions for Stream Processing
Recently, a few HA techniques have been proposed for

stream processing [19, 13, 5]. In those techniques, some pre-
chosen servers (called primary servers) run queries and other
servers act as backup servers. Each backup server is respon-
sible for detecting the failure of its primary and immediately
taking over the primary’s execution. These approaches pro-
vide significantly faster recovery than traditional log-based
“restart recovery” techniques [16].

Stream-oriented HA solutions primarily differ in how the
backup servers operate. Our previous paper [13] proposed
the following three alternatives. In passive standby, each
primary periodically copies to its backup only the changed
part in its state. We call this task delta-checkpoint (or shortly
checkpoint). Unlike passive standby, active standby uses re-
dundant execution, in which each backup also receives the
input data (from upstream servers) and processes them in
parallel with its primary. Finally, in upstream backup, each
primary logs its output data while the backup remains inac-
tive. If a primary fails, the backup rebuilds the primary’s state
from scratch by processing tuples logged at upstream servers.
Approaches in [19, 5] fall into the active standby model.

2.2 Choosing Checkpoint as the HA method
Each HA method mentioned in Section 2.1 has unique rel-

ative benefits in terms of network utilization, recovery speed,

recovery semantics, and the effect on regular processing [13].
In this paper, we choose to focus on checkpointing (i.e., pas-
sive standby) as the underlying HA method. As we argue
below, our choice is primarily due to the observation that
checkpointing can be used to effectively address a larger set
of workload and configurations than other alternatives.

First, we do not use upstream backup as it would not ef-
fectively support operators with large windows (e.g., recov-
ering an operator with a window size of 10 minutes requires
re-processing 10 minutes worth of tuples). Second, we do
not consider active standby because it may not withstand the
high load situations that checkpointing can tolerate. More
specifically, active standby requires the backup to consume
the same amount of resources as the primary. Otherwise, the
backup will fall behind the primary and eventually will fail
to provide fast recovery. By contrast, checkpointing incurs
significantly less overhead as it copies only the remaining
result of the processing since the last checkpoint (e.g., for
an aggregate operator, it needs to copy only the most recent
summary value rather than all the previous values). In Sec-
tions 8.2 and 8.3, we experimentally demonstrate this point.
Checkpointing also has an advantage that it can easily handle
non-deterministic operators, whereas the other techniques re-
quire complex solutions [13].

3 Our Backup Model
In contrast to the previous HA models, our model enables

parallel recovery over multiple machines. We begin this sec-
tion by stating the assumptions behind this model. Then, we
describe the overall framework as well as the operation dur-
ing both non-failure and failure periods.

3.1 Assumptions
System Configuration. We assume that servers are grouped
into clusters (e.g., those of 5-20 servers) and study how the
servers in each cluster can cooperate to achieve HA.
Communication. We assume that servers in the same clus-
ter are connected with a fast, reliable network (e.g., gigabit
LAN). The communication protocol guarantees robust mes-
sage delivery and also preserves message ordering. We do
not consider network failures that isolate server clusters [5].
Failure Model. We assume that all servers are subject to
failure and a failed server stops functioning (i.e., fail-stop).
We also assume that a server failure is a rare event and thus
aim at protection against single server failures. It is generally
acknowledged that a 1-safety guarantee is sufficient for most
real-world applications [11].
Processing Load. We assume that the overall processing
load is most of the time under the system’s processing ca-
pability and well balanced over the servers (for this reason,
each server can initiate HA tasks at idle times). We do not
consider medium- to long-term overload situations because
they in general necessitate load shedding [22] to favor time-
liness over correctness, contradicting the principle of HA.

3.2 The Basic Architecture
In this subsection, we describe the overall organization of

the HA framework. We assume checkpoint as the means to
maintain backups (refer to Section 2.2 for the reasons) and
use Figure 1 for illustration. Once the system launches the
query network, the query on each server can be viewed as



Figure 1. The Backup Model

a set of connected subgraphs. For example, on server S1,
a filter (σ), a map (µ) and an aggregate (sum) form a sub-
graph u1. We take such a maximal connected subgraph as an
atomic unit for checkpoint because checkpointing only part
of it would yield an inconsistent backup image. Notice that,
for a chain where operator o1 outputs to o2, checkpointing
only o1 will leave (on the backup server) an image that would
result from an invalid execution where some recent output of
o1 disappears without being fed into o2. For this reason, we
call such a subgraph an HA unit. Hereafter, we specify the
query deployment plan in terms of HA units. In Figure 1,
Q1 = {u1, u2, u3}, Q2 = {u4}, and so forth. Operators that
belong to an HA unit are called constituent operators.

We also regard HA units on the same server as indepen-
dent units for checkpoint (i.e., can be checkpointed onto dif-
ferent servers at different times) because they have no inter-
dependency with each other. A backup assignment, a map-
ping between HA units and their backup servers, is denoted
by {Qi,j : i 6= j, 1 ≤ i, j ≤ n}, where Qi,j is the set of HA
units that server Si executes and server Sj backs up (i 6= j
implies that a server cannot back up itself). We call each Qi,j

an HA segment. In Figure 1, Q1,2 = {u1, u2}, Q1,3 = {u3},
and Q2,3 = {u4}. u′3 and u′4 are the backup images built by
checkpointing u3 and u4 onto S3, respectively. Each shaded
area Qi,j represents the collection of backup images that Sj

maintains for Si.
It should be noted that the formation of HA units will sig-

nificantly affect the behavior of our HA framework. We dis-
cuss this issue in Section 4.

