
Balanced Allocations

(Extended abstract)

Y. Azar* A. Z. Brodert

Abstract

Suppose that we sequentially place n balls into n boxes

by putting each ball into a randomly chosen box. It
is well known that when we are done, the fullest box

has with high probability inn/ in In n(l + o(l)) balls

in it. Suppose instead, that for each ball we choose

two boxes at random and place the ball into the one

which is less full at the time of placement. We show

that with high probability, the fullest box contains only

in in n/ in 2+0(1) balls - exponentially less than before.

Furthermore, we show that a similar gap exists in the

infinite process, where at each step one ball, chosen

uniformly at random, is deleted, and one ball is added

in the manner above. We discuss consequences of this

and related theorems for dynamic resource allocation,

hashing, and on-line load balancing.

1 Introduction

Suppose that we sequentially place n balls into n

boxes by putting each ball into a randomly chosen

box. Properties of this random allocation process

have been extensively studied in the probability and

statistics literature. (See e.g. [15, 12].) One of the

classical results in this area is that when the process has

terminated, the fullest box has, with high probability,

*Tel Aviv University, Israel. E-mail: azar@cs. stanf ord. edu.
tDigital Systems Research Center, 130 Lytton Avenue,

Palo Alto, CA 94301, USA. E-mail: broder@src. dec. corn,
karlin@src. dec. corn.

tIBM Almaden Research Center, San Jose, CA 95120, USA,

and Department of Applied Mathematics, The Weizmann Insti-
tute of Science, Rehovot, Israel. Work at the Weizmann Institute
supported in part by the Norman D. Cohen Professorial Chair of
Computer Science. E-mail: eli@wisdom. weizmemn. ac. il.

Permission to cop w“thout fee all or part of this material is
\granted provided t at the copies are not made or distributed for

direct commercial advanta$e, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

STOC 94- 5/94 Montreal, Quebec, Canada
C) 1984 ACM 0-89791 -663-8/94/0005..$3.50

A. R, Karlint E, Upfal*

lnn/lnlnn(l + o(l)) balls in itl.

Consider a variant of the process above wherelby

each ball comes with d possible destinations, chosen

independently and uniformly at random. The ball
is placed in the least full box among the d possible

locations. Surprisingly, even for d = 2, when the process

terminates the fullest box has only in in n/ in 2 + 0(1)

balls in it. Thus, this apparently minor change in

the random allocation process results in an exponential

decrease in the maximum occupancy per location. The

analysis of this process is summarized as follows

Theorem 1 Suppose that m balls are sequentially placed

into n boxes. Each ball is placed in the least full bc~x,

at the time of the placement, among d boxes, d > 2,

chosen independently and uniformly at random. Then

afier all the balls are placed

●

●

●

It

With high probability, as n * cm and m > n, the

number of balls in the fullest box is in in n/ in d(l +

o(l)) + Cl(m/n).

In particular, with high probability, as n -+ co a~d

m = n, the number of balls in the fullest box is

lnlnn/ln d+@(l).

Any other on-line placement strategy results in

stochastically more balls in the fullest box.

is also interesting to study the infinite version of tlhe

random allocation process. There, at each step a bidl

is chosen uniformly at random and removed from tlhe

system, and a new ball appears. The new ball comes

with d possible destinations, chosen independently at

random, and it is placed into the least full box among

these d possible destinations,

The analysis of the case d = 1 in this infinite

stochastic process is simple since the location of any

ball does not depend on the locations of other balls

in the system, Thus, for d = 1, in the stationary

distribution, with high probability the fullest box has

1G. Gonnet [11] has proven a more accurate result, 17-1(n) –
3/2 + 0(1),

593

@(log n/ log log n) balls. The analysis of the case d ~ 2

is significantly harder, since the locations of the current

n balls might depend on the locations of balls that

are no longer in the system. WJe prove that when

d 22, in the stationary distribution, the fullest box has

in in n/ in d + O(1) balls, with high probability. Thus,

the same exponential gap holds in the infinite process.

Theorem 2 is proven in section 4.

Theorem 2 Consider the injkite process with d >2,

starting in an arbitrary state. For any fixed T > n3,

the fullest box at time T contains, with high probability,

less than in in n/ in d + O(1) balls.

1.1 Applications. Our results have a number of

interesting applications to computing problems. We

elaborate here on three of them:

Dynamic Resource Allocation: Consider a sce-

nario in which a user or a process has to choose on-

line between a number of identical resources (choosing

a server to use among the servers in a network; choosing

a disk to store a directory; etc.). To find the least loaded

resource, users may check the load on all resources be-’

fore placing their requests. This process is expensive,

since it requires sending an interrupt to each of the re-

sources. A second approach is to send the task to a ran-

dom resource. This approach has minimum overhead,

but if all users follow it, the difference in load between

different servers will vary by up to a logarithmic fac-

tor. Our analysis suggests a more efficient solution. If

each user samples the load of two resources and sends

his request to the least loaded, the total overhead is

small, and the load on the n resources varies by only a

O(log log n) factor.

