
CLP(Intervals) Revisited 1

F. Benhamou D. McAllester P. Van Hentenryck

Universit�e Aix-Marseille II MIT Brown University
163, Av. de Luminy Technology Square, 421 Box 1910

13288 Marseille, France Cambridge (USA) Providence, RI 02912 (USA)
benham@gia.univ-mrs.fr dam@ai.mit.edu pvh@cs.brown.edu

Abstract

The design and implementation of constraint logic programming (CLP) languages over intervals is
revisited. Instead of decomposing complex constraints in terms of simple primitive constraints as in
CLP(BNR), complex constraints are manipulated as a whole, enabling more sophisticated narrowing
procedures to be applied in the solver. This idea is embodied in a new CLP language Newton

whose operational semantics is based on the notion of box-consistency, an approximation of arc-
consistency, and whose implementation uses Newton interval method. Experimental results indicate
that Newton outperforms existing languages by an order of magnitude and is competitive with some
state-of-the-art tools on some standard benchmarks. Limitations of our current implementation
and directions for further work are also identi�ed.

1 Introduction

The introduction of a relational form of interval arithmetic in logic programming has been proposed
by Cleary in [3]. These ideas have been developed and made popular by the CLP system BNR-Prolog
[18] and generalized to constraint solving over discrete quantities in its successor CLP(BNR) [17, 2].
Many other systems (e.g [11, 20]) have been developed on similar principles. The key idea behind
CLP(Intervals) languages is to let users state arbitrary constraints over reals and to narrow down
the set of possible values for the variables using various approximations of arc-consistency [12, 13],
a notion well-known in arti�cial intelligence2. In addition, combining the constraint solver with
splitting operations allows these systems to isolate narrow regions which may contain solutions to
sets of constraints.

Traditionally, CLP(Intervals) languages have been designed in terms of simple primitive con-
straints (e.g. add(a,y,z), mult(x,y,z), cos(x,z), : : :) on which they apply approximations of arc-
consistency. Complex constraints are simply rewritten into a set of primitive constraints. The
advantage of this methodology is the resulting elegant operational semantics of the language. The
inconvenient is that convergence of the solver may be slow and the pruning relatively weak due to
the decomposition process.

This situation is best contrasted with the interval community which has focused, among other
topics, on "e�cient" algorithms to bound solutions to systems of nonlinear equations. In gen-
eral, these algorithms use ideas behind Newton root �nding method, exploit properties such as

1Part of this research was carried out while Pascal Van Hentenryck was visiting MIT and the university of Marseille.
The research was partly supported by the O�ce of Naval Research under grant N00014-91-J-4052 ARPA order 8225,
the National Science Foundation under grant numbers CCR-9357704, a NSF National Young Investigator Award,
and European Esprit Basic Research project ACCLAIM no 7195.

2Arc-consistency itself cannot be computed exactly due to machine limitation.

1

di�erentiability, and de�ne various pruning operators, many of them extending the seminal work
of Krawczyk [10]. These algorithms can often be viewed as an iteration of two steps, constraint
propagation and splitting, although they are rarely presented this way and it is not always clear
what the constraint propagation step computes.

The goal of our research is to reconcile as best as possible the con
icting goals of simplicity and
e�ciency in CLP(Intervals) languages. This paper is a step in this direction and presents the design
and implementation of Newton, a new CLP(Intervals) language manipulating complex constraints
as a whole. The key conceptual idea behind Newton is the notion of box-consistency. From a
programming language standpoint, box-consistency is a new approximation of arc-consistency which
is essentially equivalent to traditional approximations on simple constraints. As a result, box-
consistency leads to an operational semantics in the same style and spirit as those of traditional
CLP(Intervals) languages. From an algorithmic standpoint, box-consistency is applied to complex
constraints, allowing e�ective pruning techniques to be applied. In particular, Newton enforces
box-consistency by �nding the left- and right-most "zeros" of an interval function using a special-
purpose interval Newton method.

Newton has been implemented as a complete CLP system (subsuming Prolog) and tested on
some standard benchmarks from the interval community. Our preliminary results indicate that
Newton can produce exponential speed-ups over traditional implementations and compares well
with some established and recent methods in interval arithmetics. The limitations of Newton have
also been identi�ed and are discussed in the paper.

The rest of the paper is organized as follows. Section 2 describes the constraint systems while
section 3 contains the preliminaries on interval arithmetic. Sections 4, 5, and 6 describe respectively
the operational semantics, the narrowing operator in Newton and some implementation details.
Section 7 contains the experimental results. Section 8 discusses the related work, the limitations
of Newton, and directions for future developments. Section 9 concludes the paper.

2 Constraint Systems

We consider a CLP(Intervals) language in which the constraint system is de�ned as follows. Let �
be a structure < <;O;R > with O = f+;�;�;�; cos; sin; arccos; log; : : :g a set of operations over
the reals and R = f=;�g and let V = fv1; : : : ; vn; : : :g be an in�nite countable set of variables
taking their values over <. Terms in the constraint language are syntactic expressions built in the
usual way from constants, variables, and operations. Constraints are expressions of the form E � 0,
where E is a term and � a relational symbol from f=;�g. A constraint system in the structure
� is a pair < S; hD1; : : : ;Dni > where S is a �nite set of constraints from � over the variables
fv1; : : : ; vng and D1; : : : ;Dn are subsets of < called the domains of the variables v1; : : : ; vn. In
the following, we note in the same way operation and relation symbols over the reals and their
interpretations.