3.3 No Loss Guarantee
Our HA model masks a server failure by making other

servers in the cluster collectively rebuild the latest state of the
failed server. For this model, we assume that a backup can
precisely repeat the pre-failure execution of its primary as
long as it can obtain the input tuples that the primary has pro-
cessed since the last checkpoint. We refer the reader to our
previous work in [13] for the details of providing this guar-
antee for all kinds of stream-processing operators including
nondeterministic ones.

In Figure 1, if S2 fails, the processing that involves u4

no longer continues. In this case, S3 has to take over the
processing because it is the only one that owns the backup
image u′4 of u4. In more detail, S3 has to set up a new con-
nection a2 to feed its backup image u′4 and start executing
u′4 to recover the state of u4. To prevent data loss in this
case, each backup image must be able to obtain the tuples
that the primary has processed since the last checkpoint. In

other words, if S2 processed tuple t100 after checkpointing u4

onto S3, u′4 on S3 must be able to receive that tuple through
a2. For this reason, each HA unit has output queues, one for
each output, to retain such tuples (i.e., those that the down-
stream backups are currently missing). Those tuples can be
safely discarded when the downstream server processes them
and checkpoints the effect onto the backup server. In our cur-
rent implementation, both output queues and backup images
are built in memory. This implementation can be extended to
spill those components to disk under memory contention.

3.4 Non-Failure Time Operation for HA
As stated in Section 3.1, we assume that each server has

spare CPU cycles and uses them for HA purposes. An idle
server (i.e., one that has no tuples to process at the moment)
can perform one of the following HA tasks:
• Capture: The server chooses an HA unit and sends to

the backup server a message that captures the delta in
the state (i.e., what has changed since the last check-
point). We use the terms capture and checkpoint mes-
sage, respectively, to refer to the task and the message
that the task constructs.

• Paste: The server chooses one of the checkpoint mes-
sages that it received, and copies the content of the mes-
sage to the corresponding backup image. We call this
task paste. Once a paste finishes, the server notifies
the sender of the checkpoint message (i.e., the primary
server for the checkpointed HA unit). This enables the
next round of checkpoint for that unit.

In the rest of this section, we describe HA tasks in detail.
We discuss the problem of scheduling them in Section 5.
Contents of a Checkpoint Message. When a server begins
capturing an HA unit, the input queues of the HA unit (i.e.,
those of the constituent operators) are empty. For this rea-
son, the server skips input queues and captures only the con-
stituent operators (discussed in Section 7) and output queues.
Notice that only a small part of each output queue needs to
be captured. In Figure 1, if S2 acknowledged to S1 that it
received t101, S1 needs to capture only t102 among the tuples
in the output queue of u3. With t102, the output queue of u′3
on S3 can guarantee that a3, a stream that will flow if S1 fails,
will not miss any tuple.
Checkpoint vs. Processing. Once a capture task begins,
the server defers stream processing (i.e., only buffers arriv-
ing input tuples) until the capture ends. This is because (1)
executing an HA unit while it is being captured might intro-
duce inconsistency in the captured image (i.e., capture and
processing conflict semantically) and (2) interrupting a cap-
ture to execute other HA units will further suspend the HA
unit currently being captured. If an exceptional input burst
appears during a capture, it may be desirable to abort the
ongoing capture and immediately resume the processing to
bound the growth of the latency. However, such an abortion
is not always useful because the change in state tends to grow
over time (i.e., a later capture is usually more expensive). In
contrast to capture, paste can be interrupted to execute other
HA units. Notice that this task on backup can be done in
parallel with the execution of the HA unit on the primary.

Once a capture finishes, a processing burst appears until
the buffered input tuples are consumed. Conceptually, the



duration of capture (i.e., capture cost) implies the penalty of
HA (i.e., the additional processing latency due to capture).
Furthermore, both the capture cost and the server’s process-
ing load affect the duration of the processing burst and also
the checkpoint interval. In practice, we can set a lower bound
on the checkpoint interval to prevent checkpointing too fre-
quently (i.e., to trade off processing against HA). We can
also set an upper bound that forces a checkpoint to bound
the growth of recovery time (i.e., to trade off HA against pro-
cessing).

3.5 Failure and Recovery
In our HA model, each server S is monitored by a des-

ignated server that periodically (e.g., every 100ms) pings S.
If S does not respond for a timeout period (e.g., 300ms), the
server assumes that S has failed and broadcasts this to the
other servers in the cluster. Each of these notified servers then
searches for checkpoint messages from the failed server and
pastes those messages to the corresponding backup images.
Next, it finds the backup images that it has maintained for the
failed server and begins executing them as its new HA units,
while redirecting the input and output streams as described
in Section 3.3. Finally, the server lets those backed-up HA
units catch up with other HA units.

We use the term recovery to refer to the process during
which the alive servers in the cluster take the actions de-
scribed above. When the servers collectively rebuild the lat-
est state of the failed server, we say that the cluster has recov-
ered from the failure. Note that having recovered does not
necessarily imply being able to mask the next failure. This is
because the system may not be able to tolerate the next failure
until it secures, again by use of checkpoint onto new backup
servers, the HA units taken over during recovery. The period
of instability refers to the amount of time, after failure, until
all HA units are again protected. Finally, if the failed server
comes back up, it joins the system as a new member.

