UNIVERSITA DEGLI STUDI DI ROMA TRE
Dipartimento di Discipline Scientifiche
Via della Vasca Navale, 84 — 00146 Roma, Italy.

=
WO
T

Output-Sensitive Reporting
of Disjoint Paths

+ +
GIUSEPPE D1 BATTISTAT, RoBERTO TAMASSIA+, LUCA VISMARA*

RT-INF-16-1996 Agosto 1996

1 Dipartimento di Discipline Scientifiche, Sezione Informatica
Universita degli Studi di Roma Tre
Via della Vasca Navale 84
00146 Roma, Italy
dibattista@iasi.rm.cnr.it

1 Center for Geometric Computing, Department of Computer Science
Brown University
115 Waterman Street
Providence, RI 02912-1910
{rt,lv}@cs.brown.edu

Research supported in part by the National Science Foundation under grant CCR-9423847, by
the NATO Scientific Affairs Division under collaborative research grant 911016, by the Progetto
Coordinato Ambienti di Supporto alla Progettazione di Sistemi Informativi of the Consiglio
Nazionale delle Ricerche, by the Progetto Bilaterale 94.23.CTO07 Italia-USA of the Consiglio
Nazionale delle Ricerche, and by the Project Alcom-IT of the Esprit Program.

ABSTRACT

A k-path query on a graph consists of computing k vertex-disjoint paths between two given
vertices of the graph, whenever they exist. In this paper, we study the problem of performing
k-path queries, with k£ < 3, in a graph G with n vertices. We denote with ¢ the total length of
the paths reported. For k < 3, we present an optimal data structure for G that uses O(n) space
and executes k-path queries in output-sensitive O(() time. For triconnected planar graphs,
our results make use of a new combinatorial structure that plays the same role as bipolar
(st) orientations for biconnected planar graphs. This combinatorial structure also yields an
alternative construction of convex grid drawings of triconnected planar graphs.

1 Introduction

Connectivity is a fundamental property of graphs, and has been extensively studied in the graph
algorithms literature. In particular, biconnectivity and triconnectivity properties play a special
role in a number of graph algorithms.

In this paper, we investigate data structures that support the following fundamental k-path
query, with k < 3, on a graph: given vertices u and v, compute k vertex-disjoint paths between
u and v, whenever they exist. A variation of the above query, called a k-connectivity query,
determines whether such paths exist (i.e., provides a yes/no answer) but does not return the
paths. We denote with n and m the number of vertices and edges of the graph, respectively,
and with ¢ the total length (number of edges) of the paths returned by a k-path query.

We are interested in constructing a space-efficient data structure for the graph such that the
time for a k-path query is output-sensitive, i.e., O(f(n)+ () with f(n) = o(n). Ideally, we would
like to achieve f(n) = O(1) with linear space.

1.1 Previous Results on Path and Connectivity Queries

In this section, we overview previous results on k-path and k-connectivity queries. First, we
consider algorithms that do not exploit preprocessing. Using network flow techniques [17], a k-
path query can be answered in O(m+/n) time for arbitrary k, and in O(n+m) time for any fixed
k. Regarding planar graphs, it has been recently shown that a k-path query can be performed
in O(n) time for any k [49].

Faster query time can be achieved if preprocessing is allowed. For k = 1, it is easy to see
that a spanning forest allows one to perform 1-connectivity queries in O(1) time and 1-path
queries in O(() time. For general graphs and k < 4, or for (k — 1)-connected graphs and fixed
kE > 4, there are O(n)-space data structures that perform k-connectivity queries in O(1) time,
but do not support output-sensitive k-path queries (see [42, 51] for k = 2, [14] for k = 3, [28]
for k = 4, and [9] for k£ > 4).

Table 1 in Appendix A summarizes previous and new results on methods for k-path and
k-connectivity queries.

1.2 Previous Results on Orientations and Orderings of Graphs

Orientations and orderings are powerful combinatorial structures that have been successfully
applied to solving various graph problems. Here, we overview previous work related to our
combinatorial results.

Bipolar orientations and st-numberings of biconnected graphs were first defined in conjunc-
tion with a planarity testing algorithm [18, 33], and were later used for a variety of topolog-
ical and geometric graph problems, such as embedding (see, e.g., [6, 15, 42]), visibility (see,
e.g., [36, 43, 53]), drawing (see, e.g., [1, 12, 44]), point location (see, e.g., [35, 45]), and floor-
planning (see, e.g., [30]). One of the notable properties of planar bipolar orientations is that
they induce a 2-dimensional lattice [31] on the vertices of the graph. See [10] for a recent
comprehensive study of bipolar orientations.

Canonical orderings were first defined by de Fraysseix, Pach and Pollack [11] for maximal
planar graphs and later extended by Kant [29] to triconnected planar graphs. They have been
successfully applied to the construction of various types of planar drawings (straight-line, or-
thogonal, and polyline) (see, e.g., [8, 11, 29]).

Schnyder [37] defines realizers of maximal planar graphs in his study of the order dimension
of planar graphs, and shows their application to planar straight-line drawings [38]. The con-
struction of realizers of maximal planar graphs can also be efficiently parallelized [20]. Brightwell

and Trotter [3, 4] define normal families of paths for a class of planar graphs that includes tri-
connected planar graphs. Normal families of paths are related to Schnyder’s realizers. However,
they do not analyze the time complexity of their construction. Normal families of paths are
important for the study of the order dimension of convex polytopes and planar maps.

Graph drawing methods based on orientations, numberings and realizers are surveyed in [22].

1.3 Previous Results on Independent Spanning Trees

In recent years the problem of finding independent spanning trees of a given graph has received
increasing attention. Two spanning trees of a graph G having the same root r are said in-
dependent if for each vertex v of G the two paths between v and r along the two trees are
vertex-disjoint. Independent spanning trees find applications in fault-tolerant protocols for dis-
tributed computing networks.

An interesting conjecture about independent spanning trees is the following: for each k-
connected graph G and each vertex r of G, there exist k independent spanning trees of G
rooted at r. The conjecture has been proved for k& = 2 by Itai and Rodeh [27], and for & = 3,
independently, by Cheriyan and Maheshwari [5], and Zehavi and Itai [54]. While the proof of
Zehavi and Itai is existential, the proofs of Itai and Rodeh, and of Cheriyan and Maheshwari
are constructive. In particular, Itai and Rodeh used bipolar orientations, while Cheriyan and
Maheshwari proved that every triconnected graph has a nonseparating ear decomposition and
presented an algorithm to construct such decomposition and the three spanning trees.

For general k-connected graphs with & > 4 the conjecture is still open, but recently Huck
has proved it for k-connected planar graphs with k = 4 [24] and & = 5 [26] (i.e., for all planar
graphs, since 6-connected graphs are nonplanar).

Similar conjectures have been formulated considering edge-connectivity instead of vertex-
connectivity [27, 32] and for directed graphs [16, 25, 46, 52].

1.4 New Results

Our new results are outlined as follows:

o We define realizers of triconnected planar graphs, and show how to construct them in
linear time. Our definition naturally extends the one by Schnyder [37] using a chromatic
framework such that each edge of the graph has one or two colors from the set {blue,
green, red}. Our realizers induce an orientation of a triconnected planar graph with
properties closely related to those of bipolar orientations for biconnected planar graphs.
Our O(n)-time construction of a realizer of triconnected planar graph G with n vertices
has the following additional applications:

— We show how to compute a normal family of paths [3, 4] for G in O(n) time. Brightwell
and Trotter [3, 4] previously showed the existence of such families, but did not study
the time complexity of their construction.

— We give an alternative O(n)-time algorithm for constructing a convex grid drawing
of G with O(n?) area. (A convex grid drawing is a planar straight-line drawing with
faces drawn as convex polygons and vertices placed at integer coordinates.) This
extends to triconnected planar graphs Schnyder’s barycentric drawing method for
maximal planar graphs [37], and gives an alternative proof of Kant’s result [29].

e Based on realizers, we show how to construct a linear-space data structure that supports
output-sensitive 3-path queries on a triconnected planar graph. Using this result, we show
how to construct in O(n) time a data structure for an n-vertex planar graph G (of arbitrary

connectivity) that uses O(n) space and supports k-path queries, for k < 3, in O({) time,
where (is the total size of the paths reported.

e By exploiting the result of Cheriyan and Maheshwari [5], we show how to construct a
linear-space data structure that supports output-sensitive 3-path queries on a triconnected
graph. Using this result, we show how to construct in O(n?) time a data structure for an
n-vertex graph G (of arbitrary connectivity) that uses O(n) space and supports k-path
queries, for k£ < 3, in O({) time, where (is the total size of the paths reported.

The rest of this paper is organized as follows. In Section 2, we present preliminary results on
output-sensitive 2-path queries. Realizers of triconnected planar graphs and their combinatorial
properties are introduced in Section 3. The data structure and the output-sensitive algorithm
for 3-path queries in triconnected planar graphs are given in Section 4. The data structure and
the output-sensitive algorithm for 3-path queries in general triconnected graphs are given in Sec-
tion 5. The extension to graphs of arbitrary connectivity is contained in Section 6. In Section 7
we present the algorithm for convex grid drawing of triconnected planar graphs. Conclusions
are contained in Section 8.

2 Preliminaries

In this section, we define basic concepts used in the paper, present preliminary results on output-
sensitive 2-path queries, and overview previous results on canonical orderings.

2.1 Basic Definitions

We assume familiarity with graph theory [2, 21]. We recall some basic definitions on connectiv-
ity. A separating k-set of a graph is a set of k vertices whose removal disconnects the graph;
separating l-sets and 2-sets are called cut-vertices and separation pairs, respectively. A graph is
k-connected if there exists no separating (k — 1)-set; 1-connected, 2-connected, and 3-connected
graphs are usually called connected, biconnected, and triconnected, respectively.

Unless otherwise specified, all the paths referred to in this paper are simple. Two paths
are vertex-disjoint when they have no vertex in common except, possibly, the endpoints. Since
we deal only with vertex connectivity, for brevity we will say disjoint instead of vertex-disjoint.
Two paths cross when they share at least one vertex distinct from their endpoints or one edge.
The set of vertices and edges shared by two crossing paths is called a crossing.

A drawing of a graph G is a mapping of each vertex of G to a distinct point of the plane and
of each edge (u,v) of G to a simple Jordan curve with end-points u and v. A drawing is planar
if no two edges intersect, except, possibly, at common end-points. A graph is planar if it has a
planar drawing.

Two planar drawings of a planar graph G are equivalent if, for each vertex v, they have the
same circular clockwise sequence of edges incident with v. Hence, the planar drawings of G
are partitioned into equivalence classes. Each of those classes is called an embedding of G. An
embedded planar graph (also plane graph) is a planar graph with a prescribed embedding. A
triconnected planar graph has a unique embedding, up to a reflection. A planar drawing divides
the plane into topologically connected regions delimited by cycles; such cycles are called faces.
The external face is the cycle delimiting the unbounded region. Two drawings with the same
embedding have the same faces.

Let G be a plane graph. A vertex or edge of GG is said to be externalif it lies on the external
face, and internal otherwise. A path or crossing of G is said to be ezternal if it consists only of
external vertices and edges and is said to be internal if it consists only of internal vertices and
edges.

2.2 Bipolar Orientations and 2-Path Queries

In this section we show how to perform output-sensitive 2-path queries on biconnected graphs.

Let G be an n-vertex graph with an edge (s,t). A bipolar orientation (also called st-
orientation) [10, 33] of G with respect to an edge (s,t) is an orientation of the edges of G
such that the resulting digraph D is acyclic, s is the unique source of D, and t is the unique
sink of D. A biconnected graph admits a bipolar orientation with respect to any edge (s,t),
which can be computed in linear time [18]. An st-numbering of G is a numbering vy, ..., v, of
the vertices of G such that s = vy, t = v,, and each other vertex v;, 1 < i < n, is adjacent to at
least one vertex v;, j < 7, and to at least one vertex vg, k > 1.