Hashing: The efficiency of a hashing technique is

measured by two parameters: the expected and the

maximum access time. Our approach suggests a simple

hashing technique, similar to hashing with chaining.

We call it .2-way chaining. It has O(1) expected,

and O (log log n) maximum access time. We use two

random hash functions. The two hash functions define

two possible entries in the table for each key. The

key is inserted to the least full location, at the time

of the insertion. Keys in each entry of the table

are stored in a linked list. Assume that n keys are
sequentially inserted by this process to a table of size

n. The expected insertion and look-up time is O(1),

and our analysis proves that with high probability the

maximum access time is inn in n/ In 2 + O(1), versus

to the @(log n/ log log n) time when one random hash
function is used.

An advantage of our scheme over some other known

techniques for reducing worst case behavior of hashing

(e.g. [10, 9, 8]) is that it uses only two hash functions,

it is easy to parallelize, and does not involve re-hashing

of data. Most of the other commonly used schemes

partition the available memory into multiple tables,

and use a different hash function in each sub-table.

For example, the Fredman, Komlos, Szemeredi scheme

for perfect hashing [10], uses up to n different hash

functions to get O(1) worst case access time (not on-line

however), and the algorithm of Broder and Karlin [8]

uses O(log log n) hash functions to achieve O (log log n)

maximum access time, on-line, but using re-bashings.

A recent result of Karp, Luby, and Meyer auf der

Heide [13] also exhibits a dramatic improvement when

switching from one hash function to two in the context

of PRAM simulations. In fact it is possible to use a

result from [13] to derive a weak form of our Theorem

4 as explained in Appendix A.

Competitive On-line Load Balancing: Consider

the following on-line load balancing problem: We are

given a set of n servers and a sequence of arrivals

and departures of tasks. Each task comes with a list

of servers on which it can be executed. The load

balancing algorithm has to assign each task to a server

on-line, with no information on future arrivals and

departures of tasks. The goal of the algorithm is

to minimize the maximum load on any server. The

quality of an on-line algorithm is measured by the

competitive ratio: the ratio between the maximum

load it achieves and the maximum load achieved by

the optimal off-line algorithm that knows the whole

sequence in advance. This load balancing problem

models for example, communication in heterogeneous

networks containing workstations, 1/0 devices, etc.

Servers correspond to communication channels and

tasks to requests for communication links between

devices. A network controller must coordinate the

channels so that no channel is too heavily loaded.

On-line load balancing has been studied extensively

against worst-case adversaries [7, 5, 2, 3, 6, 4]. For

permanent tasks (tasks that arrive but never depart),
Azar, Naor and Rom [7] showed that the competitive

ratio of the greedy algorithm is log n and that no

algorithm can do better. For temporary tasks, the

works of Azar, Broder and Karlin [5] and Azar,

Kalyanasundaram, Plotkin, Pruhs and Waarts [6] show

that there is an algorithm with competitive ratio O(W)
and that no algorithm can do better.

It is interesting to compare these high competitive

ratios, obtained from inputs generated by an adversary,

to the competitive ratio against randomly generated
inputs. Our results show that under reasonable

probabilistic assumptions the competitive ratios for

both permanent and temporary tasks are significantly

better. In the case of permanent tasks, if the set of

servers on which a task can be executed is chosen at

594

random, the competitive ratio decreases from @(log n)

to @(log log n) . In the case of temporary tasks, if

we further assume that at each time step a randomly

chosen existent task is replaced by a new task, then

at any fixed time the ratio between the maximum

online load and the maximum offline load is @(log log n)

with high probability. Further details are presented in

Section 5.

2 Definitions and Notation

We consider two stochastic processes: the finite process

and the infinite process.

The Finite Process: There are n boxes, initially

empty, and m balls. Each ball is allowed to go into

d > 1 boxes chosen independently and uniformly at

random. The balls arrive one by one, and a placement

algorithm must decide on-line (that is, without knowing

what choices are available to future balls) in which box

to put each ball as it comes. Decisions are irrevocable.

We will subsequently refer to this setup as a (m, n, d)-

problem.

The Infinite Process: There are n boxes, initially

containing n balls in an arbitrary state. (For example,

all the balls could be in one box.) At each step, one

random ball is removed, and one new ball is added;

the new ball is allowed to go into d ~ 1 boxes chosen

independently and uniformly at random. Once again,

a placement algorithm must decide on-line (that is,

without knowing what choices are available to future

balls and without knowing which ball will be removed

at any future time) in which box to put each arriving

ball. Decisions are irrevocable.

We use the following notations for the random

variables associated with a placement algorithm A.

Note that the state at time t refers to the state

immediately after the placement of the t’th ball.

A;(t) called the load of box j, is the number of balls

in box j at time t, resulting from algorithm A

acting on a random input,

v;(t) is the number of boxes that have load k at time

t.