3 Interval Arithmetic

The key idea behind interval arithmetic [14] is the approximation of real numbers by intervals to
quantify the errors introduced by �nite precision arithmetic. In addition, interval computations
provide an appropriate framework to deal with uncertain data. For general results on interval

2

arithmetic, see for instance [14, 1]. Although the theory of interval arithmetic has been developed
in a broader context (including intervals of real numbers), our interests are very pragmatic and we
consider solely the case of intervals whose bounds are
oating point numbers. Results of arithmetic
operations are \outward-rounded" to preserve correctness of the computations.

Intervals We consider < [f�1;+1g the set of real numbers augmented with the two in�nity
symbols and the natural extension of the relation � to this set. For every a; b 2 < [f�1;+1g,
the interval [a; b] represents the set fx 2 < j a � x � bg. For simplicity, only closed intervals are
considered in this paper but the results generalize easily to other intervals [2, 3]. Given an interval
I = [a; b], the left (resp. right) bound of I, denoted by left(I) (resp. right(I)), is a (resp. b). The
center of I, denoted by center(I), is a+b

2
.

F-Intervals Let F be a �nite subset of < [f�1;+1g, with f�1;+1g � F . Elements of F
are called F-numbers and are, in practice,
oating-point numbers. We call F-interval any element
[a; b] such that a; b 2 F and we note I(F) the set of F-intervals. Set inclusion is a partial ordering
on F-intervals. When a 2 <, we denote by a+ the smallest element of F greater than a.

Notations Real numbers are denoted by a; b, intervals by I, domains (subsets of <) by D, real
variables by x; y, interval variables by X;Y , functions over reals by f , functions over intervals by F ,
relations over reals by r and relations over intervals by R, all possibly subscripted or superscripted.

Approximation CLP(Intervals) languages are generally concerned with two di�erent levels of
approximations of real subsets. Intuitively, the �rst level consists in approximating sets of real
numbers with �nite unions of F-intervals in order to manipulate computable quantities, while the
second level approximates these sets with continuous F-intervals to avoid combinatorial explosion.
Let U(F) = fD � < j 9hI1; : : : ; Ini 2 I(F)n : D = I1 [: : : [Ing. Both I(F) and U(F) are closed
under intersection.

De�nition 1 [Approximation] Let r be a subset of <. The approximation of r, denoted by appx(r);
is the smallest (w.r.t. the inclusion) element of U(F) containing r:

This de�nition generalizes both the notion of \outward rounding" and the approximation of real
numbers by \machine intervals" [1, 14], when F-numbers are
oating point numbers. In the fol-

lowing, we denote appx(fag) by �!a for simplicity.

De�nition 2 [Hull] Let r be a subset of <, The F-interval hull of r, denoted by hull(r); is the
smallest F-interval containing r.

appx and hull are monotone and idempotent, appx(r) � hull(r), hull(appx(r)) = appx(hull(r)) =

hull(r), and appx(fag) = hull(fag) = �!a .

Interval Extensions A key concept in interval reasoning is the notion of interval extension.

De�nition 3 [Interval Extension] An interval function F : I(F)n ! I(F) is an interval extension

of a function f : <n ! < i� f(a1; : : : ; an) 2 F (�!a1 ; : : : ;
�!an). A relation R � I(F)n is an interval

extension of the relation r � <n i� (a1; : : : ; an) 2 r) (�!a1 ; : : : ;
�!an) 2 R.

3

De�nition 4 [Monotonicity] An interval function F : I(F)n ! I(F) is monotone i�
I1 � I 01; : : : ; In � I 0n implies F (I1; : : : ; In) � F (I 01; : : : ; I

0

n). An interval relation R � I(F)n is
monotone i� I1 � I 01; : : : ; In � I 0n implies (I1; : : : ; In) 2 R) (I 01; : : : ; I

0

n) 2 R.

In the following, we restrict attention to monotone interval extensions. The fundamental theorem
of interval arithmetics [14] can be stated as follows.

Theorem 5 [Fundamental Theorem of Interval Arithmetics] Let F : I(F)n ! I(F) be a monotone
interval extension of f : <n ! <. Then a1 2 I1; : : : ; an 2 In implies f(a1; : : : ; an) 2 F (I1; : : : ; In).
Similarly, let R � I(F)n be a monotone interval extension of r � <n. Then a1 2 I1; : : : ; an 2 In
implies (a1; : : : ; an) 2 r) (I1; : : : ; In) 2 R.

Interval Extensions of Primitive Operations and Relations There are of course multiple
possible interval extensions of an operation or relation. We use the following extensions for primitive
operations and relations.

De�nition 6 The interval extension of an operation op : <n ! < is the function �!op : I(F)n !

I(F); de�ned as �!op(X1; : : : ;Xn) = hull(fop(x1; : : : ; xn) j xi 2 Xi 1 � i � n g): The interval
extension of a relation � � <n is the relation

�!� = f(X1; : : : ; Xn) 2 I(F)n j 9x1 2 X1; : : : ;9xn 2 Xn; (x1; : : : ; xn) 2 �g:

It is easy to see that these de�nitions produce monotone interval extensions.