4 Formation of HA Units
As illustrated in Section 3.2, query deployment deter-

mines the formation of HA units. We start this section by
showing that the load management principles for stream pro-
cessing are also beneficial to our HA framework. We then in-
troduce a strategy that avoids managing too many HA units.
Finally, we discuss preserving the safety guarantee while the
system reforms HA units.

4.1 Impact of Load Management Principles
One principle of load management in stream processing is

to distribute operators with highly correlated loads over dif-
ferent machines [24]. This is because placing them on the
same machine will make it more vulnerable to load spikes.
Adjacent operators (i.e., those connected by data streams)
usually exhibit high load correlation. Therefore, they (except
those with very low processing load) tend to be placed at dif-
ferent servers. Furthermore, operators with heavy processing
load are usually split into smaller pieces and distributed over
multiple servers [9, 20] due to their negative impact on load
management (refer to [23] for quantitative analysis). For the
two reasons above, each server is likely to own many small-
size operator chains (i.e., many fine-grained HA units). This
is indeed advantageous to our HA model because (1) more

HA units, in general, lead to better backup distribution (see
Section 1 for the benefits) and (2) finer HA units tend to have
smaller capture costs (i.e., smaller disruption in processing).
Note that HA units with high capture costs can also be split
in order to lower the costs.

4.2 Merging HA Units
While having many HA units is usually beneficial in terms

of backup distribution, managing too many HA units may in-
cur significant overhead. We address this problem by itera-
tively merging HA units with similar characteristics as long
as the capture cost remains under a threshold. In other words,
we put all the operators that constitute those HA units into
a new HA unit, even though those operators do not form a
connected graph. We use the ratio of processing load over
capture cost as the similarity metric because this is what our
checkpoint scheduler uses to optimize the recovery speed (re-
fer to Section 5). Merging HA units that are similar in this
manner avoids making bad scheduling decisions. Notice that
the merged HA units will get checkpointed with a similar fre-
quency as before the merge.

4.3 Safety during HA Unit Reformation
Safety against failure has to be preserved even while the

system reforms HA units due to operator splitting and migra-
tion. We achieve this by keeping the old backup images of
the involved HA units, until the reformation completes and
the newly formed HA units are again backed up. Due to the
page limitation, we cover only the following representative
case. Suppose that an operator ρ is migrated to server Si and
added (as a constituent operator) to an HA unit u on Si. In
this case, the previous backup server S′j for ρ has to keep its
backup image ρ′ of ρ until Si checkpoints the expanded ver-
sion of u onto the backup server S′i for u. This is because,
before the checkpoint, S′j is the only one that backs up ρ. S′j
can safely remove its backup image ρ′ after S′i receives the
checkpoint message that captures u 3 ρ.

5 Checkpoint Scheduling
In our backup model, an idle server can perform either

a capture task (i.e., among the HA units not being check-
pointed, choose one, compose a checkpoint message for that
one, and send the message to the right backup server) or a
paste task (i.e., among the checkpoint messages received,
choose one and copy the content of the message to the right
backup image). In this section, we devise an algorithm that
schedules such tasks in a manner that minimizes the expected
recovery time. We first discuss how we can find the capture
task that will most reduce the expected recovery time. Then,
we describe how we choose the best from both capture and
paste tasks. We end this section discussing the key properties
of our scheduling algorithm.

5.1 Choosing the Best Capture Task
A capture task sends the changed part of an HA unit’s state

to the backup server. The backup server then can freshen the
backup image (i.e., reduce the amount of work to do during
recovery) by simply copying the delta received. However, as
we describe below, the recovery time is heavily dependent on
how a server schedules capture tasks.

Figure 2 illustrates an example where server S1 check-



Figure 2. Reovery Time (Round-Robin)

points its HA units u1 and u2 onto S2, and u3 onto S3 in
a round-robin fashion. To ease illustration, we do not con-
sider the paste tasks that S1 would perform and the capture
tasks that S2 and S3 would do. We also ignore network la-
tency and assume that HA units on S1 have constant pro-
cessing loads (in terms of CPU utilization): lu1(t) = 11%,
lu2(t) = 10%, and lu3(t) = 66.5% for all time t. Fi-
nally, we assume that those units have (1) constant capture
costs (in seconds): cu1(t) = 0.125, cu2(t) = 0.25, and
cu3(t) = 0.125 for all time t and (2) the same paste costs
as capture costs: c′uk

(t) = cuk
(t) for k = 1, 2, 3. Notice

that these costs are the amounts of time that the CPU would
consume when it performs HA tasks in isolation. The as-
sumptions above are to ease illustration (refer to Sections 8.1
and 8.2 for the details in real cases).

As described in Section 3.4, each capture (represented as
a dark rectangle in Figure 2) defers query processing. For
this reason, a processing burst (represented as an empty rect-
angle) appears after that. As mentioned before, the dura-
tion of such a burst, is a function of the capture cost and
the server’s processing load. For example, the duration of
the burst after capturing u1 is [capture cost][total load]

1−[total load] =
cu1(t)(lu1 (t)+lu2 (t)+lu3 (t))
1−(lu1 (t)+lu2 (t)+lu3 (t)) = 0.125·0.875

1−0.875 = 0.875 (seconds).

The figure also illustrates that each paste is deferred until its
turn and, in contrast to captures, is interleaved with query
processing (refer to Section 3.4 and the stacks of grey and
empty rectangles in the figure).