Given a bipolar orientation of a biconnected graph G, we construct two spanning trees of G,
T, and T}, rooted at s and ¢, respectively, as shown by Itai and Rodeh [27]. Tree T} is obtained
by selecting an incoming edge for every vertex distinct from s (for vertex ¢ an incoming edge
distinct from (s,t)). Tree T} is similarly obtained by selecting an outgoing edge for every vertex
distinct from ¢ (for vertex s an outgoing edge distinct from (s,t)). Clearly, for every vertex v
of G, the path p,(v) along T between v and s and the path p;(v) along T} between v and t are
disjoint. As shown in the following lemma, trees T and T; contain all the information needed
to answer 2-path queries in G.

Lemma 1 For any two vertices v and v of G, the subgraph of G formed by edge (s,t) and by
the four paths ps(u), ps(v), pi(u), and p(v), contains two disjoint paths between u and v.

Proof: W.r.t. the bipolar orientation used to construct Ts and T}, we indicate, for each vertex
w of G, the st-number of w with stn(w). Let lcay (lca;) be the lowest common ancestor of u
and v in Ty (T}). Three cases are possible for u and v:

1. neither vertex is an ancestor of the other in the two trees; the first path between v and v
is obtained by concatenating the path between u and lca; with the path between v and
lcag; the second is obtained by concatenating the path between w and lca; with the path
between v and [ca;; the two paths between u and v are clearly disjoint: for each ancestor
z of uw or v in T, and each ancestor y of u or v in Ty, stn(z) < stn(y) holds;

2. one vertex is an ancestor of the other in one of the two trees; w.l.o.g., let « be an ancestor
of v in Tj; the first path between w and v is the one along T;; the second is obtained
by concatenating the path between w and lca; with the path between v and lcay; the
disjointnes of the two paths between u and v can be proved as in the previous case;

3. w is an ancestor of v in one tree and v is an ancestor of u in the other; w.l.o.g., let let u
be an ancestor of v in T and v be an ancestor of u in T}; the first path between u and v
is the one along T, or the one along Tj; the second is obtained by concatenating the path
between u and s, with edge(s,t), with the path between v and ¢; the two paths between u
and v are clearly disjoint: let be an ancestor of u in T, y be an ancestor of v in T}, and
w be a vertex of the path between u and v along T or along Ty, stn(z) < stn(w) < stn(y)
holds and (s,t) is neither an edge of T nor an edge of Tj.

Note that, by the construction of T and T}, the case in which one vertex is an ancestor of
the other in both trees is not possible. O

Theorem 1 Let G be a biconnected graph with n vertices and m edges. There ezists an O(n)-
space data structure for G that can be constructed in O(n+m) time and supports 2-path queries
in O(0) time, where (is the size of the reported paths.

Proof: The data structure simply stores rooted trees T, and T; with parent pointers. It is
easy to see that this data structure can be constructed in time O(n 4+ m) and requires O(n)
space [18]. A 2-path query for vertices u and v is performed by traversing paths p,(u), ps(v),
pi(u), and py(v) one edge at the time, alternating between them, until the two following halting
events occur:

e [ca, is reached and

o [ca; is reached.

Note that lcas # lca; may be coincident with u or v. If both lowest common ancestors are
different from u and v, then Case 1 of the proof of Lemma 1 applies. If exactly one of the lowest
common ancestors coincides with u or v, then Case 2 of the proof of Lemma 1 applies. If one
of the lowest common ancestors coincides with u and the other coincides with v, then Case 3 of
the proof of Lemma 1 applies.

Once the proper case has been determined, reporting the two paths between w and v can
be done in O(() time by simply traversing trees T and T;. Thus, it remains to be proved that
the computation of the two lowest common ancestors lcas or lca; can be carried out in O(Y)
time. This is guaranteed by the alternating traversal technique and by the fact that the paths
explored to compute lca,s or lca; are reused for constructing one or two paths between u and v.

O

2.3 Canonical Orderings

In this section we recall the definition of canonical orderings of triconnected plane graphs, as
given by Kant [29].

Let G be a triconnected plane graph with n vertices, and ug, u1, us be three consecutive ex-
ternal vertices of G. A canonical ordering of G (see Fig. 1) is an ordering vy, . . ., v, of the vertices
of G that can be partitioned into subsequences Vi,...,Vy, where Vi = {v,,, ..., 05, -1}, 1 <
k<hyand 1l =15 < s3 <...< 8 < Sp41 = n+ 1, such that the following conditions are
verified:

1. vy = uy, vy = uy, and Vi = {vy, ve}.

2. Let G be the plane subgraph of G induced by V1 U.. .UV, k < h, and C} be the external
face of G. For each 2 < k < h — 1 one of the following cases occurs:

(a) Vi =A{v,,} is a vertex of Cy and has at least one neighbor in G — Gy;

(b) Vi ={vs,,..., Vs +d, } is a subpath of Cy, and each v;, s < i < si + dj, has at least
one neighbor in G — G and no neighbor in Gj_;.

3. Each subgraph Gy is biconnected and internally triconnected, i.e., removing two internal
vertices of GG, does not disconnect it.

4. v, = ug and V, = {v,}.

In the example of Fig. 1, each vertex is labeled with its rank in the canonical ordering,
and the partition of the vertices is given by Vi = {vy, v}, Vo = {vs,v4,v5}, V3 = {uvs, v7},
Vi = {U8}7 Vs = {U97U10}7 Ve = {U11}7 Vi = {U12}7 Vs = {U13}7 Vo = {U14}7 Vio = {U157U16}7
Vit = {U177 U18}7 Vig = {U19}7 Vis = {U20}7 Via= {U21}-

Lemma 2 [29] Fach triconnected plane graph has a canonical ordering, which can be computed
mn linear time and space.

3 Realizers of Triconnected Planar Graphs

3.1 Definition

A realizer of a triconnected plane graph G is a triplet of rooted directed spanning trees of G
with the following properties (see Fig. 1.a-1.c):

1. In each spanning tree, the edges of G are directed from children to parent.
2. The sinks (roots) of the spanning trees are three external vertices of G.
3. Each edge of G is contained in at least one and in at most two spanning trees.

4. If an edge of G is contained in two spanning trees, then it has different directions in the
two trees.

5. Consider the edges of G with the directions they have in the three spanning trees, where
an edge with two opposite directions is considered twice (see Fig. 2):

(a) Each non-sink vertex v of G, has exactly three outgoing edges; the circular order of
the outgoing edges around v induces a circular order of the spanning trees around v;
all the non-sink vertices of G have the same circular order of the spanning trees.

Figure 1: A realizer of a triconnected planar graph G. (a) The blue tree of G. (b) The green
tree of G. (¢) The red tree of G.

(b)

For each vertex of G the incoming edges that belong to the same spanning tree appear
consecutively between the outgoing edges of the two other spanning trees (the first
and last incoming edges are possibly coincident with the outgoing edges).

6. For the sink of each spanning tree, all the incoming edges belong to that spanning tree.

(a) (b)

Figure 2: Two cases of Property 5 of the realizers.

Let Ty, T, and T, be the spanning trees forming a realizer of a triconnected plane graph G
(see Fig. 1.b-1.c). We assign a color to the edges of G contained in Tj, Ty, and T, say blue,
green, and red, respectively. According to Property 3 of the realizers, each edge of G is assigned
one or two colors, and is said to be I-colored or 2-colored, respectively. For example, in the
realizer shown in Fig. 1, edge (v4, v11) is 1-colored, while edge (v4, v5) is 2-colored.

Lemma 3 Fach triconnected plane graph G has a realizer, which can be computed in linear time

and space.

Proof: A realizer can be constructed by assigning colors and directions to the edges of G as

follows:

1. a canonical ordering of the vertices of G is computed;

2. vy, vg, and v, are the sinks of the blue, green, and red tree, respectively;

3. (v1,v2) is an outgoing blue edge for vy and an outgoing green edge for vy;

4. foreach 2 < k < h:

(a)

if Vi = {vs,}, let ¢,...,¢ be the consecutive neighbors of v,, on Ci_1; (vs,,c1)
is an outgoing blue edge for v,,, and possibly an outgoing red edge for ¢ if ¢ has
no neighbor in G — Gy; (vs,, ¢;) is an outgoing green edge for vy, , and possibly an
outgoing red edge for ¢, if ¢, has no neighbor in G — Gy; edges (vs,,¢;), r < 1 <
are outgoing red edges for ¢; (see Fig. 3.a; from now on we represent a 2-colored edge
half with one color and half with the other; dashes represent optionality);

if Vi = {vs,s...,Us,4d, }, let ¢, and ¢ be the neighbors of v,, and vg, 44, on Ci_q,
respectively; (vs, 44, ,¢) is an outgoing blue edge for vs, 44, , and possibly an outgoing
red edge for ¢ if ¢; has no neighbor in G — Gy; (vs,, ¢;) is an outgoing green edge for
vs,, and possibly an outgoing red edge for ¢, if ¢, has no neighbor in G — Gy; edge
(vi, Vig1), sk < @ < s +d is an outgoing blue edge for v; and an outgoing green edge
for v41 (see Fig. 3.b).

Note that v; has no outgoing blue edge, v has no outgoing green edge, and v, has no
outgoing red edge. Besides, for each 2 < k < h, the following invariants hold:

e every vertex of Vi has exactly one outgoing blue edge, exactly one outgoing green edge,
and no outgoing red edge; the outgoing blue edge precedes the outgoing green edge in the
clockwise circular order of the edges of Cy, and all the (possible) incoming red edges are
incident with vertices of G — Vi;

o for every vertex of Cj the (possible) incoming blue edge of Cy follows the (possible) in-
coming green edge of C in the clockwise circular order of the edges of Cy;

e 1o vertex of Ci_; has an outgoing blue or green edge incident with a vertex of Vj;

e every vertex of Cr—1 with no neighbor in G — G} has exactly one outgoing red edge, while
every vertex of Cr_q with neighbors in G — G, has no outgoing red edge;

e (G} contains no cycle such that a common color is assigned to all its edges.

All the properties of a realizer easily follow from these invariants. By Lemma 2, the above
construction can be carried out in linear time and space. |

3.2 Properties

In this section, we consider a triconnected plane graph G equipped with a realizer Ty, Ty, T,,. We
denote vy, vy, and v, as sp, 54, and s,, respectively. For each vertex v of G, the blue path py(v) is
the path of G along T}, with endpoints v and sp. In the same way, we define the green path p,(v)
as the path of G along T, with endpoints v and s; and the red path p,(v) as the path of G along
T, with endpoints v and s,. In the rest of the paper, the subpath of path p;(v), i € {b,g,r},
with endpoints v and the ancestor u of v in T} is denoted by p;(v, u).

The subpath of the external face with endpoints s, and s, and not containing s; is denoted
by ext(sg,s,;). Similarly, the subpath of the external face with endpoints s, and s, and not
containing s, is denoted by ext(s,, sp) and the subpath of the external face with endpoints s
and s, and not containing s, is denoted by ext(sp, s4).

The lowest common ancestor of vertices v and v in T;, ¢ € {b, ¢,r} is denoted by lca;(u, v);
in the rest of the paper, we will use lca; instead of lca;(u, v) for brevity.

From the construction in the proof of Lemma 3, it follows that, for each vertex of GG, the
colors of the three outgoing edges appear in the following counterclockwise circular order: blue,
green, red. W.l.o.g., set {b, g, r} will be considered accordingly ordered in the rest of the paper.

¢ ¢ €

Vi Va

(b)

Figure 3: The coloring of the edges in the construction of a realizer. (a) Vi = {v,, }. (b)
Vi = {Usk7 .. '7vsk+dk}'

10

Lemma 4 Let G be a triconnected plane graph with n vertices and m edges. For every realizer
of G, the number of 2-colored edges of G is 3n — m — 3.

Proof: For each planar graph, m < 3n — 6. Each tree with n vertices has n — 1 edges; thus the
total number of edges in the three spanning trees of the realizer is 3(n — 1) > m. The thesis
follows from Property 3 of the realizers. O

Lemma 5 Let v be a vertex of G and i, j, k be three consecutive colors in the set {b,g,r}. Let
x # s; be a vertex of p;(v) and y be its parent in T;. The i-colored (k-colored) outgoing edge
of x is on the right (left) of p;(v), while each (possible) i-colored (k-colored) incoming edge of x
different from (y,x) is on the left (right) of p;(v).

Proof: Easily follows from Properties ba and 5b of the realizers, from the circular order of set
{b,g,r}, and from planarity of G. O

Lemma 6 For each vertex v of G, pp(v), pg(v), and p,(v) have only vertex v in common.