Interval Extensions of Terms and Constraints It is well-known that
oating point arithmetic
does not preserve most of the simplest properties of the real numbers (e.g. associativity and
distributivity). As a consequence, the evaluation of an expression on a computer depends on the
text of the expression and thus the syntax of constraints in CLP(Intervals) languages in
uences their
operational semantics. In languages such as CLP(BNR), this does not a�ect the semantics of primitive
constraints which are extremely simple but it impacts the semantics of complex constraints which
are rewritten into simple primitive constraints. In Newton, primitive constraints can be arbitrarily
complex. To model their operational semantics precisely, it is necessary to manipulate their syntax
and it is convenient to use simple forms of lambda expression to de�ne their interval extensions. A
real lambda expression is an expression of the form �x1 : : : �xn E where x1; : : : ; xn are real variables
and E is an expression constructed from real numbers, variables, and real operations. The above
expression denotes a function whose evaluation for some real values a1; : : : ; an returns the value
obtained by replacing the xi by the ai and applying the operations. We also use interval lambda
expressions of the form �X1 : : : �Xn E where X1; : : : ;Xn are variables ranging over I(F) and E is
an expression constructed from elements of I(F), variables in EfX1; : : : ;Xng, and I(F) operations.
The textual function associated with a term can now be de�ned as follows.

De�nition 7 [Textual Function] Let E be a term over variables fv1; : : : ; vng. The textual function
of E, denoted TEXT[E], is the real lambda expression �x1 : : : �xn T [E] where

T [vi] = xi; T [a] = a; T [E1 op E2] = T [E1] op T [E2]; T [op(E)] = op(T [E]).

We note �[E] : <n ! < the function denoted by TEXT[E].

4

Interval extensions of complex functions can now be de�ned as follows.

De�nition 8 [Interval Extension of Real Lambda Expression] Let L be a real lambda expres-

sion �x1 : : : �xn E. The interval extension of L, denoted by
�!
L , is an interval lambda expression

�X1 : : : �Xn G[E] where

G[xi] = Xi; G[a] =
�!a ; G[E1 op E2] = G[E1]

�!op G[E2]; G[op(E)] =
�!op(G[E]).

We note
�!
� [E] : I(F)n ! I(F) the function denoted by

�����!
TEXT[E].

Once again, it is easy to see that for every expression E,
�!
� [E] is a monotone interval extension of

�[E]. We are now in position to de�ne the interval extension of a constraint.

De�nition 9 [Interval extension of constraints] Let C be a constraint of the form E � 0 over the
variables fv1; : : : ; vng. C denotes the relation �[C] = fha1; : : : ; ani 2 <

n j �[E](a1; : : : ; an) � 0g:

The interval extension of C is the relation �!� [C] = fhI1; : : : ; Ini 2 I(F)n j
�!
� [E](I1; : : : ; In)

�!�
�!
0 g:

4 Operational Semantics

This section presents the operational semantics of the solver of Newton and contrasts it with existing
CLP(Intervals) languages. Section 4.1 de�nes the notion of projection constraint in term of which
is expressed the operational semantics, as is traditional. CLP(Intervals) languages enforce a notion
of local consistency on projection constraints and section 4.2 reviews the various notions proposed
in the past and the notion of box-consistency used in Newton. In section 4.3 we de�ne A-consistency
and maximal A-consistency for the various consistency notions. Section 4.4 de�nes the operational
semantics in a generic way. Section 4.5 shows how to extract the narrowing operators from A-
consistency notions. Section 4.6 presents the �xpoint algorithm.

4.1 Projection Constraints

The fundamental idea behind CLP(intervals) consists in using projection constraints to narrow the
range of variables.

De�nition 10 [Projection Constraint] Let C be a constraint over fv1; : : : ; vng. The i-th projection
constraint of C is the pair < C; i > (1 � i � n) de�ning the relation

�[< C; i >] = fai 2 < j 9ha1; : : : ; ai�1; ai+1; : : : ; ani 2 <
n�1 : ha1; : : : ; ani 2 �(C)g:

In the following, projection constraints are denoted by the letter P , possibly subscripted.

4.2 Local Consistency

CLP(Intervals) languages use projection constraints to approximate the notion of arc-consistency,
well established in arti�cial intelligence [12, 13] especially for �nite constraint satisfaction prob-
lems. In the rest of this section, we assume that constraints are de�ned over fv1; : : : ; vng and that
hD1; : : : ; Dni is a sequence of domains, i.e. Di � <, for all i 2 f1; : : : ; ng.

5

De�nition 11 [Arc-Consistency] A projection constraint< C; i > is arc-consistent wrt hD1; : : : ;Dni
i� Di = Di \ fai 2 < j 9a1 2 D1 : : : 9ai�1 2 Di�19ai+1 2 Di+1 : : : an 2 Dn : ha1; : : : ; ani 2 �[C]g

Arc-consistency cannot be computed exactly on real numbers due to machine limitation since Di

may not be representable in a
oating point system (an example is the constraintX�arccos (0) = 0).
Hence, various CLP languages approximate this notion by other local consistency notions, achieving
a tradeo� between the strength of the reduction, the complexity of the primitive constraints, and
computational e�ciency. We present these notions from the strongest to the weakest.

De�nition 12 [Interval-Consistency] A projection constraint < C; i > is interval-consistent wrt
hD1; : : : ; Dni i� Di = appx (Di \ fai 2 < j 9a1 2 D1 : : : 9ai�1 2 Di�19ai+1 2 Di+1 : : : an 2 Dn :
ha1; : : : ; ani 2 �[C]g)

The key idea behind the notion of interval-consistency is to adapt arc-consistency to take into
account machine precision. Real numbers are simply approximated by F-intervals. Interval-
consistency is used for instance in the Echidna system [20]. The next notion is used in CLP(BNR).
Intuitively, the idea is to �ll the gaps between the intervals to preserve only one F-interval. This is
motivated by the fact that preserving multiple intervals may be computationally too expensive in
many applications.