Figure 2 also demonstrates how the expected recovery
time changes over time for various entities such as HA units
u1, u2, u3, HA segments Q1,2, Q1,3 and the query Q1 on
server S1. We use the convention that R∗(t) represents the
expected amount of time to recover an entity ∗ if the pri-
mary for ∗ fails at time t (due to the page limitation, we leave
the formal definitions in [14]). The figure shows that cap-
turing u2 during [5, 5.25] reduces Ru2(t) from 0.43 to 0.28
when it finishes at 5.25. Notice that when the capture is
about to end, the expected amount of time to recover u2 is∫ 5.25

1
lu2(τ)dτ = 0.43 because the backup image u′2 on S2

has the state of u2 as of time 1. However, when the capture
finishes at time 5.25, S2 receives a checkpoint message that
captures u2 as of time 5. Therefore, if S1 fails, S2 will take
c′u2

(t) = 0.25 seconds to consume the checkpoint message
and

∫ 5.25

5
lu2(τ)dτ ' 0.03 seconds to replay the execution

of u2 that occurred from time 5 to 5.25 on S1.

Figure 3. Reovery Time (Min-Max)

The capture task for u2 also reduces RQ1,2(t) by the same
amount. This is because RQ1,2(t) = Ru1(t) + Ru2(t) in
the example, as u1 and u2 on S1 are backed up at S2. By
contrast, the capture task cannot reduce RQ1(t) (see the up-
per bound of the grey area). Notice that the system will
recover from S1’s failure only if both S2 and S3 recover
segments Q1,2 and Q1,3, respectively. Formally, RQ1(t) =
max{RQ1,2(t), RQ1,3(t)}. However, capturing u2 ∈ Q1,2

does not relieve the largest recovery load on S3 (see in the
figure that RQ1,3(t) > RQ1,2(t)). To reduce RQ1(t), S1 at
time 5 should have started capturing u3 ∈ Q1,3 (as in Fig-
ure 3) rather than u2 ∈ Q1,2.

Based on this observation, we design an algorithm that se-
lects an HA task that will minimize the maximum recovery
load among those spread over other servers. For this rea-
son, we call our scheduling algorithm “min-max”. In detail
(also refer to Figure 4), each server Si looks for all HA units
u ∈ Qi,j such that (1) u ∈ c-q and (2) RQi,j (t + cu(t)) =
RQi(t + cu(t)), where c-q is a queue that remembers the
HA units that Si can checkpoint immediately (i.e., those not
being checkpointed) and t + cu(t) is the time when captur-
ing u will end. Condition (2) above implies that u’s backup
server will have the maximum recovery load when capturing
u is about to finish. Among such HA units, the server finds
HA unit u∗ such that capturing it will most reduce the recov-
ery time, relative to the capture cost. As the metric for this,
the server uses ∆Ru(t)

cu(t) for each HA unit u, where ∆Ru(t)
denotes the reduction in recovery time at the cost cu(t) of
capturing u. We define ∆Ru(t) as

∫ t

αu(t)
lu(τ)dτ − c′u(t),

where αu(t) denotes the start time of the previous capture.
In the definition of ∆Ru(t), the first and second terms repre-
sent the gain of freshening the backup image and the penalty
of consuming the checkpoint message, respectively. Notice
that our algorithm is prefers HA units with high processing
load (see lu(τ) in the numerator of the metric) and low check-
pointing cost (see cu(t) and c′u(t) in the metric).

5.2 Capture vs Paste
In principle, a server conducts capture tasks to better pre-

pare for the failure of itself and paste tasks for the failure of
others. To strike a balance between these goals, each server
finds the HA task, no matter it is a capture or a paste, that
will assist the HA segment with the largest recovery load. In
detail, server Si first computes RQi,j∗ (u

∗, t), the expected
recovery time for the moment when it finishes capturing the



Whenever Si forms an HA unit u ∈ Qi,j
01. c-q.push(u, i); // enqueue the HA unit

Whenever Idle
02. C ← {(u, j) ∈ c-q : RQi,j

(t + cu(t)) = RQi
(t + cu(t))}

03. find (u∗, j∗) ∈ C such that // find the best HA unit to capture
∆Ru∗ (t)

cu∗ (t)
= max{∆Ru(t)

cu(t)
: (u, j) ∈ C}

04. for each j (1 ≤ j ≤ n, j 6= i)
05. (u, ∆)← p-q[j].first() // oldest checkpoint msg from Sj

06. if
“
RQj,i

(u, t) > RQi,j∗ (u∗, t)
”

07. if
“
u′ = null || RQj,i

(u, t) > RQj′,i (u
′, t)
”

// if no best paste so far or if the current one is the best
08. (u′, j′, ∆′)← (u, j, ∆) // remember the best paste
09. if (u′ = null) // if no paste is better than the best capture
10. capture(u∗, j∗); // do the best capture
11. remove (u∗, j∗) from c-q;
12. else // if there exists a paste better than the best capture
13. paste(u′, j′, ∆′) // do the best paste
14. remove (u′, ∆′) from p-q[j′];

capture(u∗, j∗)
15. copies into ∆ the recent change in u∗;
16. Sj∗ .p-q[i].push(u∗, ∆); // send ∆ to the backup

paste(u′, j′, ∆′)
17. copies ∆′ into u′;
18. Sj′ .c-q.push(u, i); // notify the primary

Figure 4. Min-Max Scheduling (on server Si)

best HA unit u∗ ∈ Qi,j∗ (we formally define this in [14]).
Then, for each backup segment Qj,i, it computes the ex-
pected recovery time for the moment when it completely
consumes the oldest pending checkpoint message from Sj

(this FIFO order is to obey the decisions that Sj made). Us-
ing u ∈ Qj,i to denote the HA unit captured in the check-
point message, we represent such expected recovery time
as RQj,i(u, t) (again see [14] for the formal definition). If
RQj,i(u, t) > RQi,j∗ (u

∗, t), we assume that backup segment
Qj,i needs more care than primary segment Qi,j∗ (i.e., the
paste for u ∈ Qj,i is more urgent). The server selects the
best from capture and paste tasks based on this rationale.