Proof: Let i, j and k be three consecutive colors in the set {b, g, 7}. Suppose, for a contradiction,
that p;(v) and p;(v) have vertex z in common and that p;(v,) and p;(v,z) have no vertex in
common with pg(v). By Property 6 of the realizers, 2 # s;. From Property 5a of the realizers
and by planarity of G, it follows that the edge of p;(v) incoming to « is on the right of p;(v),
thus contradicting Lemma 5. O

Lemma 7 Let u and v be two vertices of G. If there exist two colors i,j € {b,g,r}, i # j, such
that v € p;(u) and u € p;(v), then p;(u,v) = p;(v,u).

Proof: Suppose, for a contradiction, that p;(u,v) and p;(v,u) have only vertices u and v in
common. Since G is planar, two cases are possible: p;(v, u) is an internal path in the subgraph
with external face formed by p;(u), pj(u) and ext(s;,s;), or p;(u,v) is an internal path in the
subgraph with external face formed by p;(v), p;(v) and ext(s;,s;). It is easy to see that in the
first case Property b of the realizers is not satisfied for vertex u, and in the second case it is
not satisfied for vertex v. Thus, p;(u,v) and p;(v,) have a third vertex w in common besides u
and v. The same argument can be recursively applied to p;(u,w) and p;(w,u), and to p;(w,v)
and p;(v, w). This completes the proof. O

Lemma 8 For vertices sp, sy, and s, of G the following properties hold: p,(sq) = py(sy) =
ext(sg, Sr); po(sy) = pr(sp) = ext(sy, sp): py(sp) = Po(sg) = ext(sp, s4).

Proof: We prove that p,(s,) = pg(s,) = ext(sy, s,); the other two cases are analogous.

Equality p,(sy) = py(s,) follows from Lemma 7, so we only have to prove that p,(sq) = pg(sy)
is external.

We first prove that the first edge (s4, wy) and the last edge (wy,s,) of p,(s4) = py(s,) are
external. By Properties 5a and 6 of the realizers, the outgoing blue edge and the outgoing
red edge of s, are consecutive in the counterclockwise circular order of the edges around s,.
Suppose, for a contradiction, that the edge of ext(sy, s,) incident with s; is not the outgoing
red edge of s,. By planarity of G, pp(s,) and p,(ss) have at least one vertex in common, thus
contradicting Lemma 6. Similarly, it can be proved that the edge of ext(sy, s,) incident with s,
is the outgoing green edge of s,.

We now complete the proof by showing that also the other edges of p,(s4) = py(s,) are
external. Suppose, for a contradiction, that p,(sq) = py(s,) # ext(sy, s,); hence, there exists a
vertex & # sq, Wy, Sy, Wy of ext(sy, s,) which is not a vertex of p, (wy) = py(w,). Since the graph

11

Figure 4: The blue, green, red paths and regions of a vertex.

is planar, pg(z) (pr(2)) has at least a vertex y (z) in common with p,(wy) = pg(w,). It is easy
to see that Property 5b of the realizers is not satisfied for vertices y and z. |

For each vertex v of G the blue region Ry(v) is the subgraph of G with external face formed
by pg(v), pr(v) and ext(sy,s,) (see Fig. 4). In the same way, the green region R4(v) is the
subgraph of G with external face formed by py(v), p,(v) and ext(s,, sp) and the red region R, (v)
is the subgraph of G with external face formed by py(v), py(v) and ext(sp, s4).

Lemma 9 For each pair of vertices u and v of G, two cases are possible:

1. there are exactly two colors i,j € {b,g,r}, i # j, such that p;(v) and p;(u) cross; three
subcases are possible:

(a) w g pi(v) and v & p;j(u) (see Fig. 5.a);
(b) either u € p;(v) or v € p;(u) (see Fig. 5.b);
(¢) u € p;j(v) and v € p;(u) (see Fig. 5.c);

2. there are no two colors i,j € {b,g,r}, t # j, such that p;(v) and p;(u) cross; in this case
there is exactly one color k € {b, g,r} such that either py(v) C pr(u) or pr(u) C pr(v) (see
Fig. 5.d);

Proof: Consider path p,(u) (pp(u) and of py(u) are analogous). Also, suppose that u and v
do not coincide with s, s4, and s,; otherwise the proof can be trivially extended but involves
some more details. In order to simplify the exposition of the proof of this property, we define
pi(v) = pi(v)—{v}, i € {b,g,r},and R;(v) = R;(v)—{p;(v)Upk(v)}, t, 5,k € {b,g,r}, i # j # k.

By exploiting Lemmas 5 and 7, we can prove the following properties of p, (u). Path p, (u) is
composed by four consecutive subpaths p,1(u), pr2(u), prs(u), and py4(u), where an endvertex
of py4(u) is s,. The vertices of path p,;(u) belong to R, (v). For the vertices of p,2(u) and p,3(u)
two cases are possible: (i) the vertices of p,3(u) belong to py(v) and the vertices of p,3(u) belong
to R,(v); (ii) the vertices of p,a(u) belong to p,(v) and the vertices of p,3(u) belong to Rp(v).
The vertices of p,4(u) belong to p,(v).

According to the position of u w.r.t. v, some of these subpaths may be empty:

e if u € R,(v) then either p,o(u) and p,3(u) are both empty, or only p,3(u) is empty, or none
of the subpaths is empty;

12

u u

(a) b (b)

u

“b

© | @
Figure 5: (a—) Crossing paths. (d) Non-crossing paths.
o if u € pp(v) or u € py(v) then pyq(u) is empty; also, py3(u) is possibly empty, while p,o(u)
and p,4(u) are not empty;

o if u € Ry(v) or u € Ry(v) then p,1(u) and pyo(u) are empty; p,3(u) and p,4(u) are not
empty;

e if u € p,(v) then p,1(u), pr2(u), and py3(u) are empty; pra(u) is not empty.
The above properties allow to easily prove the claims. |

Corollary 1 Let u and v be two vertices of G. If there exist two colors i,j € {b,g,r}, i # j,
such that p;(v) and p;(u) cross, then u € R;(v) and v € R;(u).

Proof: Easily follows from the proof of Lemma 9. O

Lemma 10 Let i, j, and k be three consecutive colors in the circularly ordered set {b, g,r}. For
each pair of vertices u and v of G, if u € Ri(v) the following five cases are possible:

1. ifu & pi(v) and u & p;(v), then Ry(u) C Ry(v);
2. if u € pi(v) and v & p;(u), then Ri(u) C Ry(v);

3. if u € pj(v) and v & p;(u), then Ri(u) C Ri(v);

13

Ppr

Figure 6: Internal face coloring.

4. if u € pi(v) and v € p;(u), then Ry(u) = Ry(v);

5. if u € pj(v) and v € p;(u), then Ri(u) = Ri(v).

Proof: Case 1. By planarity of G and by Lemma 9, either pi(u) and p;(v) cross or pg(u) and
pj(v) cross or pg(v) C pr(u); in all three subcases, by Lemma 9, p;(u, lca;) and pj(u,lcaj) are
internal paths of Ry(v), hence Ri(u) C Ri(v).

Case 2. Since u € p;(v), then p;(u) C p;(v); by Lemma 9, p;(u,lca;) is an internal path of
Ry (v), hence Ri(u) C Ry(v).

Case 3. Analogous to Case 2.

Case 4. By Lemma 7, p;(v, u) = pj(u, v), hence Ri(u) = Ry (v).

Case 5. Analogous to Case 4. O

The properties of a normal family of paths [4] for a plane graph and three distinguished
external vertices, are similar to the properties of Lemmas 6, 8, and 10. Brightwell and Trotter [4]
proved that each triconnected plane graph has a normal family of paths for any three external
vertices. Using the terminology of [4], we can say that Lemmas 6, 8, and 10 show that the set
{pi(v)|i € {b,g,r}, v € V} is a normal family of paths for the three vertices s, s4, and s,.
Also, a normal family of paths of a triconnected planar graph can be constructed, for any three
external vertices z, y, and z, by adding a vertex w adjacent to z, y, and z, by constructing a
single-sink realizer (which will be defined in Section 4.2) rooted at w, and then by removing w.

3.3 Faces Colored by Realizers

Let G be a triconnected plane graph equipped with a realizer T}, T, T;. Let f be an internal
(external) face of G, and let e be an edge of f in Tp. We say that e is positive blue if the
orientation of e in T} follows f clockwise (counterclockwise); we say that e is negative blue if the
orientation of e in Ty follows f counterclockwise (clockwise). We define positive green, negative
green, positive red, and negative red in a similar way. The following lemmas characterize the
chromatic structure of a face induced by the realizer.

Lemma 11 An internal face of G can be decomposed into siz clockwise consecutive paths Py,
Drg: Pro, Pgbs Pyr, Dor where (see Fig. 6):

14

o Dy, consists of eractly one edge that is either positive blue, or positive blue and negative
green, or negative green;

® ., consists of a possibly empty sequence of edges, each positive red and negative green;

o P,y consists of eractly one edge that is either positive red, or positive red and negative blue,
or negative blue;

® pg, consists of a possibly empty sequence of edges, each positive green and negative blue;

o P, consists of exactly one edge that 1s either positive green, or positive green and negative
red, or negative red;

o py,. consists of a possibly empty sequence of edges, each positive blue and negative red.

Proof: Let f be an internal face of GG, and let a clockwise circular order of the vertices around
f be defined.

We consider the most general case in which f contains no vertex from the set {sp, sy, s, }.
The cases in which f contains one or two vertices from the set {sp, 54, 5.} are particular cases
of this one.

For each vertex of f, by Properties 3 and 4 of the realizers, at least one of the three outgoing
edges does not belong to f.

We first prove that, for each color i € {b,g,r}, there exists at least one vertex of f whose
1-colored outgoing edge does not belong to f. Suppose the contrary; since each vertex of f has
exactly one i-colored outgoing edge, these edges would form an i-colored cycle; a contradiction,
since T; is a tree.

Then we prove that, for each color i € {b, g,r}, there exists at least one vertex v of f such
that f C R;(v). In particular, we will prove the result for ¢ = r; the other two cases are
analogous.

Let v be a vertex of f whose red outgoing edge does not belong to f; let u (w) be the vertex
of f preceding (following) v. We consider the clockwise circular order around v of its outgoing
edges and of the two edges belonging to f. Three cases are possible:

1. (u,v), the outgoing green edge (possibly coincident with (u,v)), the outgoing blue edge,
the outgoing red edge, and (v, w) appear in this order around v; thus, f € R, (v); however,
by Property 5 of the realizers, (w, v) is an outgoing blue edge for w, and is followed, around
w, by the outgoing red edge and by the outgoing green edge; thus, f C R, (w);

2. (u,v), the outgoing blue edge (possibly coincident with (u,v)), the outgoing red edge,
the outgoing green edge (possibly coincident with (v, w)), and (v, w) appear in this order
around v;; thus, f C R, (v);

3. (u,v), the outgoing red edge, the outgoing green edge, the outgoing blue edge (possibly
coincident with (v, w)), and (v, w) appear in this order around v; thus, f € R, (v); however,
by Property 5 of the realizers, (u, v) is an outgoing green edge for u, and is preceded, around
u, by the outgoing red edge and by the outgoing blue edge; thus, f C R, (u);

It is also easy to see that, if f C R;(v), then f € R;(v), t,5 € {b,g,r}, i # j; hence, for
each color 7 € {b, ¢, r}, the vertex of f such that f C R;(v) is distinct from the vertices of f for
the other two colors.

By making use of the vertices of f whose red region contains f, we will now prove the claim
for Py, pgp, and Py, .

15

Dy

pgb

Figure 7: External face coloring.

We first consider the case in which there exists only one vertex v of f such that f C R, (v).
Let u (w) be the vertex of f preceding (following) v. The outgoing blue edge of v either
follows (u,v) in the clockwise circular order around v or coincides with (u,v); in the first case,
by Property 5 of the realizers, (u,v) is the outgoing red edge of w; in the second case, still
by Property 5 of the realizers, (u,v) may or may not be also the outgoing red edge of u. It
follows that (u,v) is either positive red, or positive red and negative blue, or negative blue, i.e.,
Py, = (u,v). Analogously, (v, w) is either positive green, or positive green and negative red, or
negative red, i.e., Py, = (v, w). In this case pg is empty.