V$k (t) is the number of boxes that have load > k at
—

time t, that is v~~(t) = ~.>~ v$(t),— —

h: called the height of ball t (= the ball that

arrives at time t),is the number of balls at

time t in the box where ball t is placed.

p~ (t) is the number of balls that have height k at

time t,

~jk (t)isthe number of balls that have height z k at

time t, i.e. @k(t) = ~~>~ #$(t).— —

We omit the superscript A when it is clear which

algorithm we are considering. Constants were chosen

for convenience, and we made no attempts to optimize

them.

Algorithm GREEDY assigns ball j to the box the has

the lowest load among the d random choices that j hiis.
We use the superscript G for GREEDY.

The basic intuition behind the proofs that follow is

simple: Let p, = p>l/n. Since the available choices for

each ball are indep~ndent, and v>, ~ pk,, we roughly

have (“on average” and disregarding conditioning)

Pi+l < P:, which implies a doubly exponential decrease
in p,, once p2, < n/2. Of course the truth is that p2, +1

is strongly dependent on p>, and a rather complex

machinery is required to con~truct a correct proof.

3 The Finite Process

We use the notation B(n, p) to denote a binomially

distributed random variable with parameters n and p,

and start with the following standard lemma, whose

proof is omitted.

Lemma 3 Let X1, Xz,. ... X. be a sequence of random

varia !des with values in an arbitrary domain, and let

Y1, Y2, ..., Ym be a sequence of binary random variables,

with the property that Y, = Y,(Xl, X,). If

Pr(Yz=l lX~,..., Xz_l) <p,

then

Pr(~ ~ > k) < Pr(B(n, p) > k)

and similarly if

Pr(Y~=l lX~,..., X~_l) ~p,

then

Pr(~ ~ < k) < Pr(B(n, p) < k)

❑

We now turn to the analysis of the finite process. l[n

what follows, we omit the argument t,when t = m,

that is, when the process terminates. In the interest

of a clearer exposition, we start with the case m = n,

although the general case (Theorem 8) subsumes it.

Theorem 4 The maximum load achieved by GREEDY

on a random (n, n, d)-problem is less than in in n/ lnd+

O(1) wzth high probability.

Proof: Since the d choices for a ball are independent,

we have

(V>z(t - 1))’
Pr(hL > i+ 1 \ z+~(t– 1))= nd .

595

Let $~ be the event that v>i(n) s ~~ where pi will be

exposed later. (Clearly, ti ~mplies that v2i (t) s ,6i for

t=l ,. .,, n.) Now fix z z 1 and consider a series of

binary random variables Y~ fort = 2,..,, n, where Yt is

1 if the height of ball t is I.e.

Yt=liff ht~i+landv2,(t-1)~ ~i.

(U is 1 if the height of the ball t is z z + 1 despite the

fact that the number of boxes that have load 2 i is less

than ,6..)

Let WJ represent the choices available to the j’th ball.

Clearly

Pr(Y~ = 1 I q
fif d.f

,.. .,wt_l)<— =p~.
nd

Thus we can apply Lemma 3 to conclude that

Pr(~ Y~ 2 k) s Pr(13(n, p~) 2 k). (1)

Observe that conditioned on &i, we have p2i+l = ~ Yt.

&J

Combining equations (1) and (2) we obtain that

Pr(v2,+l 2 k I ~,) s pr(~~i+l > k I ~i)

< Pr(B(n, p,) > k)
—

Pr(~t) o

(2)

(3)

We can bound large deviations in the binomial

distribution with the formula (see for instance [1],

Appendix A.)

Pr(13(n, p~) 2 epin) S e–p’n, (4)

which inspires us to set

With these choices &26 = V6 s n/(2e) holds with

certainty, and from 3 and 4

Pr(l&~+l I 8,) S
1

n2Pr(S~)’

provided that pzn ~ 2 in n. To finish the proof let i* be

the smallest i such that @. /nd ~ 2 in n/n. Notice that
2* ~ lnlnn/ lnd + 0(1) since

ne(di–l)/(d–l)

0%+6 = (Ze)d, < ;.

As before

Pr(v2i.+1 z 61nn [~i.)

< Pr(B(n, 21nn/n) > 61nn) 1
—

Pr(S~.) < n2Pr(&p)‘

and finally

< Pr(13(n, (61nn/n)~) ~ 1)
—

Pr(v2i.+1 < 61nn)

<
n(61nn/n)d

Pr(z+l. +l <6 inn)

by Markov inequality.

We remove the conditioning using the fact that

and obtain that

which implies that with high probability the maximum

load achieved by GREEDY is less than i“ + 2 =

lnlnn/lnd+ O(l). ❑

We now prove a matching lower bound.

Theorem 5 The maximum load achieved by GREEDY

on a random (n, n, d) -pToblem is at least in in n/ in d -

O(1) with high probability.