De�nition 13 [Hull-Consistency] A projection constraint< C; i > is hull-consistent wrt hD1; : : : ;Dni
i� Di = hull(Di \ fai 2 < j 9a1 2 D1 : : : 9ai�1 2 Di�19ai+1 2 Di+1 : : : an 2 Dn : ha1; : : : ; ani 2
�[C]g)

Both interval-consistency and hull-consistency are reasonable choices when primitive constraints are
simple (e.g. they do not involve multiple occurrences of the same variable) as in CLP(BNR). They
are too demanding when primitive constraints are complex (e.g they allow multiple occurrences
of the same variable), since they may require exploring multiple combinations of intervals for the
variables appearing in the constraint. We illustrate this on an extremely simple example.

Example 14 Let C be the constraint v2+v1�v2 = 0. < C; 1 > is not hull-consistent with respect
to h[�1; 1]; [0; 1]i. However, it is not possible in general to get hull-consistency without exploring
combinations of intervals for v1 and v2. Of course here, simple symbolic manipulation removes the
problem but this is not possible in general.

This motivates the notion of box-consistency used in Newton. The key idea is to remove the
existential quanti�cation and to replace variables by their domains using constraint extension.

De�nition 15 [Box-Consistency] A projection constraint < C; i > is box-consistent wrt hD1; : : : ;Dni

i� Di = hull(Di \ fai 2 < j hD1; : : : ;Di�1;
�!ai ;Di+1; : : : ; Dni 2

�!� [C]g).

There are several classes of constraints where hull-consistency and box-consistency are extremely
close. This is the case for the primitive constraints of CLP(BNR). The di�erence can become im-
portant when multiple occurrences of variables appear, since, for instance, the above example is
box-consistent3. The de�nition also suggests the strategy of Newton: to rewrite n-ary constraints
over reals to unary constraints over intervals.

3Of course, the same dependency problem appears in CLP(BNR) but at another level (i.e. in the �xpoint algorithm).

6

4.3 A-Consistency

The semantics is parametrized by the notion of consistency, i.e. we use A-consistency where A can
be replaced by elements of the set farc,interval,hull,boxg.

De�nition 16 Let S = fP1; : : : ; Pmg be a set of projection constraints over fv1; : : : ; vng. S is
A-consistent wrt hD1; : : : ;Dni i� Pi is A-consistent wrt hD1; : : : ; Dni (1 � i � m).

De�nition 17 [Maximal A-Consistency] hD1; : : : ; Dni are maximally A-consistent wrt fP1; : : : ; Pmg
and hD0

1; : : : ;D
0
ni i� hD1; : : : ;Dni are the largest domains satisfying

1. Di � D0
i (1 � i � n);

2. fP1; : : : ; Pmg is A-consistent wrt hD1; : : : ;Dni;

4.4 Operational Semantics

We now give the operational semantics of the solver in generic way. Here we restrict ourselves to
finterval,hull,boxg-consistency, since arc-consistency is not computable in the general case.

De�nition 18 [Operational Semantics] Given A in finterval; hull; boxg, a set of projection con-
straints fP1; : : : ; Pmg over fv1; : : : ; vng and a tuple of initial domains hD0

1 ; : : : ;D
0
ni, the solver

outputs a tuple of domains hD1; : : : ;Dni which is maximally A-consistent wrt fP1; : : : ; Pmg and
hD0

1 ; : : : ; D
0
ni.

4.5 Narrowing Operators

The solvers of CLP(Intervals) languages use narrowing operators to prune the domains. Narrowing
operators are de�ned from the consistency notions.

De�nition 19 The narrowing operator A-narrow is de�ned as follows. Let D0

i is the largest set
included in Di such that < C; i > is A-consistent wrt hD1; : : : ; Di�1;D

0

i;Di+1; : : : ;Dni.

A-narrow(< C; i >,hD1; : : : ;Dni) = D0

i

Narrowing operators are contractant (computed domains are smaller than the initial domains),
monotone (inclusion is preserved by narrowing) and idempotent (no iteration is required). Further-
more, the following property establishes the soundness of the various approximations.

Property 4.1 [soundness] Let P be a projection constraint and D = hD1; : : : ;Dni a tuple of do-
mains. Then, arc-narrow(P ,D) � interval-narrow(P ,D) � hull-narrow(P ,D) � box-narrow(P ,D).

4.6 The Fixpoint Algorithm

The �xpoint algorithm used by CLP(Intervals) languages is extremely simple and can be seen as
a version of the algorithm AC-3 [12]. We assume that all constraints are de�ned on subsets of
fv1; : : : ; vng. We note var(< C; i >) the set of variables occurring in C.

7

fixpoint(in fP1; : : : ; Pmg ; inout fD1; : : : ; Dng)

begin

queue := fP1; : : : ; Pmg;
while queue 6= ; do

< C; i > := POP QUEUE;

D := A-NARROW(< C; i >,hD1; : : : ; Dni);
if D 6= Di then

Di := D;

queue := queue [fPj j vi 2 var(Pj)g n f< C; i >g
endif

endwhile

end;

5 Narrowing in Newton

This section describes the implementation of the narrowing operator box-narrow of Newton. The
main idea behind the implementation consists in using parts of the interval Newton method, a very
e�ective method to �nd what we call quasi-zeros of a function f : <n ! <. Our implementation
in general reduces the problem of enforcing box-consistency to the problem of �nding the left- and
right-most quasi-zeros of an interval function F : I(F)n ! I(F) (section 5.1). The search for a
quasi-zero uses the main step of Newton Interval method, called here Newton reduction, which is
based on derivatives (section 5.2). Newton Reduction method does not produce box-consistency
however and we use a restricted internal splitting to achieve box consistency of an equation (section
5.3). Obtaining box consistency for inequalities is then relatively easy (section 5.4).