We now consider the case in which there exists more than one vertex v of f such that
f € R.(v). Let vq,..., v be these vertices. By Lemma 10, it is easy to prove that all vertices
vp, 1 < h <k are consecutive in f, and that R,(v;) = R,(v2) = ... = R,.(vx). It follows that
edge (vn,vpt1), 1 < h < k is an outgoing green edge for vy and an outgoing blue edge for
Up41; thus (vp, vpgr) is positive green and negative blue, i.e., pg = (v1,v2), ..., (Vht1,vn). Let
u (w) be the vertex of f preceding vy (following vi); as in the previous case P, = (u,v) and
Py = (v, w).

The proof of the claim for Py, pyy, and Pyy (Phg, prg, and Pyp) is analogous and makes use
of the vertices of f whose green (blue) region contains f. O

Lemma 12 The external face of G can be decomposed into three counterclockwise consecutive
paths pgp, Prg. Por where (see Fig. 7):

® pg, consists of a sequence of edges, each positive green and negative blue;
® p,, consists of a sequence of edges, each positive red and negative green;
o py. consists of a sequence of edges, each positive blue and negative red.

Proof: Immediately follows from Lemma 8. O

It is well known that the dual graph of a triconnected planar graph is triconnected. We
consider a triconnected planar graph G equipped with a realizer, and define the extended dual

graph G* of G as follows:

16

e cach internal face of G has a corresponding vertex in G™; the external face of G has three

corresponding vertices vy, vy, and vy in G™;

e cach edge of G has a corresponding edge in G*;

e two vertices of G*, different from vy, vy, and vy, are adjacent if and only if the correspond-
ing faces of G have an edge in common,;

e v is adjacent to all the vertices of G* corresponding to faces of G incident with an edge
of pry (see Lemma 12); vy is adjacent to all the vertices of G* corresponding to faces of G
incident with an edge of py,; v; is adjacent to all the vertices of G* corresponding to faces
of G incident with an edge of pg;

*
g

*

e v; is adjacent to vy; vy is adjacent to vy vy is adjacent to vy.

It is easy to see that also the extended dual graph of a triconnected planar graph is tricon-
nected planar.

Lemma 13 The realizer of a triconnected planar graph induces a realizer of its extended dual.

Proof: Let G be a triconnected planar graph equipped with a realizer and G* be its extended
dual. Let v™ be a vertex of G*, different from vy, vy, and v;’, € be an edge of G' and €™ be its
corresponding edge in G*. We color the edges incident with v* as follows (see Lemma 11):

o if e is the edge of P, and it is positive blue, then e* is an outgoing red and incoming green
edge for v*; if e is positive blue and negative green, then e* is an outgoing red edge for v*;
if e is negative green, then €* is an outgoing red and incoming blue edge for v*;

*

e if ¢ is an edge of p,4, € is an incoming blue edge for v*;

o if e is the edge of P, and it is positive red, then € is an outgoing green and incoming
blue edge for v*; if e is positive red and negative blue, then e* is an outgoing green edge
for v*; if e is negative blue, then e* is an outgoing green and incoming red edge for v*;

*

e if ¢ is an edge of pg, €* is an incoming red edge for v*;

o if e is the edge of P, and it is positive green, then e* is an outgoing blue and incoming
red edge for v*; if e is positive green and negative red, then e* is an outgoing blue edge
for v*; if e is negative red, then €* is an outgoing blue and incoming green edge for v*;

*

e if € is an edge of py,, €* is an incoming green edge for v*;

e (vj,v;) is an outgoing green edge for vy and an outgoing blue edge for vy; (vy,v)) is an
outgoing red edge for vy and an outgoing green edge for v;; (v, v;) is an outgoing blue

edge for v and an outgoing red edge for vy.

Let 4, j, and k be three consecutive colors in the circularly ordered set {b,g,r}. We prove
that, for each color k, the k-colored edges form a spanning tree T} of G*. Each vertex v* of G*,
different from v}, has exactly one k-colored outgoing edge. For each face of G such that pj; is
not empty, i.e., for each vertex v* of G* which is not a leaf in T, let v, vq, ..., vg be the vertices
of p;i and let u; and uy be the endpoints of P;;. From the coloring of pj; and P;; in Lemma 11,
it follows that Case 4 of Lemma 10 applies for vy and vq,...,v4_1 and vy, and for u; and us.
Still from Lemma 11, it follows that either Case 1 or Case 2 of Lemma 10 applies for u; and vy.
Then Ry(u1) = Ri(ug) C Ri(vi) = Rp(v2) = ... = Ry(va), hence there are no k-colored cycles.

As for Properties 1-6 of the realizers, they easily follow from the coloring above and from
Lemmas 11 and 12. |

17

4 Planar 3-Path Queries

In this section we apply the combinatorial results of Section 3 to devise a data structure that
supports output-sensitive 3-path queries on a triconnected planar graph. The algorithm and its
underlying data structure are simple to implement.

4.1 Preprocessing

In order to simplify the algorithm, we use a single-sink realizer for a triconnected planar graph
G, i.e., a realizer in which a common vertex s of degree three is chosen as sp, s, and s,. If G
has no vertex of degree three, we first apply the algorithm of Nagamochi and Ibaraki [34] to
obtain a sparse triconnected spanning subgraph G’ of G, which is guaranteed to have a vertex
of degree three (see Lemma 2.6 of [34]). Otherwise, G’ is identical to G. Then, a realizer of G’ is
computed, as shown in the proof of Lemma 3, with v; = s. A realizer of G’ is also a realizer of
G. Finally, a single-sink realizer of G’ is obtained in the following way: let (s4, w,) be the edge
following (s4, sp) in the clockwise order around sy, and let (s,, w,) be the edge preceding (s,, sp)
in the clockwise order around s,; (sg, sp) is made an outgoing green edge for sg4, (s4, wy) is made
an outgoing blue edge for s, and an outgoing green edge for wy; (s,,sp) is made an outgoing
red edge for s,; (s,,w,) is made an outgoing blue edge for s, and an outgoing red edge for w,;
s and s, are identified with s.

Note that the single-sink realizer of G’ induces a realizer of the subgraph obtained from G’
by removing sp and its three incident edges. The three distinct sinks of the induced realizer are
the three vertices adjacent to s, in G’. Such induced realizer satisfies all the properties of the
realizers described in Section 3.

4.2 Three Disjoint Paths

Let G be a triconnected plane graph equipped with a single-sink realizer. To answer a 3-path
query for vertices u and v of G, we assemble three paths between u and v by suitably traversing
the paths p;(u), pi(v), @ € {b,¢,r}. Since such paths can share vertices and edges, a careful
choice is needed.

In the rest of paper the following notation is used. The concatenation of two paths p;(u, w)
and p;(v,w), t,5 € {b,g,r}, ¢ # j, having only vertex w in common is denoted by p;(u,w) +
pj(v, w). If w=s; = s;, the concatenation of paths p;(u) and p;(v) is denoted by p;(u) + p;(v).
If p;(v) and p;(u), 7 # j have a common subpath, then we define stopvertez;;(u,v) any vertex
of the subpath; in the rest of the paper we will use stopvertex;; instead of stopvertex;;(u,v) for
brevity, and in the figures we will use sv;; instead of stopvertex;;.

Lemma 14 For each pair of vertices uw and v of G, the subgraph of G formed by the siz paths
po(u), pg(u), pr(u), pp(v), pg(v), and p,(v) contains three disjoint paths between u and v.

Proof: Let (sp,) be the blue incoming edge of sp, (sp,y) be the green incoming edge of sy,
and (sp, z) be the red incoming edge of sp. As noted in Section 4.1, the single-sink realizer of G
induces a realizer of the subgraph obtained from G by removing s, and its three incident edges.
In the induced realizer, z is the blue sink, y is the green sink, and z is the red sink.

We first consider the case in which either u or v is coincident with s;. W.l.o.g., let u be this
vertex. By Lemma 6, pp(v,), py(v,y), and p,(v, z) have only vertex v in common; thus the
three disjoint paths between u and v are simply py(v), py(v), and p,(v).

We then consider the case in which neither w nor v coincides with s,. By Lemma 9, two
cases are possible for v and v:

18

© c @)

Figure 8: The cases of disjoint paths with endpoints « and v.

1. If Case 1 of Lemma 9 applies, then there are exactly two colors i, j € {b,g,r}, i # j such
that paths p;(v) and p;(u) cross. These two paths are exploited to determine a first path
with endpoints u and v. A second path is determined using p;(v) and p;(u). Let k # ¢,
be the other color in {b, ¢g,r}. The third path is the one along Tj. More formally, the three
disjoint paths between u and v are the following (see Fig. 8.a-8.c, where the portions of
the paths that are used to assemble the three disjoint paths are thicker):

o p1 = pr(u,lcar) + pr(v, leag);

19

o p2 = pi(u) + p;j(v);

o p3 = p;(u, stopvertex;;) + p;(v, stopvertez;;).
Note that, if ¢, j # b, the crossing between p;(v) and p;(u) may be external.

2. If Case 2 of Lemma 9 applies, then there is exactly one color k € {b, g, r} such that either
pr(u) C pr(v) or pr(v) C pr(u). W.lo.g., let pr(u) C pr(v), and let 4, j # k be the other
two colors in {b, g, r}. The three paths are the non-common part of py(u) and pi(v), and
the paths along T; and along T;. More formally, the three disjoint paths between u and v
are the following (see Fig. 8.d-8.f):

o p1 = pi(u,leca;) + pi(v,leay);
o po = p;(u,lca;) + p;(v,leaj);
o p3 = pi(v,u).

We now prove the disjointness of py, p2, and ps3 in both cases. Of the six possible choices of
colors for ¢, 7, and k in each case, we will consider only one; the proof for the other choices is
analogous.

Case 1. Let i = ¢g, j = r, and k = b (see Fig. 8.c). It is easy to see that neither lcap
nor stopvertexg, coincides with sp; thus, in proving the disjointness of the three paths we can
consider py(u,y) instead of py(u), and p, (v, z) instead of p,(v).

First, we prove that p; and p; are disjoint. By Lemma 6, py(u, lcap) and py(u,y) are disjoint.
By Case 1 of Lemma 9, and since p,(u) and p,(v) cross, py(u,lcap) and p, (v, z) are disjoint.
Analogously, py(v,lcap) and p, (v, z) are disjoint, and py(v,lcap) and py(u,y) are disjoint.

Second, we prove that p; and ps are disjoint. By Lemma 6, py(u, [cap) and p, (u, stopvertex)
are disjoint. By Case 1 of Lemma 9 and since p,(u) and py(v) cross, pp(u,lcap) and
pg(v, stopvertex,,) are disjoint. Analogously, py(v,lcap) and py(v, stopvertex,,) are disjoint,
and py(v,leap) and p,(u, stopvertex,,) are disjoint.

Third, we prove that p; and p3 are disjoint. By Lemma 6, p, (u, stopvertex,,) and py(u, y) are
disjoint. Since p,(u) and p,(v) cross, it follows from Corollary 1 that p, (u, stopvertezy,) C R, (v),
while, by Lemma 6, p,(v) N R,(v) = {v}; hence, p,(u, stopvertex,,) and p,(v, z) are disjoint.
Analogously, py(v, stopvertez,,) and p,(v, z) are disjoint, and py(v, stopvertezy,) and py(u,y)
are disjoint.

Finally, we prove that pq, ps, and p3 are simple paths. Path p; is composed by the two paths
along T between u or v and their lowest common ancestor. Path py is simple by being p,(v)
and py(u) simple and non-crossing. Path ps3 is simple by being p,(u) and py(v) simple and by
Lemma 7.

Case 2. Let i = g, j = r, and k = b (see Fig. 8.d). It is easy to see that neither lca, nor lca,
coincides with sp.

First, we prove that p; and py are disjoint. By Lemma 6, py(u,lcay) and p,(u,lca,) are
disjoint. By Case 2 of Lemma 9, and by being py(u) a proper subpath of py(v), py(u,lca,) and
pr(v,lca,) are disjoint. Analogously, py(v,lcay) and p,(v,lca,) are disjoint, and p,(u,lca,) and
Pg(v, leay) are disjoint.