5.3 The Complete Scheduling Algorithm
Figure 4 summarizes the min-max algorithm. Whenever a

server forms a new HA unit, it pushes it into c-q (line 01).
An idle server first finds the best capture task (lines 02-03).
Then, it attempts to find the paste task that is more effective
than all others (including the best capture task) (lines 04-08).
Finally, it performs the best task found. If a capture task is
chosen (lines 09-11), the server composes a checkpoint mes-
sage and sends it to the relevant backup server (lines 15-16).
If a paste task is chosen (lines 12-14), the server consumes
the checkpoint message and then notifies the completion of
checkpoint to the primary (lines 17-18).

5.4 Discussion
Our min-max algorithm selects the HA task that will most

reduce the largest recovery load. Figures 2 and 3 show an ex-
ample where our scheduling algorithm maintains the recov-
ery time at a 30% lower level than round-robin (in Section 8,
we show the results from real test cases). The figures also
show that min-max takes a longer time than round-robin un-
til it checkpoints each HA unit at least once (we call such a
period of time a checkpoint cycle). This is because min-max
frequently checkpoints HA units with high processing load

(a) Unbalanced Backup Assignment

(b) Too Many Backup Images

Figure 5. Backup Reassignment

and low checkpoint cost, yielding a non-uniform schedule.
Figure 3 shows that the recovery time under min-max gradu-
ally increases until it eventually drops at the end of a check-
point cycle. This is because the backup images of uncheck-
pointed HA units get staler over time.

6 Dynamic Backup Assignment
In our HA model, the recovery time depends on the check-

point schedule but also on the backup assignment. For exam-
ple, a server with too many backups will easily be the bot-
tleneck that slows down the circulation of HA tasks. If this
happens, other servers will poorly prepare for failure as they
cannot efficiently use spare CPU cycles. In this section, we
study how we can avoid this problem. We assume that servers
with low backup load volunteer to back up new HA units
whenever they appear. Hereafter, we focus on modifying the
backup assignment to cope with varying system conditions
introduced by operator migration, changes in input rates, etc.

6.1 Determining Backup Load Imbalance
In principle, our algorithm reassigns backups to assist the

server whose failure will cause the longest recovery. We call
such a server the worst point of failure. We take this approach
because a server usually becomes the worst point of failure
due to unbalanced backup distribution and also because it
is always advantageous to improve the worst-case disruption
that a failure would cause. We use Figure 5 to illustrate two
typical cases of backup imbalance. We assume that S2 is the
worst point of failure and, to ease presentation, all the HA
units (i.e., those represented as dark small rectangles) have
identical properties. Backup images are represented as small
dotted-line rectangles. Figure 5(a) shows the case where S2

has poorly assigned backups (see that S1 backs up too much
for S2). In this case, S2 can resolve the problem by trans-
ferring part of S1’s backup responsibility to S3. Figure 5(b)
shows another case where S2 keeps too many backup images
for others (see Q1,2 and Q5,2). In this case, S2 should not
reassign backup servers as it cannot improve any further. In-
stead, a different server (say S5) should do the task for S2.

6.2 The Backup Reassignment Algorithm
Figure 6 summarizes our backup reassignment algorithm.

At the end of epoch E (the period required for every server to



On server Sī with the highest recovery time, whenever epoch E ends
01. Find k, j, j such that

RQi,j
(E) = maxn

j=1 RQi,j
(E)

RQi,j
(E) = minn

j=1 RQi,j
(E)

RQk
(E) = minn

k=1 RQk
(E)

02. if RQi,j
(E) < RQk

(E) // if the backup load is unbalanced

03. move(j, j) // balance the backup load
04. else // if Sī has too many backup images
05. find k = arg maxn

k=1

h
RQk,i

(E)−RQk,k
(E)
i

06. Sk .move(i, k) // let Sk balance the backup load
Si.move(j, j)

07. ∆h←
Ri,j(E)−Ri,j(E)

Ri,j(E)
hQi,j

(E) // backup load to transfer

08. for each u ∈ Qi,j
09. if hu(E) ≤ ∆h // if finds an HA unit to reassign the backup
10. ∆h← ∆h− hu(E) // update the backup load to move
11. Qi,j ← Qi,j − {u} // reassign the backup server
12. Qi,j ← Qi,j ∪ {u}

Figure 6. Backup Reassignment

finish at least one checkpoint cycle), the servers in the clus-
ter determine the worst point of failure Si, based on the ex-
pected recovery times averaged over the epoch. We use this
periodic approach because (1) it is hard to know the recov-
ery time in an average sense before a checkpoint cycle ends
(see Section 5.4) and (2) we should avoid changing backup
assignment too frequently. Note that checkpointing an HA
unit onto a new backup server (i.e., a whole checkpoint) is
usually more expensive than an ordinary delta-checkpoint.