5.1 Problem Formulation

The goal of the narrowing operator of Newton is to enforce box-consistency of a projection constraint
< E � 0; i > wrt intervals hI1; : : : ; Ini. In fact, this problem is easily transformed into �nding
some quasi-zeros of an interval function F : I(F)! I(F). We �rst de�ne the notion of quasi-zero.
Informally speaking, a quasi-zero of a real function is a zero or a value that cannot be distinguished
from a zero due to machine precision.

De�nition 20 [Quasi-Zero] A quasi-zero of a real function f : <n ! < wrt to one of its interval

extensions F : I(F)n ! I(F) is an element of the set fha1; : : : ; ani 2 <n j 0 2 F (�!a1 ; : : : ;
�!an)g:

A quasi-zero of an interval function F : I(F)n ! I(F) is an element of the set fh�!a1 ; : : : ;
�!ani j

ha1; : : : ; ani 2 <
n & 0 2 F (�!a1 ; : : : ;

�!an)g:

We now give a de�nition to switch the parameter order of a lambda expression.

De�nition 21 Let �x1 : : : �xn E be a lambda expression L. The switch of L wrt i, denoted by
S[L; i], is the lambda expression �x1 : : : �xi�1�xi+1 : : : �xn�xi E.

Given P a projection constraint < E � 0; i > and some intervals hI1; : : : ; Ini, we are interested in
the function �[P; hI1; : : : ; Ini] : I(F)! I(F) de�ned as follows:

�[P; hI1; : : : ; Ini] =
��������!
S[TEXT[E]; i] I1 : : : Ii�1Ii+1 : : : In:

8

Informally speaking, �[< E � 0; i >; hI1; : : : ; Ini] is the interval function obtained by replacing
X1; : : : ;Xi�1; Xi+1; : : : ;Xn by their domains in the interval extension of TEXT[E].

To �nd the leftmost and rightmost quasi-zeros of �[P; hI1; : : : ; Ini], Newton uses the interval
function �0[P; hI1; : : : ; Ini] : I(F)! I(F) de�ned as

�0[P; hI1; : : : ; Ini] =
����������!
S[DERI[E; i]; i] I1 : : : Ii�1Ii+1 : : : In:

where DERI[E; i] is the lambda expression denoting the derivative of wrt xi of the function TEXT[E].
We thus focus on �nding the quasi-zeros of an interval function F : I(F) ! I(F) given its

"derivative" F 0 : I(F)! I(F). The correctness of the transformation follows from the fundamental
theorem of interval arithmetic.

5.2 Newton Reduction Step

We now describe Newton reduction which can be derived from the mean value theorem as follows.
Consider a function f : < ! <. The theorem states that f(x) � f(y) = (x � y)f 0(a) for some a
between x and y. When y is a zero of f , we obtain y = x�f(x)=f 0(x): Given an interval I containing
both x and y and thus a, the fundamental theorem of interval arithmetic gives f 0(a) 2 F 0(I), where
F 0 is an interval extension of f 0. Moreover, if F is an interval extension of f , then y 2 N(F; F 0; x; I)

where the function N is the Newton reduction de�ned as N(F; F 0; x; I) = �!x
�!
�F (�!x)=F 0(

�!
I):

This suggests the following reduction method to bound the quasi-zeros of a function f given an
initial interval I. y is a zero of f if y 2 N�(F; F 0; I) where the function N� is the iterated Newton
reduction de�ned as

N�(F; F 0; I) = In (n � 1) where

I0 = I
Ii+1 = N(F; F 0; center (Ii); Ii)
In = In�1

In fact, Newton makes use of a slightly more general procedure NR de�ned as follows:

NR(F; F 0; I) = hs; I 0i where

I 0 = N�(F; F 0; I)
s = success if I 0 = fag
s = failure if I 0 = ;
s =
oundering otherwise.

and applies it the functions de�ned previously.

5.3 Box Consistency of Equation

Given a projection constraint and its two associated functions F and F 0 as de�ned in section5.1
and the interval I, the �rst step of our narrowing operator consists in applying NR(F; F 0; I) to
obtain hs; I 0i. If s 6=
oundering , box-consistency is guaranteed. Otherwise, more work may be
necessary, since the left and right bounds of the intervals are not guaranteed to be quasi-zeros.

One way of proceeding is to enforce Newton reduction on the bounds of the intervals instead of
on the center, i.e. the algorithm would compute

Ii+1 = N(F; F 0; left(Ii); Ii) \N(F; F 0; right(Ii); Ii):

9

function ShrinkLeft(F: I(F)! I(F); F 0: I(F)! I(F); I: I(F)): I(F);
begin

success := false;

PUSH([center(I),right(I)]);
PUSH([left(I),center(I)]);
while : EMPTY STACK ^ : success do

I := POP STACK;

h status, I i := NR(F,F',I);
case status of

success:

success := true

floundering:

if LeftBounded(F,F',I) then

success := true

else

PUSH([center(I),right(I)]);
PUSH([left(I),center(I)]);

endcase

endwhile

if : success then I := ;;
return I

end

Figure 1: Function ShrinkLeft

after having applied N�. This idea is in fact mentioned in [7]. Practical results however indicates
that it behaves rather poorly (i.e. convergence is slow).