Second, we prove that p; and ps are disjoint. By Lemma 6, py(v,lcay) and ppy(u,v) are
disjoint. By Case 2 of Lemma 9 and by being py(u) a proper subpath of py(v), py(u,lcay) and
p(u, v) are disjoint.

Third, we prove that p; and ps are disjoint. By Lemma 6, p, (v, lca,) and py(u, v) are disjoint.
By Case 2 of Lemma 9 and by being py(u) a proper subpath of py(v), pr(u,lca,) and py(u,v)
are disjoint.

20

Finally, to prove that py, ps, and p3 are simple paths, we observe that p; is composed by the
two paths along T, between u or v and their lowest common ancestor, p; is composed by the
two paths along 7). between u or v and their lowest common ancestor, and that ps is a subpath
of the simple path py(v). O

4.3 Data Structure and Complexity

In this section we present a data structure for performing 3-path queries on a triconnected planar
graph G with n vertices. By Lemma 3 and by Theorem 2.1 of [34], we assume that G has been
embedded and a single-sink realizer T}, T, T, of G has been constructed; this can be done in
O(n) time.

Trees Ty, Ty, and T, are implemented with parent pointers. We then add to those trees a
component for computing stopvertex;; and lcag, ¢, 5,k € {b,g,r}.

For this purpose, we define for each tree T;, ¢ € {b, g, r}, a binary relations |; on the vertex
set of G. For a pair of vertices {u, v}, such relations determine the relative positions of u and v
in T;. Namely, u |; v if u is a vertex of the subtree of T; rooted at v.

We implement relations |;, i € {b, g, r}, by associating to each vertex w of T; three positive
integers: min;(w), maz;(w), and level;(w). We consider the leaves of T; in the order induced
by a visit of T;: for the first leaf, we set min;(w) = max;(w) = 1; for the second leaf, we set
min;(w) = mazx;(w) = 2, etc. For any other vertex of T;, we set min;(w) equal to the value of
its first descendant leaf, and maz;(w) equal to the value of its last descendant leaf. Besides, we
set level;(s;) = 1, and, for any other vertex w of T; with parent z, we set level(w) = level(x)+1.

The binary relation can be easily tested in the following way. For each pair of vertices u and
vof G, u ;v if and only if one of the following three cases apply:

o min;(u) > min;(v) and maz;(u) < maz;(v);

o min;(u) > min;(v) and maz;(u) < maz;(v);

e min;(u) = min;(v) and maz;(u) = maz;(v) and level;(u) > level;(v).
(

Thus, testing if u |; v can be done in O(1) time. It is easy to see that the above data
structure can be constructed in O(n) time.

Using this data structure, we can compute the three disjoint paths between « and v. The
two cases in which either w or v coincides with s, are trivial. In all other cases, we consider
vertex u and first traverse path pp(u) until one of the following halting events occurs:

e [cay is reached;

e stopuvertexy, or stopvertex,; is reached.

In particular, testing whether we have reached lcap, requires testing, for each vertex w of
(), if v |y w. Testing whether we have reached stopvertexy, or stopvertex,;, requires testing,
for each vertex w of py(u) — {u}, if v |4 w or v |, w, respectively. Note that lca, can coincide
with u, and that stopvertexy, or stopvertex,; cannot coincide with u (but can coincide with v).

We then traverse py(u) and p,(u) in the same way. At the end of the process, if we have
reached one stopvertex;;, then Case 1 in the proof of Lemma 14 applies, else Case 2 applies.
During this process, we have only visited vertices and edges which are contained in the three
disjoint paths between » and v. The report of the three paths can now be completed by suitably
traversing pp(v), pg(v), and p,(v) and by possibly continuing the traversal of one path among

po(u), pg(u), and p,(u).
Theorem 2 Let G be a triconnected planar graph with n vertices. There exists an O(n)-space

data structure for G that can be constructed in O(n) time and supports 3-path queries in O(()
time, where [is the size of the reported paths.

21

5 General 3-Path Queries

In this section we extend to general triconnected graphs the results on planar triconnected graphs
of Section 4.

5.1 Preprocessing

The realizer used for triconnected planar graphs is replaced by three independent spanning
trees [, 54]. For three independent spanning trees of a triconnected graph G, the following
properties hold:

1. In each spanning tree, the edges of G are directed from children to parent.
2. The sinks (roots) of the spanning trees are three (possibly coincident) vertices of G.
3. Each edge of G is contained in at least one and in at most two spanning trees.

4. If an edge of G is contained in two spanning trees, then it has different directions in the
two trees.

5. For each vertex v of G, the paths from v to the sinks along the three spanning trees have
only vertex v in common.

We briefly review the algorithm by Cheriyan and Maheshwari [5] for constructing three
independent spanning trees of a triconnected graph G with n vertices.

The main step of their algorithm is the computation of a nonseparating ear decomposition
of the triconnected graph. An ear decomposition of a graph G is a partition of G into an
ordered collection of edge-disjoint simple paths Py, Py, ..., Py, such that Py is a cycle, and each
P, 1 <k < h has only its two distinct endpoints in common with Gp_y = PhbUP,U... U Py_q.
Each path Py is an ear. An ear decomposition is said to be through edge (v1,v3) and avoiding
vertex v, if cycle Py contains edge (vy,vz), and the last ear Py different from a single edge
contains vertex v, as its only internal vertex. An ear decomposition through edge (vy,vy) and
avoiding vertex v, is said a monseparating ear decomposition if, for each 0 < k < h', graph
G — Gy, is connected and each internal vertex of ear P, has at least one neighbor in G — Gk.

A nomnseparating ear decomposition has at most n ears different from a single edge. For each
vertex v of G, we define the ear number ear(v) as the index k of the first ear in Py, Py, ..., P,
containing v.

Given an ear decomposition of G and an edge (s,t) of the first ear Py, an st-numbering of
G is consistent with the ear decomposition if, for each 1 < k < h, the numbering induced by Gy,
is an st-numbering of Gy. For each vertex v of G, we indicate with stn(v) the st-number of v.

Note that the canonical ordering defined in Section 2.3 is a particular case of nonseparating
ear decomposition for triconnected planar graphs.

Lemma 15 [5] Let G be a triconnected graph with n vertices and m edges. Let (v1,vy) be an
edge and v, # v1,vy be a vertex of G. There exists a nonseparating ear decomposition of G
through (v1,vy) and avoiding v,. It can be computed in O(nm) time and O(m) space.

The time complexity of the algorithm can be reduced from O(nm) to O(n?) by computing
a sparse triconnected spanning subgraph G’ of G in O(m) time [34] and by then computing a
nonseparating ear decomposition of G’. As noted in Section 4.1, G’ is guaranteed to have a
vertex of degree three.

The three independent spanning trees can be constructed in the following way:

22

1. let vy be a vertex of degree three, and let vy, and v, be two vertices adjacent to vy; a
nonseparating ear decomposition of G’ through (vy, v3) and avoiding v,, is computed;

2. let s = vy and t = wy; an st-numbering of G consistent with the ear decomposition is
computed;

3. vy, vg, and v, are the sinks of the blue, green, and red tree, respectively;
4. (v1,vq) is an outgoing blue edge for vy and an outgoing green edge for vy;

5. for each 1 < k < h, let ¢ and ¢, be the two endpoints of ear Py, such that, either
ear(cy) < ear(c,), or ear(c;) = ear(c,) and stn(c¢) < stn(c,); two cases are possible:

(a) if Py is a single edge, then (¢, ¢,) is an ougoing red edge for ¢;

(b) if Py is not a single edge, let ¢,, vs,, ..., Vs, +d,, 1, dx > 0, be the consecutive vertices
of Pg; (Vs,+d,,c1) is an outgoing blue edge for vy, 44,, and possibly an outgoing red
edge for ¢ if ¢ has no neighbor in G — Gg; (vs,, ¢;) is an outgoing green edge for
vs,, and possibly an outgoing red edge for ¢, if ¢, has no neighbor in G — Gy; edge
(vi, Vig1), sk < @ < s +d is an outgoing blue edge for v; and an outgoing green edge
for viyq.

As for the planar case, we denote vy, vy, and v, as sp, 54, and s,, respectively. Properties 1-
4 of the independent spanning trees immediately follow from the previous construction, while
Property 5 can be proved by observing that, from the previous construction, it follows:

e for each vertex v # s, of G, let @ be the parent of v in Tp; ear(u) < ear(v) and stn(z) <
stn(v);

e for each vertex v # s, of G, let y be the parent of v in Ty; ear(y) < ear(v) and stn(y) >
stn(v);

e for each vertex v # s, of G, let z be the parent of v in T}; ear(z) > ear(v).

In the rest of the section, we will use three independent spanning trees with a common
sink, which can be obtained from the three independent spanning trees computed above in the
following way: let (s, wy) be the edge of Py incident with s, and different from (s, sp); (54, Sp)
is made an outgoing green edge for s,; (s4,w,) is made an outgoing blue edge for s, and an
outgoing green edge for wy; note that, by construction, (s,,sp) is an outgoing red edge for s,;
s and s, are identified with s.

5.2 Three Disjoint Paths

Lemma 16 For each pair of vertices u and v of G, if there are two colorsi,j € {b,g,r}, 1 # j,
such that p;(v) and p;(u) cross, then p;(v) and p;(u) do not cross.

Proof: Six cases are possible for ¢ and j:
1. t =band j = g;let w be a vertex of the crossing between py(v) and p,y(u), 2 # u be a vertex

of pp(u), and y # v be a vertex of py(v); stn(z) < stn(u) < stn(w) < stn(v) < stn(y)
holds;

2. ¢t = g and j = b; analogous to Case 1;

23

3. i =gand j = r;let w be a vertex of the crossing between p4(v) and p,(u), y # u be a vertex
of pg(u), and z # v be a vertex of p,(v); ear(y) < ear(u) < ear(w) < ear(v) < ear(z)
holds;

4. ¢ = r and j = g¢; analogous to Case 3;

5. i =rand j = b; let w be a vertex of the crossing between p, (v) and py(u), z # v be a vertex
of pp(v), and z # u be a vertex of p,(u); ear(z) < ear(v) < ear(w) < ear(u) < ear(z)
holds;

6. ¢ = b and j = r; analogous to Case 5.

In all the cases, it is easy to see that p;(v) and p;(u) do not cross.]

With analogous techniques, we can prove the following two lemmas.

Lemma 17 For each pair of vertices u and v of G, if p,(v) and p;(u), i € {b, g}, cross, then
pr(u) and p;(v), 7 € {b,g}, j # 1, do not cross.

Lemma 18 For each pair of vertices w and v of G, py(v) and py(u), or py(v) and py(u), may
cross at most once, py(v) and p,(u), or p,(v) and py(u), may cross multiple times, py(v) and
pr(u), or py(v) and py(u), may cross multiple times.

We now state the equivalent, for general triconnected graphs, of Lemma 9 for planar graphs.
Note how, being the graph nonplanar, the number of possible cases has increased.

Lemma 19 For each pair of vertices u and v of G, siz cases are possible:

1. there are three colors i,k € {b,g,r}, j € {b,g}, i # j # k, such that p;(v) and p;(u), p;(v)
and pg(u), p;(v) and pg(u) cross;

2. there are three colors i,j,k € {b,g,r}, 1 # j # k, such that p;(v) and p;(u), p;(v) and
pr(u) cross;

3. there are three colors t,j,k € {b,g,r}, i # j # k, such that p;(v) and p;(u), px(v) and
pi(u) cross (analogous to Case 2 with u and v switched);

4. there are three colorsi € {b, g}, j,k € {b,g,r}, i # j # k, such that p;(v) and p;(u), pr(v)
and p;(u) cross;

5. there are exactly two colors i,j € {b,g,r}, 1 # j, such that p;(v) and p;(u) cross;

6. there are no two colors i,j € {b,g,r}, i # j, such that p;(v) and p;(u) cross.

Proof: By Lemma 16, out of the six potential crossings between differently colored paths from
u and v, at most three may exist. It is easy to see that, by Lemmas 16 and 17, the six claimed
cases are exhaustive. O

As for planar graphs, we define stopvertex,;, ¢,j € {b,g,r}, i # j, any vertex of the crossing
between p;(v) and p;(u) or between p;(v) and p;(u).

Lemma 20 For any two vertices u and v of G, the subgraph of G formed by the siz paths py(u),
Po(v), pg(u), pg(v), pr(u), and p,(v) contains three disjoint paths between u and v.