Server Si (the worst point of failure) first finds its HA
segments Qi,j with the largest recovery load and Qi,j with
the smallest recovery load (note that RQi,j

(E) > RQi,j
(E)

by definition). It also finds another server Sk whose failure
will result in the shortest recovery (line 01). If RQi,j

(E)<
RQk

(E), Si assumes that Sj is assigned too low backup load
and accordingly balances the backup load between Sj and Sj

(lines 02-03; in Figure 5(a), Sj and Sj correspond to S1 and
S3, respectively). Otherwise (line 04), it assumes that it has
too many backup images. Thus, it locates a different server
Sk that will effectively balance the backup load between Si
and Sk (lines 05-06). In Figure 5(b), Sk corresponds to S5.
Si and Sk correspond to S2 and S4, respectively.

The move(j, j) phase in Figure 6 shows the details of reas-
signing backup servers. In the algorithm, hu(E) denotes the
total CPU cycles used for updating the backup image of HA
unit u during epoch E (we call this quantity the backup load
of HA unit u). Similarly, hQi,j

(E) represents the backup
load of HA segment Qi,j . To balance the backup load, Si

first computes the amount of backup load ∆h to move from
segment Qi,j to segment Qi,j (line 07). Then, it reassigns
backup servers until the amount of backup load transferred
reaches ∆h (08-12). Note that this move phase only chooses
the new locations to put backup images. The first checkpoints
after reassignment in fact create the backup images.

7 Delta Checkpointing
An efficient checkpointing mechanism will shorten the

duration of HA tasks. This implies better runtime perfor-

mance (because the disruption in processing will decrease)
and faster recovery speed (because more frequent check-
points will be possible). In this section, we describe how
to implement efficient, operator-specific delta-checkpointing
techniques based on the details of operators. We also con-
struct the associated cost model. In Section 8, we demon-
strate that checkpoint costs can be estimated accurately re-
lying on the cost model. We also show that our min-max
algorithm performs well based on such cost estimations.

As described in Section 3.4, capturing an HA unit requires
incorporating the states of constituent operators and, for each
output queue, a round trip worth of tuples. The latter how-
ever can be ignored safely by holding the checkpoint message
until the downstream servers acknowledge the receipt of the
tuples. Thus, we can represent the cost cu(α) of capturing an
HA unit u as

∑
ρ∈u cρ(α), where α is the start time of the

capture task and cρ(α) is the cost of capturing the internal
data structure of a constituent operator ρ. Because stateless
operators will not incur any checkpoint cost, we design (and
analyze) the delta-checkpointing methods for two represen-
tative stateful operators, aggregate and join.

7.1 Aggregate
Aggregate splits input stream I into substreams {I[g]},

one for each group-by value g. For each substream I[g], it as-
sumes windows (sets of tuples) of w seconds that appear ev-
ery s seconds (we can also define windows in terms of tuple
counts). Whenever a window expires, the operator outputs
an aggregated value computed from the tuples contained in
the window. In more detail, for each input tuple, the operator
(1) reads (from the tuple) timestamp t and group-by value g.
Next, the operator (2) uses its “map” to quickly locate the list
of windows associated with g (if none exists, it creates a new
list), and (3) determines if it needs to add new windows (e.g,
if the timestamp t of the tuple is 401.5 and the timestamp of
the most recent window is 400, an aggregate with step size s
of 1 second will add a window anchored at time 401). Then,
the operator (4) iterates over the windows in the list updat-
ing the summaries (e.g., counts, sums, or histograms, etc.)
that those windows maintain. Finally, it (5) closes expired
windows while sending their summaries as output tuples.

Delta-Checkpointing. We use one dirty bit for each group-
by value to mark those that have appeared since the last
checkpoint (we clear dirty bits at the end of capture). We
also use one dirty bit for each window to indicate whether it
was created after the last checkpoint or not. To capture an ag-
gregate, the primary server finds all the windows associated
with group-by values with their dirty bits on. Next, it copies
into the checkpoint message (1) the entire content of each
window with its dirty bit on (full capture for new windows)
and (2) only the summary of each window with its dirty bit
off (partial capture for updated windows). When the backup
server consumes the checkpoint message, it checks the cap-
tured window images in the message. For a fully-captured
image, it creates a new window from the image and asso-
ciates the window with the right group-by value (i.e., full
paste). Otherwise, it copies the partial image onto the cor-
responding window that already exists in the operator (i.e.,
partial paste).



Cost Model. We can represent the cost of capturing this op-
erator as Cncf + Cucp, where Cn is the number of windows
created after the last checkpoint, Cu is the number of updated
windows, and cf and cp are the costs of fully and partially
capturing a window, respectively. We can similarly define
the paste cost using per-window full/partial paste costs.