Newton uses another idea which consists in applying an internal splitting operation focusing on
parts of the intervals to locate the leftmost and rightmost quasi-zeros. Informally, the idea can
be described as follows for �nding the leftmost quasi-zero. Newton splits the interval I into two
intervals Il and Ir covering I. If no quasi-zero can be found in the left interval Il, this part can be
pruned away and the algorithm can be restarted on Ir. To �nd a quasi-zero in a subinterval, the
algorithm is applied recursively. Newton uses two functions ShrinkLeft and ShrinkRight and Figure
1 describes function ShrinkLeft in detail (ShrinkRight is symmetric)). ShrinkLeft makes use of a
Boolean function LeftBounded de�ned as follows:

LeftBounded (F; F 0; [l; u]),

8><
>:

0 2 F [
�!
l] _

0 2 F ([l; l+]) ^ 0 2 F 0([l; l+]) _
0 2 F ([l; l+]) ^ 0 =2 F 0([l; l+]) ^ 0 =2 F ([l+; l+])

The key idea is to use a stack to explore the subintervals from left to right. The computation stops
when the left bound cannot be improved.

De�nition 22 [Box-Narrowing of Equations] Box-narrow(< E = 0; i >; hI1; : : : ; Ini) = I where

I = ShrinkLeft(F; F 0; ShrinkRight(F; F 0;NR(F; F 0; Ii)))
F = �[< E = 0; i >; hI1; : : : ; Ini]
F 0 = �0[< E = 0; i >; hI1; : : : ; Ini]

10

5.4 Box Consistency of Inequalities

The handling of inequalities is only slightly more complex. The key idea is to test �rst whether the
bounds satisfy the conditions, in which case no work is necessary. Otherwise, the leftmost (resp.
rightmost) quasi-zero must be found. This is described as follows:

De�nition 23 [Box-Narrowing of Inequalities] Box-narrow(< E � 0; i >; hI1; : : : ; Ini) = I" where

I 0 = if right(F (
����!
left(Ii))) � 0 then Ii else ShrinkLeft(F; F 0; Ii)

I" = if right(F (
�����!
right(I 0))) � 0 then I 0 else ShrinkRight(F; F 0; I 0)

F = �[< E = 0; i >; hI1; : : : ; Ini]
F 0 = �0[< E = 0; i >; hI1; : : : ; Ini]

6 Implementation

Newton is a complete Prolog system extended with the constraint system and techniques described
in this paper. It shares the Prolog and constraint engine (AC-5 in particular) with cc(FD) [21].
Interval arithmetics is implemented with double precision IEEE
oating point numbers by specifying
the rounding direction. Newton also allows to specify the precision (i.e. the number of signi�cant
digits) required for the results. Derivatives are not computed symbolically in the current version but
are obtained through automatic di�erentiation during the evaluation of the function [19]. This last
decision may be reconsidered in a future implementation of the system, since additional accuracy
may result from symbolic di�erentiation.

7 Experimental Results

We now describe some experimental results of Newton. The benchmarks were selected from text-
books and research papers on interval methods. All Newton programs were written in the traditional
"constrain & choose" style. The �rst part of the program simply states the constraints while the
second part applies variable splitting in a nondeterministic way. No special "intelligence" was used
in the splitting phase: variables were included in a list and splitting around the center was applied
on each of them in a round-robin manner until no more splitting was possible. Computation times
are given on a SUN SS-10/20 for results with an accuracy of 8 digits.

A Simple Example The �rst example [5] is extremely simple. It consists in �nding the zeros of
three closely related functions:

f1(x) = x4 � 12x3 + 47x2 � 60x
f2(x) = x4 � 12x3 + 47x2 � 60x+ 24
f3(x) = x4 � 12x3 + 47x2 � 60x+ 24:1

The functions highlight the virtues of interval arithmetic, since 0; 3; 4; 5 are zeros of f1, 0:888 : : :
and 1 are zeros of f2 and f3 has no zeros. By constraint propagation alone, Newton returns the
intervals [0:0; 5:0] and [0:88830577; 1:0] for f1 and f2 respectively and concludes that f3 has no zero.
The computing times are a couple of milliseconds.

11

5 10 20 40 80 160
Times [�1; 1] 1.160 8.810 25.920 61.650 127.750 264.610
Growth [�1; 1] 7.59 2.94 2.38 2.07 2.07
Times [�108; 108] 1.270 10.650 39.900 93.640 201.520 402.230
Growth [�108; 108] 8.39 3.75 2.35 2.15 2.00

Table 1: Computation Results of Newton on the Broyden Banded function

1 2 4 6 8 10 12
CLP(Intervals) Nodes 51 371 2961 20099 103171 517426 2537849
CLP(Intervals) Operations 500 10,265 150,019 1,163,439 9,099,305 50,085,952 257,631,995
CLP(Intervals) Growth 20.53 4.10 3.19 2.39 2.32 2.27
Newton Nodes 1 1 1 1 1 1 1
Newton Operations 2759 18,239 158,400 679,892 1,674,778 3,132,860 4,973,013
Newton Growth 6.61 2.53 2.17 1.47 1.33 1.24

Table 2: Comparison of Newton and traditional CLP(Intervals)

Broyden Banded Function This example was used as a benchmark in [6] and consists in �nding
the zeros of the functions

fi(x1; : : : ; xn) = xi(2 + 5x2i) + 1�
P

j2Ji
xj(1 + xj) (1 � i � m)

where Ji = fj j j 6= i & max (1; i� 5) � j � min(m; i+ 1)g.
The results of Newton are shown in Table 1. In the table, we give computation times for

the initial intervals in [�1; 1] (�rst line) and [�108; 108] (third line) as well as the growth of the
times (i.e. time(2i)/time(i)). There are three important features of this Newton program. First,
it is completely deterministic, i.e. box-consistency alone solves the problem and no splitting is
necessary. Krawczyk method and its extensions do not have this property. Second, the Newton

program is linear in the number of variables and we are not aware of any other algorithm with this
property. Finally, the behaviour is essentially the same when the initial intervals are very large and
the computation times increase by less than a factor 2.