24

Proof: We will prove the claim by considering Cases 1-4 of Lemma 19. Cases 5 and 6 are
analogous to those of Lemma 14 for planar graphs.

We will prove in detail only Case 1 of Lemma 19, in which three crossings occur between
differently colored paths from « and v. This is the most complex case. The proofs for Cases 2—4,
in which two crossings occur, are similar.

Path p;(v) crosses both p;(u) and pi(u); path pg(u) crosses both p;(v) and p;(v). W.lo.g.,
let i =g, j =0, and k = r. We first prove that stopvertezy “is closer to v” along p,(v) than
stopvertexyy, or, more formally, that p,(v, stopvertexy,) C py(v, stopvertexy,). This follows
from ear(stopvertexpy) < ear(u) < ear(stopvertexy,) < ear(v).

Then we consider stopvertex,, and stopvertexp,. Two cases are possible:

1. stopvertexy “is closer to w” along p,(u) than stopvertex,,, or, more formally,
pr(u, stopvertexy,) C py(u, stopvertex,y); the three disjoint paths are, as in the planar
case, the following:

o 1= ol Tear) + polv, leay):
® Do = pg(u) ‘|‘pr(v);

o p3 = pr(u, stopvertexy,) + pgy(v, stopvertexy,);

since we use neither p,(stopvertex,,) nor p,(stopvertexy,) — py(v) in the construction of
the three disjoint paths, we can simply ignore stopvertexyy and stopvertex,p;

2. stopvertex,, “is closer to w” along p,(u) than stopvertexg, or, more formally,
pr(u, stopvertex,y) C py(u, stopvertezy,); in this case it is not possible to construct the
three disjoint paths as in the planar case; however three disjoint paths still exist:

® D= pg(u) ‘|‘pr(v);
o Dy = pp(u, stopvertexyy) + pg(v, stopvertexy,);

o p3 := p,(u, stopvertex,) + py(v, stopvertez,);

since we do not use p, (stopvertex,p) — py(v) in the construction of the three disjoint paths,
we can simply ignore stopvertexg,.

In both cases, the disjointness of py, py, and p3 can be easily proved by the ear number and
st-number properties of the colored paths from u and v. |

5.3 Data Structure and Complexity

In this section we present a data structure for performing 3-path queries in a triconnected graph
G with n vertices. By Lemma 15 and by Theorem 2.1 of [34], we assume that G has been
embedded and three independent spanning trees Ty, Ty, and T, of G with a common sink have
been constructed; this can be done in O(n?) time.

As for planar graphs, trees T, T,, and T, are implemented with parent pointers, and are
augmented with the component implementing the relations |;, ¢ € {b, g, r} on the vertex set of
G. It is easy to see that the above data structure can be constructed in O(n) time.

Using this data structure, we can compute the three disjoint paths between u and v similarly
to the planar case. However, by Lemma 18, p,(v) may cross pp(u) and py(u) multiple times, or
pr(u) may cross py(v) and py(v) multiple times. In the proof of Lemma 20, we have seen that
only the first crossing, if any, found traversing p, (u) from u or p,(v) from v need be considered.
This imply that, differently from the planar case, the first traversed path is p,(u); the halting
events for the traversal are the same of the planar case; if a crossing with py(v) or p,y(v) is found,

25

then we continue by traversing pp(u) or py(u), otherwise we switch to v and first traverse p, (v),
and then traverse py(v) and py(v).

At the end of the process, we have all the necessary information to decide which of the cases
of Lemma 19 applies. We have only visited vertices and edges which are contained in the three
disjoint paths between u and v. The report of these paths can now be completed by suitably
traversing the remaining paths from « or v and by possibly continuing the traversal of some of
the already traversed paths.

Theorem 3 Let G be a triconnected graph with n vertices. There exists an O(n)-space data
structure for G that can be constructed in O(n?) time and supports 3-path queries in O(() time,
where is the size of the reported paths.

6 Graphs of Arbitrary Connectivity

In this section we extended the results of Theorems 2 and 3 to graphs of arbitrary connectivity
k< 3.

We first consider biconnected (non-triconnected) graphs. We use a suitably augmented
version of the SPQR-tree data structure for 3-connectivity queries [14]. A description of the
SPQR-tree is contained in Appendix B for the reader’s convenience. An example of SPQR-tree
is shown in Fig. 9.

Let G be a biconnected graph with n vertices and m edges, and let T be an SPQR-tree of
G. Each R-node p of T is equipped with a realizer of skeleton(u). If G is nonplanar, then,
for each R-node p of T, instead of storing skeleton(p), we store a sparse triconnected spanning
subgraph of skeleton(u) [34]; this reduces the space requirements to O(n). Computing the
spanning subgraphs requires an O(m) total time.

As usual, let u and v be the two vertices on which we want to perform a 3-paths query. We
first perform a 3-connectivity query on u and v as shown in [14].

Lemma 21 [14] A 3-connectivity query on vertices v and v returns true if and only if there
is a P-node or an R-node x of T such that v and v are both allocated at y. Node x can be
determined in O(1) time.

If the 3-connectivity query on vertices « and v returns true, the 3-path query can be answered
as follows.

If x is a P-node, u and v are the poles of y and the endpoints of at least three virtual edges
in skeleton(p). Three disjoint paths between w and v in skeleton(u) are obtained by taking
three of these virtual edges. Note that, since we are considering simple graphs, at least two of
these three virtual edges are non-trivial.

If x is an R-node, we determine three disjoint paths between u and v in skeleton(u) as shown
in Sections 4 and 5. In general, these three paths contain some non-trivial virtual edges (see
Fig. 9b).

In both cases, let p,1, puz, and p,3 be the three disjoint paths between u and v in skeleton ().
Three disjoint paths between u and v in G can be obtained from p,1, pu2, and p,3 by recursively
replacing each non-trivial virtual edge e,, corresponding to a node v, with a path p, between
the poles of skeleton(v). The graph can be preprocessed so that for each node v of T a path p,
in skeleton(v) between its poles (different from the virtual edge corresponding to the parent of
v) is stored. In the example of Fig. 9b, paths p, are represented with the purple color.

It remains to be proved that this recursive process requires () time. We need the following
lemma.

Lemma 22 [14] Two S-nodes cannot be adjacent in T. Two P-nodes cannot be adjacent in T .

26

During the recursive process, each virtual edge e, contained in one of the three paths is
replaced with a path p,. Path p, contains exactly one edge and this edge is non-trivial virtual
only if v is a P-node. In all other cases, p, is either a trivial virtual edge or contains more than
one edge. Thus, by Lemma 22, the total number of virtual edges substituted with a path during
the recursive process, i.e., the total number of nodes of T visited, is O(().

If, on the contrary, the 3-connectivity query on vertices u and v returns false, we can answer
a 2-path query using the data structure of Theorem 1.

We now consider connected (non-biconnected) graphs. We use a suitably augmented version
of the BC-tree data structure for 3-connectivity queries [14]. A description of the BC-tree is
contained in Appendix C for the reader’s convenience.

Let G be a connected graph and let T be a BC-tree of G. Each B-node of T is equipped
with an augmented SPQR-tree described above.

Let again » and v be the two vertices on which we want to perform a 3-paths query. We

(©)

Figure 9: (a) A biconnected graph G. (b) The split components used in the reporting of three
disjoint paths between vertices vg and vi4 of G. (c) The SPQR-tree of G with respect to reference
edge (vs,v7) and the skeletons of its nodes.

27

first perform a 2-connectivity query on u and v as shown in [14].

Lemma 23 [14] A 2-connectivity query on vertices w and v returns true if and only if there is
a B-node x of T such that uw and v are both allocated at x. Node x can be determined in O(1)
time.

If the 2-connectivity query on vertices v and v returns true, then we can apply the methods
described above for answering a 3-path or a 2-path query.

If, on the contrary, the 2-connectivity query on vertices u and v returns false, we can easily
answer a 1-path query using a spanning tree of G.

Finally, we consider non-connected graphs. We use the BC-forest data structure, which is a
forest of the BC-trees of the connected components of G.

We first perform a 1-connectivity query on u and v simply testing if v and v are both allocated
in the same BC-tree of the BC-forest; this can be done in O(1) time. If the 1-connectivity query
on vertices w and v returns true, then we can apply the methods described above for answering
a 3-path, 2-path, or 1-path query.

The results described in this section can be summarized in the following two theorems.

Theorem 4 Let G be a planar graph with n vertices. There exists an O(n)-space data structure
for G that can be constructed in O(n 4+ m) time and supports 1- 2- and 3-path queries in O(()
time, where [is the size of the reportedpaths.

Theorem 5 Let G be a graph with n vertices. There exists an O(n)-space data structure for G
that can be constructed in O(n?) time and supports 1- 2- and 8-path queries in O(() time, where
{ is the size of the reported paths.

7 Applications of Realizers to Graph Drawing

In this section we show a graph drawing application for the realizers of triconnected planar
graphs.

A straight-line drawing is a drawing in which each edge is mapped to a straight-line segment.
Planar straight-line drawings of planar graphs are a classical topic in graph drawing (a survey
on graph drawing can be found in [13]).

A classical result independently established by Steinitz and Rademacher [41], Wagner [50],
Fary [19], and Stein [40] shows that every planar graph has a planar straight-line drawing.

A grid drawing is a drawing such that the vertices have integer coordinates. Independently,
de Fraysseix, Pach, and Pollack [11] and Schnyder [37, 38] have shown that every planar graph
with n vertices has a planar straight-line grid drawing with O(n?) area. In particular, they
presented algorithms for computing a planar straight-line grid drawing of a maximal planar
graph. de Fraysseix, Pach, and Pollack define the canonical ordering for maximal planar graphs;
the drawing is constructed by assigning integer coordinates to the vertices according to this
canonical ordering. Schnyder defines the realizers for maximal planar graphs, and, based on
such realizer, the vertices are assigned integer coordinates in 3D space which have a purely
combinatorial meaning and such that all the vertices lie on a plane. A drawing in the plane is
then obtained by projection.

Planar straight-line drawings have also been studied with the constraint that all faces be rep-
resented by convex polygons (convez drawings). Tutte [47, 48] has shown that for a triconnected
planar graph a convex drawing can be constructed by solving a system of linear equations. More
recently, Kant has presented an algorithm for constructing grid convex drawings with quadratic
area [29]. His approach can be seen as the natural extension to triconnected planar graphs of the
result by de Fraysseix, Pach, and Pollack for maximal planar graphs. He defines the canonical

28

ordering for triconnected planar graphs recalled in Section 2.3 and the drawing is constructed
assigning integer coordinates to the vertices according to this canonical ordering. Recent results
on convex grid drawings in the plane and in 3D space are presented in [7].

The realizers we have defined for triconnected planar graphs in Section 3 naturally extend
those defined by Schnyder [37, 38] for maximal planar graphs, and can be used to devise a new
algorithm for constructing grid convex drawings of triconnected planar graphs with quadratic
area, as shown below.

We recall here the definition of weak barycentric representation of a graph given by Schny-
der [37, 38]. A weak barycentric representation of a graph G is a mapping of each vertex v of G
to a distinct point (vp, vg, v,) in 3D space such that the following conditions are satisfied:

1. for each vertex v of G, vy + vy + v, = ¢, where ¢ is a constant dependent on G;

2. for each edge (u,w) and each vertex v # u, w of G, there exist coordinates ¢,j € {b, g, 7}
such that (ui, uj) <pex (vi,v;) and (w;, w;) <pex (vi,v5).

Following Schnyder [37, 38], we can obtain a weak barycentric representation of a tricon-
nected planar graph by using a realizer to assign coordinates to the vertices; these coordinates
have a purely combinatorial meaning.

Lemma 24 Let G be a triconnected planar graph equipped with a realizer. For each vertex v
of G, let l(v), l4(v), and I, (v) be the number of faces in Ry(v), Ry(v), and R,(v), respectively.
The mapping (vp, vg, vy) = (lp(v),l4(v), [, (v)) is a weak barycentric representation.

Proof: Condition 1 of weak barycentric representations is trivially satisfied, since, for each
vertex v, vp + vg + v, =1 — 1, where [is the number of faces of G.