7.2 Join
Join takes input streams I1 and I2. This operator searches

for all pairs of input tuples (one from each input stream) that
(1) belong to the same window of size w and (2) match the
predicate defined for the operator. Whenever the operator
finds such a pair of matching input tuples, it produces the
concatenation of them as an output tuple.
Delta-Checkpointing. Since the recent change in state is the
tuples newly entered the window, each checkpoint captures
those tuples. It also captures the upper bound of the tuples
that have left the window so that the backup server can re-
move those tuples from the backup image.
Cost Model. The number of tuples that have entered the
window since the last checkpoint can be represented as
(λ1 + λ2)min (t− α, w), where t is the current time, α is
the start time of the last checkpoint, and λ1 and λ2 are the in-
put rates (i.e., the number of input tuples per second) of input
streams I1 and I2, respectively. Therefore, the capture cost
can be expressed as (λ1c1 + λ2c2)min (t− α,w), where c1

and c2 are the cost of capturing a tuple from input streams I1

and I2, respectively. We can similarly define the paste cost.

8 Experimental Results
In this section, we describe experimental results from both

our Borealis DSPS [5, 2, 24, 13] and a detailed simula-
tor. First, we describe how we set up the experiments (Sec-
tion 8.1). Then, based on the results from Borealis, we in-
vestigate how the cost of checkpointing varies depending on
the frequency of checkpoints (Section 8.2). We also demon-
strate how our technique effectively reduces the recovery
time while being minimally intrusive to regular query pro-
cessing (Section 8.3). Finally, we present supplementary re-
sults obtained from the simulator (Section 8.4).

8.1 The Setup
In our experiments, we used a five server cluster where a

1GBps router interconnects servers with an AMD Sempron
2800+ CPU and 1GB main memory. We used two different
input streams. The first (Type 1) is a wide-area TCP trace
obtained from [1]. We extract the timestamp and the source-
IP address from each packet to form an input feed that runs
at 2.0K tuples/sec on average. As commonly observed, the
trace has a widely varying stream rate (std = 0.7K tuples/sec)
and its source-IP addresses have a highly skewed distribu-
tion. The second (Type 2) is an artificial input stream with
a source-IP-address field that ranges uniformly from 0 to 99,
with a constant input rate of 100 tuples/sec. These two input
streams were designed to represent dissimilar loads.

Our test query consists of aggregate operators each of
which every second counts the number of tuples for each
source-IP address over a window of 10 seconds. We form
an HA unit for two parallel aggregates fed by a single input
stream. On each server, we generate four HA units with input
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Figure 7. Analysing Checkpointing Costs

type 1 and another four HA units with input type 2. It should
be noted that we use aggregates since they are commonly
implemented as described in Section 7.1 and therefore allow
us to obtain results with generality. By contrast, join imple-
mentations vary drastically, leading to significantly different
processing loads for the same input. In Section 8.3, we show
how sensitive the recovery time is to processing load.

8.2 Checkpointing Costs
In this experiment, we vary the frequency of checkpoints

and observe how the cost of checkpointing an aggregate op-
erator varies both on primary and backup (Figure 7). As ex-
pected, when the checkpoint frequency decreases (i.e., the
interval increases), both the time to form a checkpoint (cap-
ture cost) and the time to consume a checkpoint (paste cost)
increase. This is because the state of the primary will in-
creasingly diverge from the state of the previous checkpoint.
Notice that the curves for the type 1 aggregate have jitters,
showing how much the checkpoint cost may vary each time
due to the burstiness of real packet streams. The figure also
shows that type 1 aggregate has a relatively lower check-
point cost than type 2 aggregate, considering its significantly
higher processing load due to 20 times faster input rate. This
is because the former maintains relatively fewer windows as
the group-by values have a very skewed distribution.

The curve for aggr(input 1, estimated capture) shows that
we can accurately estimate the checkpoint cost. Notice that
this is important because our min-max algorithm operates
on the basis of cost estimations. In the experiment, we es-
timated the per-window full/partial capture costs (in µsecs)
as cf =18.6 and cp=7.3 (see Section 7.1) using linear regres-
sion over a collection of triples [# new windows (Cn), # up-
dated windows (Cu), capture cost (Cncf + Cucp)]. Paste
costs were estimated with per-window paste costs as c′f =30.2
and c′p=7.2.

The figure also shows the bounded nature of operator
states: all curves tend to plateau after a 10 second checkpoint
interval mainly because the operator can contain at most a
10-second worth of tuples. The curves for the type 2 aggre-
gate flatten out after a 1-second interval, as its input creates
at most 100 group-by values. The gradual increase of those
curves between 1 and 10 seconds accounts for the increase
of new windows created after the previous checkpoint. Note
that the type 1 aggregate does not show such flattening (as
it continuously observes new IP-addresses) until the check-
point interval surpasses the window size. The figure also
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Figure 9. End-to-End Processing Latency

shows that paste costs are usually higher than capture costs
as the backup allocates new windows (observe c′f > cf ).

Finally, the difference between (input 1, paste) and (in-
put 1, replay) shows the benefit of checkpointing over active
standby. In particular, (input 1, replay) shows how long the
backup has to run to make up to date the stale backup image
used in the corresponding checkpoint case. Checkpointing
uses much fewer CPU cycles due to the reasons in Section 2.2
and the bounded nature of operators as argued above.

8.3 Recovery Time and End-to-End Latency
In this experiment, we study how the expected recovery

time and end-to-end latency change due to HA tasks in our
prototype. We increase the stream rate of input type 1 uni-
formly from 0 (at time 0) to 2.0K tuples/sec (at time 150)
while fixing that of input type 2 at 100 tuples/sec. After time
150, input type 1 is fed as described in Section 8.1 and each
server is utilized approximately 90% for processing. We de-
ployed a query network of 16 aggregates on each of the five
homogenous servers. On each server, we formed one HA
unit for the whole checkpointing case and 8 HA units (as
described in Section 8.1) for all other cases. The HA units
were uniformly assigned backup servers to avoid imbalance
in backup load.