It is also interesting to compare Newton to a traditional CLP(Intervals) implementation. Table
2 reports the number of
oating-point operations and nodes in the search tree for both implemen-
tations to allow a computer-independent comparison. The results indicates that Newton is faster
as soon as the number of variables n is greater than 4. It is already 50 times faster for n = 12. The
growth of CLP (intervals) is exponential, since it converges towards 2. Newton converges toward
1. Note also the large number of nodes in the traditional CLP(Intervals) implementation.

More-Cosnard Example This example comes from [15] and is also a standard benchmark for
interval methods. It consists in �nding the root of the functions (1 � k � m):

fk(x1; : : : ; xm) = xk + 1=2[1 � tk)
Pk

j=1 tj(xj + tj + 1)3 + tk
Pm

j=k+1(1� tj)(xj + tj + 1)2]

where tj = jh and h = 1=(m + 1). These functions come from a nonlinear integral equation. The
variables xi have initial domains [�4; 5] and the computation results are given in Table 3. Once
again, it is interesting to note that, for k � 8, box-consistency alone solves the problem. Note that
there is no splitting either in Krawczyk methods.

12

4 5 6 7 8
Times 0.67 1.74 3.43 6.20 11.60
Growth 2.60 1.97 1.81 1.87

Table 3: Computation Results of Newton on the More-Cosnard

Kinematics The last example we mention is the toughest of a recent report on interval methods
[8]. It comes from robotics and, in particular, from the inverse kinematics of an elbow manipulator.
It can be stated as follows:

s2 � c5 � s6 � s3 � c5 � s6 � s4 � c5 � s6 + c2 � c6 + c3 � c6 + c4 � c6 = 0:4077
c1 � c2 � s5 + c1 � c3 � s5 + c1 � c4 � s5 + s1 � c5 = 1:9115
s2 � s5 + s3 � s5 + s4 � s5 = 1:9791
c1 � c2 + c1 � c3 + c1 � c4 + c1 � c2 + c1 � c3 + c1 � c2 = 4:0616
s1 � c2 + s1 � c3 + s1 � c4 + s1 � c2 + s1 � c3 + s1 � c2 = 1:7172
s2 + s3 + s4 + s2 + s3 + s2 = 3:9701
s2
i
+ c2

i
= 1 (1 � i � 6).

The initial intervals are [�1; 1]. [8] mentions that the problem has an analytical solution but
remains an interesting benchmark for interval methods. Newton �nds the solution in 454 seconds
after 864 splittings. [8] compares the implementations of two methods both implemented in C ++
on a Silicon graphics MIPS 4000/4010, a faster machine. The method described in [7] takes 2395
seconds and 29,189 splittings. The method of [8] requires 117.10 seconds and 257 splittings. These
results are rather encouraging for Newton, since this last work was developed independently and at
about the same time as Newton (see the discussion).

8 Related Work and Discussion

Interval Methods As stated, box-consistency is enforced by using the interval Newton method
to �nd the leftmost and rightmost quasi-zeros. Note however that Newton does not apply Newton
interval method to the interval extension of a real function but rather to an interval function
coming from the projection of an interval function. It is also interesting to look at all constraints
as a whole and to compare box-consistency with Krawczyk's method and its successors [10, 7, 6].
On the one hand, Krawczyk's methods achieve more pruning since they manipulate all constraints
as a whole, allowing a more precise evaluation of the interval functions. On the other hand, box-
consistency provides additional pruning by obtaining tight bounds on the intervals. Both methods
seem complementary and a combination of them should lead to even more e�cient algorithms. This
is also indicated by recent and independent work in [8] which proposes an extension of Krawczyk's
method, called tightening operators, which has some similarity with box-consistency. A tightening
operator is used to replace a tuple of intervals by a set of tuples obtained by applying a projection
constraint on one of the intervals. [8] also proposes a tightening operator which uses Newton
interval method to �nd all quasi-zeros of a projection constraint and use them to replace the initial
interval. Box-consistency can in fact be viewed as a coarser tightening operator replacing a tuple by
another tuple of intervals. It is interesting to observe that the work in [8] and ours started from very
di�erent perspectives to arrive at related solutions. Krawczyk's method generally requires that the
Jacobian be diagonally dominant (i.e. the diagonal elements be large compared to other elements)
to be e�ective. This is also the case for Newton (when viewing the constraints globally), except that,

13

in Newton, it is su�cient that the system of constraints be diagonally dominant to a permutation of
the columns of the Jacobian. The typical way around this limitation is to apply a preconditioning
step to the Jacobian. Future work on Newton will aim at including the preconditioning step and
the additional precision coming from a global view of the constraints while preserving an elegant
operational semantics for the language. Note �nally that W. Older mentioned the potential of
Krawczyk's method for CLP languages [16].