Proof Let Fa be the event that V21 (n(l - l/2i)) ~ ~i

where ~a will be exposed later. For the time being,

suffices to say that -yi+l < -y,/2. We want to compute

Pr(=Xl+l I Fi). To this aim, for t in the range

n(l – 1/2;) < t < n(l – 1/2’+ 1), let Zt be defined by

Zt=l iff ht=z+l or v>i+l(t–l) 27i+I,

and observe that while v>~+l (t – 1) < ~t+l, if Zt = 1

then the box where the ~’th ball is placed had load
exactly i at time t– 1. This means the ball had d – 1

choices with load ~ i and one choice with load exactly i.

Let Wj represent the choices available to the j ‘th ball

In view of the observation above, by considering the

cases v~z+l (t

that

Pr(Zt = 1

- 1) ~ ~Z+l and its complement, we derive

WI> . . .
,wt_l, ~.) > 7:–1(%– %+1)

z_ nd

>~ ~ddzf

()

(5)

‘2 n
– pa.

Applying Lemma 3 we get

n(l–1/2’+1)

Pr
(x Z <k l~i) SPr(B(n/2i+1,p,) <k).

t=n(l–1/2*)

596

We now choose

-yo = n;

A,d n ()> In
== ‘=__n 2 2,+1 pi

Since Pr(B(IV, p) < iVp/2) < e- NP18, it follows that

Pr(13(n/2’+l, p~) ~ y,+~) = o(l/n2) (6)

provided that p,n/2’+1 217 in n. Let i“ be the largest

integer for which this holds. Clearly i’ = in in n/ in d –

o(l).
Now observe that by the definition of F and Zt, and

in view of (5) and (6)

(
Pr(~~,+l I 3,) ~ Pr ~ Zt ~ -yI+l ~,) = o(l/n2),

and therefore

Pr(~,.) ~ Pr(.FZ. I y,.-~) x Pr(~~._~ I 7,._~)

x . . . x Pr(71 I Fo) x Pr(fO)

~ (1 – l/n2)’* = 1 – o(l/n)

which completes the proof. D

We now turn to showing that the greedy algorithm

is stochastically optimal. We say that a vector u =

(VI, ?J2,..., vm) majorizes a vector ii, written U & U if

for I s i s n, we have Xl<j<, wj) 2 ~l<j<i ‘W~)l
where n and a are permutations of 1, n such that

>.. .%(l) 2 7-%(2) - z v~(~) and u.(I) > 7J~(2) z . ..>

%(n) .

The proof of the following lemma is left to the full

paper.

Lemma 6 Let Q and ii be two positive integer vectors

such that v1>u2~. ..>vD andu1>u2>. ..>un.

If D ~ ii then also D + E, ~ ti + E,, where E, is the z ‘th

unit vector, that is E,,] = 6,,1.

Let Q be the set of all possible nd choices for each

ball and fl~ be the set of sequences of choices for the

first t balls.

Theorem 7 For any deterministic algorithm A, and

t ~ O, there is 1-1 correspondence f : Qt -+ ~i

such that for any wt E flt the vector of box loads

associated to GREEDY acting on Wt, written ~G (wt) =

(W(4,Af (W), A$ (wt)) is majorized by the vector

of box counts associated to A acting on f (wt), that is

XG(WJ ~ xA(f(wJ).

Proofi To simplify notation we assume d = 2. The

proof for larger d is analogous. The proof proceeds by

induction on t,the length of the sequence. The base

case is obvious. Assume the theorem valid for t and

let jt be the mapping on flt. Fix a sequence Wt c O!t,

Suffices to show that we can refine ft to obtain a 1-

1 correspondence for all possible l-step extensions of

Wt. Without loss of generality, renumber the boxes such

that

Af(wt) ~ Af(wt) > ~.$ ~ A:(wt),

and let n be a permutation of 1, ..., n such that

A$l)(A(W)) 2 M(2) U4+)) 2 ‘ ‘ ‘ 2 A$n)(tt(w)).

Let (i, j) be two choices for the t+ 1 ball. For every i, j

we define

ft+l(w o (2,.0) = ft(w)o (r(i),T(j))

where “o” represents extension of sequences.

Clearly ft+l is 1-1. We need to show that

IG(wt o (t, j)) < xA(f,(w,) o (7r(z),7r(j))).

Notice that when the sequence wt is extended by the

step (i, j), for any algorithm, exactly one component of

the vector ~(wt) changes, namely either Ai (w*) or ~~ (w,:)

increases by one. Assume that i ~ j; then

Ia(wt o (Z, j)) = Xa(wt) + q

s xA(ft(w))+ ‘%(l)

5 P(w) o (mii)))>

where the first inequality follows from the Lemma 6 and

the second is due to the fact that

IA(ft(wt)) + z=(i) 5 JA(ft(W)) + %(j) ~

❑

We are now ready to discuss the general case of the

finite process.

Theorem 8 The maximum load achieved by GREEDY

on a random (m, n, d)-problem, d > 2 and m > n,

is less than in in n/ in d(l + o(l)) + O(m/n) with high

probability.