As for Condition 2, let ¢, j and k be three consecutive colors in the circularly ordered set
{b,g,7}; let (u,w) be an edge of G and v # u,w be a vertex of G. In order to simplify the
exposition of the proof, we define p;(v) = p;(v) — {v}, p;(v) = p;(v) —{v}, pr(v) = px(v) — {v},
Ri(v) = Ri(v) = {p;(v) Upk(v)}, Rj(v) = R;(v) — {px(v) Upi(v)}, and Ry (v) = Ry (v) — {pi(v)U
pi(v)}. W.lo.g., let u € Rg(v). If u € Ri(v), then, by planarity of G, w ¢ R;(v) and w ¢ R;(v).

Thus, the following five cases are possible:
1. u,w € Ri(v); by Lemma 10, Rj(u) C Ri(v) and Ri(w) C Ri(v); hence up < vg and

wg < Vg;

2. u € Ri(v) and w € p;(v); by Lemma 10, Ry(u) C Rg(v), hence ug < vg; two subcases are
possible:

(a) v ¢ p;(w); by Lemma 10, Ri(w) C Ri(v), hence wy < vg;
(b) v € p;j(w); by Lemma 10, Rx(w) = Ry (v), hence wy = vg; however, still by Lemma 10,
Rj(w) C R;(v), hence w; < vy;
3. u € Ri(v) and w € p;(v); analogous to Case 2;

4. u,w € p;(v); w.l.o.g., let w be an ancestor of u in T;; four subcases are possible:

(a) w ¢ pj(w)and v € p;(u); by Lemma 10, R (w) C Ri(u) C Ri(v) hence wy, < ug, < vg;
(b) u € p;(w) and v & p;(u); by Lemma 10, Rx(w) = Rg(u) C Ri(v), hence wi = uy <
Uk

(¢) u & p;j(w) and v € p;(u); by Lemma 10, Rx(w) C Ri(u) = Ri(v), hence wy < ug =
vg; however, still by Lemma 10, R;(u) C Rj(v), hence u; < vj;

29

(d) u € pj(w) and v € p;(u); by Lemma 10, Rx(w) = Ri(u) = Ri(v), hence wy = ug =
vg; however, still by Lemma 10, Rj(w) C R;(u) C R;(v), hence wj < u; < vj;

5. u,w € p;(v); analogous to Case 4.

In all five cases, Condition 2 is satisfied. O

Theorem 6 Let G be a triconnected plane graph with n vertices and | faces. A convexr grid
drawing of G with height | — 2 and width | — 2 can be computed in O(n) time and O(n) space.

Proof: Let ' be the straight-line drawing of G resulting from the weak barycentric representa-
tion of Lemma 24.

First, note that, by Condition 1 of weak barycentric representations, all the points represent-
ing vertices of G lie on plane 7 in 3D space defined by equation b+ g + r = [— 1; in particular,
vertices sp, 54, and s, are mapped to points (I —1,0,0), (0,1 —1,0), (0,0,7— 1), respectively.

The planarity of I' follows from Lemma 2.1 in [38].

The convexity of I' can be proved as follows. Let v be an internal vertex of G. By Condition 1
of weak barycentric representations, if we fix coordinate vy, then the point representing v lies on
line [of # which is the projection on 7 of line g + r = ¢, of the g-r plane, where ¢, =1 — 1 — vy.
Lines [, and /,, and constants ¢, and ¢, are defined in a similar way. Since 7 intersects the
b-, g-, and r-axis at the same coordinate [— 1, lines [, I, and [, cross at (vp, vy, v,) and form
six 60° angles (see Fig. 10). For each line /;, ¢ € {b,¢,r}, let the positive (negative) halfplane
be the open halfspace containing (not containing) s;. Let the blue positive (negative) wedge
be the portion of the positive (negative) halfspace of I delimited by [, and [;; the green and
red positive (negative) wedges are defined in a similar way. Let z, y and z be the parents of
v in Ty, Ty, and T, respectively. Thus v € Ry(z), and by Lemma 10 (Case 1, or 2, or 3 with
k=10b,i=g,and j =r) Ry(v) C Rp(z), hence vy < zp; still by Lemma 10, R,(z) C Ry(v) and
R,(z) C R,(v) (where only one equality may hold), hence z, < v, and z, < v, (where only one
equality may hold). If we fix coordinate a;, then the point representing a lies on line [} of 7
which is the projection on 7 of line g+ r = ¢} of the g-r plane, where ¢, = I —1— 23 < ¢,. Hence,
I; lies in the positive halfspace of lp. In a similar way, l; lies in the negative halfspace of I, or
I, = lg, and [} lies in the negative halfspace of [, or [; = I, (where only one equality may hold).
It follows that the point representing = must lie in the positive blue wedge of v. Similarly it can
be proved that the point representing y and z must lie in the positive green and red wedges of
v, respectively. Hence, no angle incident on v can be greater then 180°.

Ly

b

Figure 10: The blue, green, and red wedges of a vertex.

30

Figure 11: A convex grid drawing of the triconnected plane graph of Fig. 1.

As for the external face, the points representing sy, s, and s, are the vertices of an equilateral
triangle. Let 7, j, and k be three consecutive colors in {b, g,r}. For each two consecutive vertices
w and v of ext(s;,s;), up = vx = 0. It follows that, by Condition 1 of weak barycentric repre-
sentations, all the vertices of ext(s;, s;) are collinear. Thus, also the external face is represented
as a convex polygon.

A convex grid drawing with height [— 2 and width [— 2 in the plane can be obtained by
projecting I', e.g., by dropping the red coordinate.

Finally, we prove the time and space complexity. To compute the coordinates we will use
both a realizer Tp, Ty, T, of G, and the induced realizer Tj7, Tj, T of the extended dual graph
G* of G. The extended dual graph of G* can be easily constructed in linear time. By Lemma 3,
a realizer of G and the induced realizer of G* can be constructed in linear time and space. Thus
we only have to prove that the coordinates for the vertices of G can be computed in linear time.
In particular, we will prove that, the number of faces in Ry (v), for each vertex v of G, can be
computed by visiting T; and T;.

For each vertex v of G we initialize coordinate v to [—1, i.e., to the number of internal faces
of G. We will then subctract from vy the number of the faces which are not contained in Ry (v);
this can be done by visiting T; and T} as follows. First we compute, for each vertex v* of T},
the number of its descendants, including v* itself, and store it in variable numdescendantsy (v*);
this can be done by a postorder visit of T},. Second, we perform a preorder visit of T}; we use an
auxiliary variable sumdescendants; initialized to 0. For each edge (u,v) traversed during the
visit, let (u*, v™) be the dual edge of (u, v), where v* is the vertex of G* corresponding to the face
of G on the left of (u,v); if (v*,v*) € T}, we sum numdescendantsy (v*) to sumdescendants;
and then subtract sumdescendants; from coordinate vg. Third, we perform a similar preorder
visit of T;. The only difference with the previous visit of T; is that now, for each edge (u,v)
traversed during the visit, v* is the vertex of G* corresponding to the face of G on the right of

31

(u,v).
It is easy to see that, after the visits of T; and Tj, for each vertex v of G coordinate vy, is
equal to the number of faces in Ry(v). O

A similar result was claimed by Schnyder and Trotter [39], but since then, to the best of our
knowledge, no proof has been published.

A convex grid drawing of the triconnected plane graph of Fig. 1 produced by the above
algorithm is shown in Fig. 11.

8 Conclusions
The contributions of this paper can be summarized as follows:

e We have defined, analyzed, and shown how to efficiently compute realizers of triconnected
planar graphs, a combinatorial structure that unifies and extends various previous con-
structions. Realizers play for triconnected planar graphs a similar role as bipolar orienta-
tions for biconnected planar graphs.

e We have presented the first data structure that supports output-sensitive 2- and 3-path
queries in general graphs. The previous best methods for performing queries do not exploit
preprocessing and have O(n) time complexity, irrespectively of the output size. Our data
structure and query algorithm are both theoretically optimal and practically useful.

e We have presented a new O(n)-time algorithm for constructing a convex grid drawing of
G with O(n?) area, which extends to triconnected planar graphs the barycentric drawing
method for maximal planar graphs.

32

References

[1] T. Biedl and G. Kant. A better heuristic for orthogonal graph drawings. In Algorithms
(Proc. ESA 94), volume 855 of Lecture Notes in Computer Science, pages 24-35. Springer-
Verlag, 1994.

[2] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North-Holland, Ams-
terdam, 1976.

[3] G. Brightwell and W. T. Trotter. The order dimension of planar maps. Technical Report
LSE-MPS-37, Dept. of Statistical and Mathematical Sciences, London School of Economics
and Political Science, 1992.

[4] G. Brightwell and W. T. Trotter. The order dimension of convex polytopes. SIAM J.
Discrete Math., 6(2):230-245, 1993.

[5] J. Cheriyan and S. N. Maheshwari. Finding nonseparating induced cycles and independent
spanning trees in 3-connected graphs. J. Algorithms, 9:507-537, 1988.

[6] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding planar
graphs using PQ-trees. J. Comput. Syst. Sci., 30(1):54-76, 1985.

[7] M. Chrobak, M. T. Goodrich, and R. Tamassia. Convex drawings of graphs in two and
three dimensions. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 319-328, 1996.

[8] M. Chrobak and S. Nakano. Minimum-width grid drawings of plane graphs. In R. Tamassia
and I. G. Tollis, editors, Graph Drawing (Proc. GD ’94), volume 894 of Lecture Notes in
Computer Science, pages 104-110. Springer-Verlag, 1995.

[9] R. F. Cohen, G. Di Battista, A. Kanevsky, and R. Tamassia. Reinventing the wheel: an
optimal data structure for connectivity queries. In Proc. 25th Annu. ACM Sympos. Theory
Comput., pages 194-200, 1993.

[10] H. de Fraysseix, P. O. de Mendez, and P. Rosenstiehl. Bipolar orientations revisited. Dis-
crete Appl. Math., 56:157-179, 1995.

[11] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combi-
natorica, 10:41-51, 1990.

[12] H. de Fraysseix and P. Rosenstiehl. Structures combinatoires pour des traces automatiques
de reseaux. In Proc. 3rd Furopean Conf. on CAD/CAM and Computer Graphics, pages
332-337. Hermes, 1984.

[13] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs:
An annotated bibliography. Comput. Geom. Theory Appl., 4:235-282, 1994.

[14] G. Di Battista and R. Tamassia. On-line maintenance of triconnected components with
SPQR-trees. Algorithmica, 15(3):302-318, 1996.

[15] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM J. Comput., to appear.
Preprint: Technical Report CS-92-39, Comput. Sci. Dept., Brown Univ., 1992.

[16] J. Edmonds. Edge-disjoint branchings. In R. Rustin, editor, Combinatorial Algorithms,
pages 91-96. Algorithmics Press, New York, 1972.

33

[17] S. Even and R. E. Tarjan. Network flow and testing graph connectivity. SIAM J. Comput.,
4:507-518, 1975.

[18] S. Even and R. E. Tarjan. Computing an st-numbering. Theoret. Comput. Sci., 2:339-344,
1976.

[19] I. Fary. On straight lines representation of planar graphs. Acta Sci. Math. Szeged, 11:229—
233, 1948.

[20] M. Fiirer, X. He, M.-Y. Kao, and B. Raghavachari. O(nlogn)-work parallel algorithm for
straight-line grid embedding of planar graphs. In Proc. ACM Sympos. Parallel Algorithms
Architect., pages 100-109, 1992.

[21] F. Harary. Graph Theory. Addison-Wesley, Reading, 1969.

[22] X. He and M.-Y. Kao. Regular edge labelings and drawings of planar graphs. In R. Tamassia
and I. G. Tollis, editors, Graph Drawing (Proc. GD ’94), volume 894 of Lecture Notes in
Computer Science, pages 96-103. Springer-Verlag, 1995.

[23] J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. STAM J.
Comput., 2:135-158, 1973.

[24] A. Huck. Independent trees in graphs. Graphs Combin., 10(1):29-45, 1994.

[25] A. Huck. Disproof of a conjecture about independent branchings in k-connected directed
graphs. J. Graph Theory, 20(2):235-239, 1995.

[26] A. Huck. Independent trees in planar graphs, (submitted to Graphs Combin.).