Figure 8 shows how the expected recovery time changes as
the input rate increases. We can see that active standby can-
not withstand as the overall processing load increases beyond
50% of the cluster’s computation capability. Observe that
backup processes start to fall behind after time 70 as they no
longer can use the same amount of resources as primary pro-
cesses. On the other hand, checkpoint-based methods con-
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Figure 10. Scheduling & Backup Assignment Effects

tinue their operations. In general, recovery time is sensitive to
the increase in processing load because (1) the recovery load
increases accordingly and (2) fewer spare CPU cycles can be
devoted to HA tasks. Both round-robin and min-max exhibit
significantly faster recovery speed than whole checkpointing,
as the recovery load is distributed over multiple servers. Min-
max achieves the fastest recovery speed by favoring Type 1
HA units over Type 2 HA units. The jitters in Figure 8 hap-
pen when Type 2 HA units eventually get checkpointed near
the end of a checkpoint cycle (refer to Section 5.4).

Figure 9 shows how the HA tasks affect query processing.
We do not present the curve for active standby as its latency
is similar to the latency without any HA method. Notice that,
to be fair, we assumed a distributed adaptation of the basic
active standby model that can flexibly trade off processing
against HA in overload situations. The figure also shows that
fine grained checkpoint techniques disrupt regular processing
much less than the standard whole checkpointing approach.
Each spike in latency is introduced by an HA task. Round-
robin behaves similarly to min-max.

8.4 Scheduling and Backup Assignment
Figure 10 shows how recovery time changes as we in-

crease the number of servers for combinations of scheduling
algorithms (round-robin and min-max) and backup assign-
ment techniques (random-static and dynamic). This result
was obtained from our detailed Borealis simulator. Round-
robin scheduling and random-static assignment are consid-
ered to be the baseline cases. We compare the more robust
algorithms, min-max and dynamic, with the baseline.

The first thing to notice is that since we only assign eight
HA units to each primary server, the recovery time does not
improve as the number of servers increases past nine. At
nine, each HA unit can be backed up on its own server.
When we fix the scheduling policy, the difference between
the random-static placement and dynamic placement is sig-
nificant, yielding approximately 50% improvement in recov-
ery time. This demonstrates the penalty of a random distribu-
tion in that such a distribution will not be balanced in general,
and the overall recovery time is bounded by the worst case
recovery time across all servers. Moreover, the scheduling
algorithm can do better in assigning a checkpoint frequency
when the backup servers are well balanced. This has the ef-
fect of also reducing recovery time as the checkpoint inter-



vals will get smaller. Notice that min-max improves recovery
time by only 25% with random-static, whereas it improves
recovery time by 50% with dynamic. Further results on the
impact of the processing load as well as the differences in
operators can be found in [14].

9 Related Work
Providing high availability through checkpointing has

been widely studied in distributed systems. Most approaches
rely on stable storage that survives failures [8]. Early ap-
proaches conduct coordinated checkpoints so that the stable
storage always has a system-wide consistent state [8, 10].
There have been also alternatives that combine asynchronous
checkpointing with logging of non-deterministic events [21].
In principle, our approach builds, for each server, a virtual,
distributed backup storage on other servers. To maintain this
storage, it uses asynchronous, fine-grained checkpoints that
are optimized for stream processing.

Modern DBMSs often protect data from server failures
by replicating data from a source database, called the pri-
mary, to a target database, called the standby. IBM DB2
HADR (High Availability Disaster Recovery) [15], Oracle
10g/DataGuard [18] and MS SQL 2005’s Database Mirror-
ing [17] all adopt this style of replication. Workflow systems
such as IBM WebSphere MQ [12] also mask server failures
by using standby machines. These solutions usually store
message logs on a remote site, so that both the primary and
standby machines can access them. In contrast to those con-
ventional systems, our solution maintains the backup in a
distributed, self-configuring manner and also effectively uses
spare CPU cycles to improve system availability.

In the context of our target stream processing domain, a
few recent work addressed high availability and related is-
sues (we also discuss them in Sections 2.1 and 2.2). The ap-
proaches presented in [19] and [5] rely on “active” HA mod-
els in which the backup servers also actively process queries
in parallel with the primaries. These active approaches usu-
ally have better failover performance, while trading off their
query processing capability (note that the backup processes
in this case must use the same amount of system resources
as the primary processes). We presented a checkpoint-based
approach in [13]. Our previous work does not consider co-
operative backup and recovery and, therefore, also does not
address many of the related challenges and opportunities.

10 Conclusion
This paper considers a novel checkpoint-based HA solu-

tion that addresses the needs of distributed stream processing
through a parallel fine-grained backup and recovery approach
that incurs lower overhead and yields shorter recovery times
than existing ones. The key idea is to sub-divide the query at
a given server into units that can each be backed-up on a dif-
ferent server. The approach has the advantage that each unit
can be checkpointed separately and independently, thereby
spreading out the checkpoint burden over time. It also re-
duces the overall recovery time because each unit can be re-
built in parallel, making the total recovery time equal to the
recovery time of the slowest backup piece.

In this context, we studied how to distribute the backup
load in order to minimize the expected recovery time. We

also showed how our min-max algorithm adapts to changes
in system processing load and performs significantly better
than more standard approaches.
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