Proof We start by replaying the proof of Theorem

4, taking into account the fact that there are now m

balls. So let &l be the event that v2i (m) < ,&, and

define p% = /3~/n d. Following the proof of Theorem 4

we derive that

Suppose that for some value z we set ,flZ = n2/(2em)

and show that EZ holds with high probability, that is

‘r(uz~4)=0(1) (7)

597

Then

()

~~ (d’–l)/(d–l)–d*
Pi-+x = $; <:

Zdt ‘

and continuing as before, we obtain that

Pr(p 2 z +lnlnn/lnd+ 2) = 0(1).

It remains to show that x can be taken to be

O(m/n) + o(ln in n/ In d). First assume that m/n ~

w(n) where w(n) is an increasing function of n, but

w(n) = o(ln in n/ in d). Then we claim that we can take

z = ~em/nl.

Consider a placement algorithm, denoted R, that

always puts a ball in the box corresponding to the

first choice offered. This is entirely equivalent with the

case d = 1, the classical occupancy problem. The load

within a box under this process is a binomial random

variable B (m, l/n), and therefore (via (4)), we obtain

that the expected number of boxes with load z em/n

satisfies

‘(v%in) S ne-mln.

Hence by Markov’s inequality

since m/n * cm. Now we can apply Theorem 7 to show

that z = (em/n] satisfies equation (7).

To remove the assumption m/n z w(n), we can

simply imagine that the number of balls is increased

to max(m, nw(n)). Then the corresponding value

of z becomes O(max(m, nw(n))/n) = O(m/n) +

o(ln in n/ in d). ❑

4 The Infinite Process

In this section we consider the infinite process. Anal-

ogously to Theorem 7 it is possible to show that the
greedy algorithm minimizes the expected maximum

load on any box. We analyse its performance below.

The main theorem of this section is

Theorem 9 Assume that the inj%vite process starts in

an arbitray state. Under GREEDY, with d 22, for an~

j%ed T 2 n3,

Pr(3j, Aj(T’) z lnlnn/lnd + O(l)) = o(l).

Thus in the stationay distribution the maximum load

is in in n/ in d + O(1) with high probability.

Proof For simplicity of presentation we state and

prove the results only for d = 2. The proof assumes that

at time T – n3 the process is in an arbitrary state and

therefore we can let T = n3 with no loss of generality.

By the definition of the process, the number of balls

of height at least i cannot change by more than 1 in a

time step, that is [p2,(t+ 1) – p>i(t)[<1. The random

variable p2i (t)can be viewed a–a random walk on the

integers 1, 0 s 1 s n. The proof is based on bounding

the maximum values taken by the variables p2~ (t) by

studying the underlying process.

We define an integer i“ and a decreasing sequence aa,

for 40 s 2 s i“ + 1 as follows:

n
Q413 =

z’

2ocY_1
cY~=— for i >40 and

n’
a~–1 > <12n logz n/20,

a~. = 12 logz n, i“ = the smallest i for which

cq-1 < ~12n logz n/20,

cr~.+1 = 16.

Clearly 2“ S lnlnn/ln2 + O(l).

We also define an increasing sequence of times: tAo =

O and t~ = ti-.l -I- n2 for i > 40. Thus ti.+l =

0(n2 loglogn) = o(T).

Let {p2i[t-,t+]< a} denote the event that pzi(t) <

a for all t,such that t- < t < t+, and similarly, let

{pzi[t-, t+] > a} clenote the event that p2,(t)> a for
all t,such that t– 5 t s t+.We define the events Ca as

follows:

C40 = {v>lo[tlo, T] < 2cqo} E {V240[0, T] < n/20};

C~ = {p2Jtz, T] < 2cxi}, for i >40.

We shall prove inductively that for all i = 40,..., Z* + 1

(8)

This implies that the event {N2i.+1 [tp+l, T’] < 32}

occurs with probability 1 – o(1), and therefore with high
probability, for every j, Aj (T) < i*+ 33 = in in n/ in 2 +

O(1) which completes the proof of the Theorem.

We now return to the proof of (8), which is done by

proving that conditioned on Ca_l

● With high probability u>%(t) becomes less than crt

before time tl. (Lemma iO.)

● If p2~ (t)becomes less than CZiat any time before T,

then from then on until T, with high probability,

it does not become larger than 2aZ. (Lemma 11.)

The two facts above imply that if C~_I holds, then with
high probability p2~[ti, T] s 2a;, that is Ci holds as

well.

Base Case: The base case is trivial since Pr(mC40) =

Pr(={v240[0, T] < n/20}) = O.

598

Induction: Suppose that

Pr(=C~_l)

where40 < i S i“ + 1.

< 3(2 – 1)
~6 ‘

(9)

Let S; be the set of states such that p2, = 1

and let s(t) be the state at time t. It is easy to

verify the following bounds on the underlying transition

probabilities. For any t and any z >2,

Pr(,u~,(t + 1) > p~t(t) I s(t))

< (v2(’w2~Rv’ ’10)
and

Pr(p~i(t + 1) < p~i(t) I s(t))

Two key lemmas are necessary in order to conclude that

Pr(=CZ) ~ 32/n6.