[27] A. Itai and M. Rodeh. The multi-tree approach to reliability in distributed networks.
Inform. and Comput., 79(1):43-59, 1988.

[28] A. Kanevsky, R. Tamassia, G. Di Battista, and J. Chen. On-line maintenance of the four-

connected components of a graph. In Proc. Annu. IEEE Sympos. Found. Comput. Sci.,
pages 793-801, 1991.

[29] G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica (Special Issue
on Graph Drawing, G. Di Battista and R. Tamassia, editors), 16(1):4-32, 1996.

[30] G. Kant and X. He. Two algorithms for finding rectangular duals of planar graphs. In
Graph-Theoretic Concepts in Computer Science (Proc. WG ’93), volume 790 of Lecture
Notes in Computer Science, pages 396-410. Springer-Verlag, 1993.

[31] D. Kelly and I. Rival. Planar lattices. Canad. J. Math., 27(3):636-665, 1975.

[32] S. Khuller and B. Schieber. On independent spanning trees. Inform. Process. Lett.,
42(6):321-323, 1992.

[33] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs.
In Theory of Graphs: Internat. Symposium, pages 215-232, New York, 1967. Gordon and
Breach.

[34] H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-connected
spanning subgraph of a k-connected graph. Algorithmica, 7:583-596, 1992.

[35] F. P. Preparata and R. Tamassia. Fully dynamic point location in a monotone subdivision.
SIAM J. Comput., 18:811-830, 1989.

34

[36] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orientations of
planar graphs. Discrete Comput. Geom., 1(4):343-353, 1986.

[37] W. Schnyder. Planar graphs and poset dimension. Order, 5:323-343, 1989.

[38] W. Schnyder. Embedding planar graphs on the grid. In Proc. 1st ACM-SIAM Sympos.
Discrete Algorithms, pages 138-148, 1990.

[39] W. Schnyder and W. Trotter. Convex embeddings of 3-connected plane graphs. Abstracts
AMS, 13(5):502, 1992.

[40] S. K. Stein. Convex maps. Proc. Amer. Math. Soc., 2:464-466, 1951.

[41] E. Steinitz and H. Rademacher. Vorlesungen iber die Theorie der Polyeder. Julius Springer,
Berlin, Germany, 1934.

[42] R. Tamassia. A dynamic data structure for planar graph embedding. In T. Lepisto and
A. Salomaa, editors, Automata, Languages and Programming (Proc. ICALP '88), volume
317 of Lecture Notes in Computer Science, pages 576-590. Springer-Verlag, 1988.

[43] R. Tamassia and I. G. Tollis. A unified approach to visibility representations of planar
graphs. Discrete Comput. Geom., 1(4):321-341, 1986.

[44] R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. IEEE Trans. on Circuits
and Systems, CAS-36(9):1230-1234, 1989.

[45] R. Tamassia and J. S. Vitter. Parallel transitive closure and point location in planar
structures. SIAM J. Comput., 20(4):708-725, 1991.

[46] P. Tong and E. Lawler. A faster algorithm for finding edge-disjoint branchings. Inform.
Process. Lett., 17(2):73-76, 1983.

[47] W. T. Tutte. Convex representations of graphs. Proc. London Math. Soc., 10:304-320,
1960.

[48] W. T. Tutte. How to draw a graph. Proc. London Math. Soc., 13:743-768, 1963.

[49] D. Wagner and K. Weihe. A linear-time algorithm for edge-disjoint paths in planar graphs.
In Algorithms (Proc. ESA ’93), volume 726 of Lecture Notes in Computer Science, pages
384-395. Springer-Verlag, 1993.

[60] K. Wagner. Bemerkungen zum vierfarbenproblem. Jahresbericht der Deutschen
Mathematiker- Vereinigung, 46:26-32, 1936.

[51] J. Westbrook and R. E. Tarjan. Maintaining bridge-connected and biconnected components
on-line. Algorithmica, 7:433-464, 1992.

[652] R. W. Whitty. Vertex-disjoint paths and egde-disjoint branchings in directed graphs. J.
Graph Theory, 11(3):349-358, 1987.

[63] S. K. Wismath. Characterizing bar line-of-sight graphs. In Proc. 1st Annu. ACM Sympos.
Comput. Geom., pages 147-152, 1985.

[54] A. Zehavi and A. Itai. Three tree-paths. J. Graph Theory, 13(2):175-188, 1989.

35

A Results on k-Path and k-Connectivity Queries

Table 1 summarizes the previous and new results on methods for k-path and k-connectivity
queries.

graph | k | space | preprocessing | k-conn. | k-path | references

Previous Results
general any O(n+m) | — O(m~/n) | O(my/n) | [17]
general fixed O(n+m) | — O(n+m) | On+m) | [17]
planar any O(n) — O(n) O(n) [49]
(k — 1)-conn. | fixed k>4 | O(n) O(n*m) 0O(1) O(n) [9]
general k<3 O(n) O(n +m) 0O(1) O(n) [14, 42, 51]
general k=4 O(n) O(na(m,n)+m) | O(1) O(n) [28]
general k=1 O(n) O(n +m) O(1) O(1) —

New Results

general k=2 O(n) O(n) 0O(1) o) § 2.2
planar k= O(n) O(n) 0O(1) o) § 4
general k= O(n) O(n?) 0O(1) o) §5
planar k<3 O(n) O(n) 0O(1) o) § 6
general k<3 O(n) O(n?) 0(1) o) § 6

Table 1: Summary of results on methods for k-path and k-connectivity queries.

B The SPQR-Tree

In this appendix, the SPQR-tree presented in [15, 14] is described. Let G be a biconnected
graph. A split pair of G is either a pair of adjacent vertices or a separation pair. In the former
case the split pair is said trivial, in the latter non-trivial. A split component of a split pair {u, v}
is either an edge (u, v) or a maximal subgraph C of G such that C contains u and v, and {u, v}
is not a split pair of C'. In the former case the split component is said trivial, in the latter
non-trivial. Note that each vertex of G distinct from v and v belongs to exactly one non-trivial
split component of {u,v}. Let {s,t} be a split pair of G. A mazimal split pair {u, v} of G with
respect to {s,t} is a split pair of G distinct from {s,¢} such that for any other split pair {u’, v}
of G, there exists a split component of {u, v’} containing vertices u, v, s, and ¢.

In the example of Fig. 9.a, {vy,vs} is a trivial split pair, {vg, v12} is a non-trivial split pair,
edge (v1,vs) is a trivial split component, the subgraph induced by vg, v19, v11, and vz is a non-
trivial split component, {vy, vi5} is a maximal split pair with respect to {vs, vz}, while {vy, v12}
is not.

Let e = (s,t) be an edge of G, called reference edge. The SPQR-tree T of G with respect to e
describes a recursive decomposition of GG induced by its split pairs. Tree T is a rooted ordered tree
whose nodes are of four types: S, P, Q, and R. Each node g of T has an associated biconnected
multigraph, called the skeleton of p and denoted by skeleton(u). Also, it is associated with an
edge of the skeleton of the parent v of p, called the virtual edge of p in skeleton(v). Tree T is
recursively defined as follows.

Trivial Case: If G consists of exactly two parallel edges between s and ¢, then T’ consists of a
single Q-node whose skeleton is G itself.

Parallel Case: If the split pair {s,¢} has at least three split components Gy,...,Gy (k > 3),
the root of T is a P-node u. Graph skeleton(u) consists of k parallel edges between s and
t, denoted eq, ..., e, with ey = e.

36

Series Case: If the split pair {s,t} has exactly two split components, one of them is the
reference edge e, and we denote with G’ the other split component. If G’ has cut-vertices
€1y .., ck—1 (k> 2) that partition G into its blocks Gy, ..., Gy, in this order from s to ,
the root of T is an S-node u. Graph skeleton(u) is the cycle eg, ey, ..., ex, where ey = e,
cop = s, ¢ = t, and e; connects ¢;_1 with ¢; (¢ =1,...,k).

Rigid Case: If none of the cases above applies, let {sy,t1},...,{sk, tx} be the maximal split
pairs of G with respect to {s,t} (k > 1), and for ¢ = 1,...,k, let G; be the union of all
the split components of {s;,¢;} except the one containing the reference edge e. The root
of T is an R-node pu. Graph skeleton(u) is obtained from G by replacing each subgraph
G; with the edge e; between s; and t,.

Except for the trivial case, p has children pq,..., g in this order, such that p; is the root
of the SPQR-tree of graph G; U e; with respect to reference edge ¢; (: = 1,...,k). The tree so
obtained has a Q-node associated with each edge of G, except the reference edge e. We complete
the SPQR-tree by adding another Q-node, representing the reference edge e, and making it the
parent of u so that it becomes the root. An example of SPQR-tree is shown in Fig. 9.c, where
the Q-nodes are represented by squares, and the skeletons of the Q-nodes are not shown.

The virtual edge of node y; is edge e; of skeleton(p). A virtual edge is said trivial if the
corresponding node pu; is a Q-node, non-trivial otherwise. The endpoints of e; are called the
poles of p;. Graph G| is called the pertinent graph of node pu;, and the expansion graph of edge
€.

In the example of Fig. 9, the non-trivial virtual edges are represented by dotted lines, the

trivial virtual edges are represented by solid lines.
Let p be a node of T. We have:

e if ; is an R-node, then skeleton(u) is a triconnected graph;
e if ; is an S-node, then skeleton(p) is a cycle;

e if 4 is a P-node, then skeleton(u) is a triconnected multigraph consisting of a bundle of
multiple edges;

e if 41 is a Q-node, then skeleton(p) is a biconnected multigraph consisting of two multiple
edges.

The skeletons of the nodes of T' are homeomorphic to subgraphs of G. Also, the union of
the sets of split pairs of the skeletons of the nodes of T is equal to the set of split pairs of G.
It is possible to show that SPQR-trees of the same graph with respect to different reference
edges are isomorphic and are obtained one from the other by selecting a different Q-node as the
root. SPQR-trees are closely related to the classical decomposition of biconnected graphs into
triconnected components [23]. Namely, the triconnected components of a biconnected graph
G are in one-to-one correspondence with the internal nodes of the SPQR-tree: the R-nodes
correspond to triconnected graphs, the S-nodes to polygons, and the P-nodes to bonds.

Let v be a vertex of G. The allocation nodes of v are the nodes of T' whose skeleton contains v.
The least common ancestor p of the allocation nodes of v is itself an allocation node of v and is
called the proper allocation node of v, denoted p = proper(v). If v = s or v =t (the endpoints
of the reference edge) we conventionally define proper(v) as the unique child of the root of T'
(recall that the root of T is the Q-node of the reference edge). If v # s,t, node u = proper(v)
is either an R-node or an S-node; also, p is the only allocation node of v such that v is not a
pole of . The set of vertices v with proper allocation node y is denoted properset(p). If puis a
(proper) allocation node of v, we say that v is (properly) allocated at p.

37

The SPQR-tree T of a graph with n vertices and m edges has m Q-nodes and O(n) S-, P-,
and R-nodes. The total number of vertices of the skeletons stored at the nodes of T'is O(n). It
can be constructed in O(n + m) time using a variation of the algorithm given in [23].

C The BC-Tree

In this appendix, the BC-tree presented in [15, 14] is described. Let G be a connected graph
with n vertices. The BC-tree T of G has a B-node for each block (biconnected component) of
G, and a C-node for each cutvertex of G. Edges in T connect each B-node p to the C-nodes
associated with the cutvertices in the block of . The BC-tree is rooted at an arbitrary B-node.
Also the B-node of each nontrivial block B stores the SPQR-tree of B. Observe that the number
of blocks of G is O(n), and the total number of vertices in the blocks of G is O(n) as well.

The BC-tree is a variation of the data structures for maintaining biconnected components
described in [42, 51]. The main difference is that an SPQR-tree is attached at each B-node.

If vertex v is a cutvertex, beproper(v) denotes the C-node associated with v. Otherwise,
beproper(v) denotes the B-node of the unique block containing v. It is easy to see that, knowing
p1 = beproper(vy) and pg = beproper(vg), we can determine in O(1) time whether vy and vg are
in the same block of G [42]: namely the block associated with node p contains vertices v; and
vy if and only if the undirected path of T between u; and ps contains p but no other B-node.

The BC-tree of a graph with n vertices and m edges can be constructed in O(n + m) time.

38