CLP Systems Several CLP(Intervals) systems have been implemented in the past as mentioned
in the introduction and CLP(BNR) is probably the most advanced system. As far as real constraints
are concerned, its primitive constraints are of the form:

t1 = t2 + t3, t1 = t2 � t3, t1 = t2 � t3, t1 = t2=t3
v 2 [a1; a2], t1 � t2, t1 = cos(t2), t1 = sin(t2), : : :

where ti is a variable or a constant, v is a variable, and a1; a2 are constants. All variables appear-
ing in a primitive constraint are distinct but the functions need not be di�erentiable (e.g. max).
Complex constraints are rewritten into a set of primitive constraints. For instance, the constraints
v1 = v2 � v2 is rewritten4 into the set fv1 = v2 � v3; v2 = v3; v3 2 [�1;1]g. CLP(BNR) enforces
interval-consistency on its primitive constraints and the loss of precision due to the dependency
problem only occurs in the �xpoint algorithm. On our simple example, CLP(BNR) does not pro-
duce any pruning. The precision of Newton and CLP(BNR) is not directly comparable. On the one
hand, CLP(BNR) may be slightly more precise on simple constraints, since inverse functions are used
removing one
oating point operations. On the other hand, Newton by manipulating constraints
as a whole can improve accuracy substantially compared to CLP(BNR) by reducing the dependency
problem. However, precision was not the major goal of Newton. The main goal was to show that
more advanced narrowing operators could be de�ned preserving an elegant compromise between
e�ciency and simplicity of the language. Note also that CLP(BNR) also contains Boolean and integer
constraints over intervals. These constraints, as well as non-di�erentiable functions, can easily be
integrated in Newton (since the underlying architecture of the two systems is the same) and are a
main priority of our future work.

Other Systems There are many other systems based on intervals in other areas [4, 9]. Some
mention the adequacy of working with speci�c forms of constraints (e.g. centered forms) but, to
our knowledge, no system computes an approximation of arc-consistency using Newton interval
method.

9 Conclusion

This paper revisited the design and implementation of CLP(Intervals). It presented the new
CLP(Intervals) language Newtonwhich enforces box-consistency, an approximation of arc-consistency,
on complex constraints. The operational semantics has been presented in terms of box-consistency
in the same style as previous CLP(Intervals) languages. Newton enforces box-consistency using
a special-purpose interval Newton method on projection constraints. Preliminary experiments on

4This is the theory. Actually the CLP(BNR) system computes some simple algebraic transformations to achieve
basic constraint simpli�cations.

14

some standard benchmarks indicate that Newton can produce dramatic improvements in e�ciency
over traditional implementations and compares well with some special-purpose tools. Limitations
of our current implementation and directions for further work are also identi�ed.

Acknowledgment

Discussions with Alain Colmerauer are gratefully acknowledged.

References

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press, 1983.

[2] F. Benhamou and W. Older. Applying Interval Arithmetic to Real, Integer and Boolean
Constraints. Journal of Logic Programming, 1993. (Submitted).

[3] J.G. Cleary. Logical Arithmetic. Future Generation Computing Systems, 2(2):125{149, 1987.

[4] E. Davis. Constraint Propagation with Interval Labels. Arti�cial Intelligence, 32:281{331,
1987.

[5] J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Optimization and Non-
linear Equations. Prentice Hall, Englewood Cli�s, New Jersey, 1983.

[6] E.R. Hansen and R.I. Greenberg. An Interval Newton Method. Appl. Math. Comput., 12:89{
98, 1983.

[7] E.R. Hansen and S. Sengupta. Bounding Solutions of Systems of Equations Using Interval
Analysis. BIT, 21:203{211, 1981.

[8] H. Hong and V. Stahl. Safe Starting Regions by Fixed Points and Tightening. Submitted for
Publication, November 1993.

[9] E. Hyv�onen. Constraint Reasoning Based on Interval Arithmetic. . In Proceedings of IJCAI
1989, 193{198, 1989.

[10] R. Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken.
Computing, 4:187{201, 1985.

[11] J.H.M. Lee and M.H. van Emden. Interval Computation as Deduction in CHIP. Journal of
Logic Programming, 16(3-4):255{276, 1993.

[12] A.K. Mackworth. Consistency in Networks of Relations. Arti�cial Intelligence, 8(1):99{118,
1977.

[13] U. Montanari. Networks of Constraints : Fundamental Properties and Applications to Picture
Processing. Information Science, 7(2):95{132,1974.

[14] R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cli�s, NJ, 1966.

15

[15] J.J. More and M.Y. Cosnard. Numerical Solution of Nonlinear Equations. ACM Transactions
on Mathematical Software, 5:64{85, 1979.

[16] W. Older. Krawczyk Derivatives. Unpublished Note, 1991.

[17] W. Older and F. Benhamou. Programming in CLP(BNR). In PPCP'94, Newport, RI (USA),
1993.

[18] W. Older and A. Vellino. Constraint Arithmetic on Real Intervals. In Constraint Logic Pro-
gramming: Selected Papers, F. Benhamou & A. Colmerauer eds., The MIT Press, Cambridge,
MA, 1993.

[19] L.B. Rall. Automatic Di�erentiation: Techniques and Applications. Springer Lectures Notes
in Computer Science, Springer Verlag, New York, 1981.

[20] G. Sidebottom and W. havens. Hierarchical Arc Consistency Applied to Numeric Processing
in Constraint Logic Programming. Computational Intelligence, 8(4), 1992.

[21] P. Van Hentenryck, V. Saraswat, and Y. Deville. The Design, Implementation, and Evaluation
of the Constraint Language cc(FD). Technical Report, Brown University, December 1992.

16