Lemma 10 Under the inductive hypothesis

Proof From equations (10) and (11) we obtain that

the transition probabilities satisfy

Pr(p~~(t + 1) > p~,(t)[s(t), #21-l(t) < 20,_1)

()< 2%.1 2 def +
— =9;,

n

and

Pr(pzi(t+l) < Pzz(t) I S(t),pzi(t) 2 w) 2 ~ ‘~f Q:.

Wedefine two new binary random variables for 40<

t< T as follows:

Xt = 1 iff U2, (t) > f12, (t-1) and p>i-l(t–1)< 2%-1

and

Yt = 1 iff p~,(t)< p~,(t– 1) or p~l(t– 1)< a,.

Clearly

Pr(Xt = 1) ~ q~ and Pr(Y~ = 1) ~ q; (12)

Notice that conditioned on C,–-l, the sum z~=[~,.l ,t,l Xt

is the number of times p>,(t) increased in the interval

[t,-l,ti];similarly, if wit~in this interval p2Z did not

become less than a,, then Zte[tt-l,t,] Yt equals the

number of times ~~i (t)decreased in this interval. We

conclude that

Pr(p~,[t~_l, t~] > a;] C,_~)

In view of equation (12) and Lemma 3, Chernoff type

bounds imply that for every z s i“ + 1

Pr (x Xt > ~n2q~
)(

< l% B(n2, q~) > ~n’q~

)t@,-l, t*]

< e–o(n2q~) = o(l/nc),

and

Pr (x Yt < ~n’q~
)

< Pr(13(n2, q,-) < ~n2q~-)

t6[t*_l,t.]

< e–w~29,-) = o(l/nc),

for any constant c. On the other hand

3 ?lQ
‘n2q~ > ~n~% – 54-1 2 ~_n’q,7 — —>n,

4 4

and therefore we conclude that

Pr(#~,[t~-~,t,] > a, [Cz_~) ~
1

ncPr(C,_l)’

for any constant c. Taking c = 13 and using the

inductive hypothesis on Cl–l (equation (9)) yields the

theorem. 0

Lemma 11 Under the inductive hypothesis, for any t*

between ti-l and ti

F’r(%’i I cl-l, {p>l(t”) < W}) < 2/n6.

Proot Define the event D, = D,(t*) by.

Di(t*) = Ci-l and {pZ.(t*) s CZ,}.

Let Xt (1) be an indicator random variable which is 1

if s(t) c S; and O otherwise. Then ~t. <t<~ Xt (1) is the

number of times s(t) G S: between t*~n~ T. Let E,(1)

be the expectation of this sum given the event D,, i.e.

()
E,(l) = E ~ X,(l) D% .

t“ ~t<T

599

The transition probabilities and equation 9 imply

that for t“L t s T

Pr(X,+l(l + 1) = 1 I X,(l) = I, D,)

< Pr(Xi+~(l + 1) = 1 I

Xt(l) = 1,/.Qi(t*) < ~i, I&i-l(t) s 2%-1)

1

x Pr(C~_l)

>1+1 1
_–___:%fq:

– 2n

For a random walk on the line starting at a point x,

the number of transitions from y 2 z to y + 1 is either

the same or one greater than the number of transitions

from y + 1 to y. Thus we claim that for any 12 cq

(
E ,.~<~xt+l(l + 1)X,(1) Di1)——

(x)
(13)

~E Xt(l + I)xi+l(l) D% .

t* <t<T

Indeed, Di implies that at time t*,s(t) c S:, for some

1< @. Hence for 1 z cq, the total number of transitions
from 1 to 1+ 1 is at least the total number of transitions

from 1 + 1 to 1. Thus we have

E(Xt+l(l + 1)X,(1) [D,)

= Pr(Xt+l(l + 1) = 1 I X,(l) = l,Di)

x Pr(X~(l) = 1 I Di)

< q~Pr(X~(l) = 1 IDi),

and so
.

< qf ~ E(X,(l) I D;) = q~E,(l).

t* <t<T

Similarly,

E (z 1)Xt(i + l) Xt+l(l) Di > q,:Ei(l + 1).

tw<t<T

Fi-om equation (13), we have q~El(l) ~ qz:Ei(l+ 1), and

therefore

Thus,

(*)”’*+lS(720(17:’n)2)
Therefore ~122at.+, %+1(1) S 2/n6.

Finally, the fact that

completes the proof. ❑

Returning to the proof of equation (8), let again

D,(t*) be the event C,_l and {pzi(t*)< w}. Using

the induction hypothesis, lemmas 10, 11 and the law

of total probability, we can complete the induction, as

follows:

< Pr(nC~ I C~_~) + 3(i – 1)/n6

= Pr(lC, I Ci–1, p>i[ti–1, ti] > cw)

x Pr(p~~[tz_l, t~] > a, I C~_l)

+ Pr(=Ci 1%“ E [t._I,t,]:D,(t*))

x Pr(3t* G [t;_l, t~] : Dz(t”) I C,–l)

+ 3(2 – 1)/n6

~ l/n6 + 2/n6 + 3(2 – 1)/n6 = 3z/n6.

❑

5 Competitive Online Load Balancing

5.1 Preliminaries. We define the online load

balancing problem precisely. Let M be a set of servers
(or machines) that is supposed to run a set of tasks that

arrive and depart in time. Each task j has associated

to it a weight, or load, w(j) ~ O, an arrival time r(j),

and a set M(j) C M of servers capable of running it.

As soon as it arrives, each task must be assigned to

exactly one of the servers capable of running it, and once
assigned, it can not be transferred to a different server.

The assigned server starts to run the task immediately,

and continues to run it until the task departs.

When task j arrives, an assignment algorithm must

select a server z c M(j), and assign task j to it.

The load on server z at time t,denoted L~ (t), is the

sum of the weights of all the tasks running on server z

at time t when assignment algorithm A is used. When

A is obvious, the superscript is omitted.

600

Let n be a sequence of task arrivals and departures,

and let Ia I be the time of the last arrival. Then the cost,

CA(a), of an assignment algorithm A on the sequence

u, is defined as

(?A(~)= o<t?&kfL$(’)”-.
An on-line assignment algorithm must assign an

arriving task j at time ~(j) to a server in ikl (j) knowing

only w(j), Ill(j), the current state of the servers, and

the past – the decision is made without any knowledge

about future arrivals or departures. An optimal off-line

assignment algorithm, denoted OPT, assigns arriving

tasks knowing the entire sequence of task arrivals and

departures and does so in a way that minimizes its cost.

The competitive ratio of an on-line algorithm A is

defined as the supremum over all sequences o of the

ratio CA(0) /COpT(0).

Let CA(T) (resp. CopT(T)) be the expected cost

of algorithm A (resp.OPT) on sequences a generated

by the distribution ‘P. The competitive ratio of an on-

line algorithm A against distribution P is defined as the

ratio CA (P)/CopT (P).

Finally, the greedy algorithm is formally defined as

follows:

Algorithm GREEDY: Upon arrival of a task j assign it

to the server in M(j) with the current minimum load

(ties are broken arbitrarily).

5.1.1 Permanent Tasks. For permanent tasks,

Azar, Naor and Rom [7] showed that the competitive

ratio of the greedy algorithm is @(log n) and that no

algorithm can do better.

This large competitive ratio hinges on the fact that

an adversary can construct a particularly malicious

sequence of task types. In other words, it is a worst

case result. It is interesting to consider the average

case, Hence we consider input sequences generated

from a distribution, and show that the competitive ratio

against such distributions is exponentially smaller than

against a worst-case adversary.

For simplicity in this abstract, we present our results

for the case where for each task -j, M(j) is a random

subset of . iM of cardinality d ~ 2 (chosen with

replacement), 10I = n, and all weights are equal. Let

pd be the associated probability distribution on request

sequences. It is possible to extend some of these

results to the case where machine z ~ ill is in It4(j) with

probability p,, the sequences are of arbitrary length and

the weights are arbitrary.

We omit the proof of the following bound on the
performance of the optimal offline algorithm.

Lemma 12 With probability 1 – 0(1/n), COpT(Pd) =

0(1),

Lemma 13 With high probability, CGREEDY(Pd) =

O(log log n/ log d)

F’roofi Follows immediately from theorem 4. ❑

Thus, we obtain the following theorem.

Theorem 14 The competitive ratio of the GREEDY al-

gorithm against the distribution pd is O(log log n/ log, d)

and no algorithm can do better.

Proof Follows from lemmas 12, 13 and theorem 7.
❑

5.1.2 Temporary Tasks. For temporary tasks,

the works of Azar, Broder and Karlin,[5] and Azar,

Kalyanasundaram, Plotkin, Pruhs and Waarts [6] showed

that there is an algorithm with competitive ratio @(v?i)

and that no algorithm can do better.

It is difficult to construct a natural distribution of

task arrivals and departures. As a first step, we
consider the following stochastic process S: First, n

tasks arrive, where each may be served by d servers,

chosen uniformly and independently at random (with

replacement). Then forever the following repeats:

a random task among those present departs, and a

random task arrives, which again may be served by one

of d random servers.

Clearly, in such an infinite sequence, there will

eventually be n tasks which can only be served by one

server, and so for silly reasons the competitive ratio will

be 1. Therefore we state our competitiveness result in

the following way:

Theorem 15 Let LA [t] be the maximum load on any

server at time t, for tasks arriving according to the

stochastic process S, and assigned using algorithm A.

i.e. LA[t] = max,~M L?(t). Then for any fixed t > 0,

with high probability y,

LGREEDY[tl = O(log log n).

LOpT[t]

Proofi Follows from lemma 12, and theorem 9. H

Acknowledgement, We wish to thank Martin Dyer

and Alan Frieze for several very useful discussions.

A An alternative derivation of Theorem 4

In this section we show how it is possible to derive a

weaker form of Theorem 4 for d = 2 following the ideas
outlined by Karp, Luby, and Meyer auf der Heide in

[13].

601

Let U= {l,..., n}. Let hl and h2 be two random

functions U - U. Let S be an arbitrary subset of U of

size n/8. Consider the following process:

Repeat until S = @

Forj=l,2do

Forig{l,. ... n}do

Remove one z c h~l (i) from S

Theorem 4 of [13] states that with high probability

the repeat loop is executed only O(log log n) times. The

proof is based on the analysis of sparse random graphs

on n vertices: each i E S is associated to the edge

(hl (i), h2(i)).

To use this theorem in our setting, view the two

choices available to ball i as two random functions hl (z)

and h2 (i). Define an algorithm MGREEDY, that acts as

follows:

When ball i arrives:

● Let hi(i) = z and h2(z) = y.

● The index of i in x is the number of balls that went

via hl to box x so far; The index of i in y is the

number of balls that went via h2 to box y so far.
● Put ball i in the box where it gets a lower index.

To get the desired bound notice that:

a.

b.

c.

d.

By Theorem 7, GREEDY dominates any other

algorithm, in particular MGREEDY. So it is enough

to show that the maximum load for MGREEDY is

O(log log n).
It is necessary and sufficient to show that each

of the two hash functions never puts more than

O(log log n) balls in each box.

In the process above the order of removal in the

innermost step is arbitrary. In particular we can set

the order such that the balls removed in iteration

k of the “repeat” loop are precisely the balls with

index k.

The number of outer iterations is exactly the

maximum index.

Thus Theorem 4 of [13] implies that MGREEDY, and

and a fortiori GREEDY, has a maximum load that is

O(log log n) with high probability.

Although a direct analysis of the sparse random

graph model might lead to bounds as accurate, or
even better than the bound in in n/ in 2 + O(1), that

we obtained in Theorem 4, it seems to be difficult to

extend the analysis to the case d > 2 and/or to the

infinite process.

References

[1] N. Alcm and J. Spencer. The probabilistic method.
John Wiley and Sons, 1992.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. Aspnes, Y. Azar, A, Fiat, S, Plotkin, O. Waarts.

Online machine scheduling with applications to load

balancing and virtual circuit routing. In Proc. of

25th Symposium on Theory of Computmg, pp. 164–173,

1993.

B. Awerbuch, Y. Azar and S. Plotkin. Throughput

competitive online routing. In Proceedings of the

3~th IEEE Conference on Foundations of Computer

Science, pp. 32-40, 1993.

B. Awerbuch, Y. Azar, S. Plotkin and O. Waarts. Com-

petitive routing of virtual circuits with unknown dura-

tion. In Proceedings of 5th ACM/SIAM Symposium on

Dtscrete Algorithms, pp. 321-327, 1994.
Y. Azar, A. Z. Broder and A .R. Karlin. Online load
balancing. In Proceedings of the 33rd IEEE Conference

on Foundations of Computer Science, 1992.
Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs, O.

Waarts. Online load balancing of temporary tasks. In

Proceedings of the Workshop on Algorithms’ and Data

Structures, pp. 119-130, August, 1993.

Y. Azar, J. Naor and R. Rem. The competitiveness of

online assignment. In Proceedings of 3rd ACM/SIAM

Symposium on Discrete Algorithms, pp. 203-210, 1992.

A. Broder and A. Karlin, Multi-level Adaptive

Hashing. In Proceedings of Ist A CM/SIAM Symposium

on Discrete Algorithms, January, 1990.

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer

auf der Heide, H. Rohnert, R. Tarjan. Dynamic Perfect

Hashing - Upper and Lower Bounds In Proceedings of

the 29th IEEE Conference on Foundations of Computer

Sczence, 1988.

M. L. Fredman, J. Kom16s, and E, Szemer6di. Storing a

sparse table with O(1) worst case access time. Journal

of the ACM, 31:538–544, 1984,

Gaston H. Gonnet. Expected length of the longest

probe sequence in hash code searching. Journal of the

ACM, 28(2):289-304, April 1981.

Norman L. Johnson and Samuel Kotz. Urn Models and

Their Application. John Wiley & Sons, 1977.

Richard M. Karp, Michael Luby, and Friedhelm Meyer

auf der Heide. Efficient PRAM simulation on a dis-

tributed memory machine, In Proceedings of the 2ith

Annual ACM Symposium on Theory of C’omputmg,

1992.

R. M. Karp and U. V. Vazirani and V. V. Vazirani. An

Optimal Algorithm for On-Line Bipartite Matching. In

Proceedings of the 22nd Annual ACM Symposium on

Theory of Computing, 1990.

Valentin F. Kolchin, Boris A. Sevastyanov, and
Valdimir P. Ghistyakov. Random A[locatzons. John

Wiley & Sons, 1978.

S .J. Phillips and J. Westbrook. Online load balancing

and network flow. In Proceedings of the 25th Annual

ACM Symposium on Theory of Computing, 1993.

D.D. Sleator and R.E. Tarjan. Amortized efficiency of

list update and paging rules. Communications of the

ACM, 28:202–208, February 1985.

602

