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ABSTRACT

A k�path query on a graph consists of computing k vertex�disjoint paths between two given
vertices of the graph� whenever they exist� In this paper� we study the problem of performing
k�path queries� with k � �� in a graph G with n vertices� We denote with � the total length of
the paths reported� For k � �� we present an optimal data structure for G that uses O�n� space
and executes k�path queries in output�sensitive O��� time� For triconnected planar graphs�
our results make use of a new combinatorial structure that plays the same role as bipolar
�st� orientations for biconnected planar graphs� This combinatorial structure also yields an
alternative construction of convex grid drawings of triconnected planar graphs�
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� Introduction

Connectivity is a fundamental property of graphs� and has been extensively studied in the graph
algorithms literature� In particular� biconnectivity and triconnectivity properties play a special
role in a number of graph algorithms�

In this paper� we investigate data structures that support the following fundamental k�path
query� with k � �� on a graph� given vertices u and v� compute k vertex�disjoint paths between
u and v� whenever they exist� A variation of the above query� called a k�connectivity query�
determines whether such paths exist �i�e�� provides a yes�no answer� but does not return the
paths� We denote with n and m the number of vertices and edges of the graph� respectively�
and with � the total length �number of edges� of the paths returned by a k�path query�

We are interested in constructing a space�e�cient data structure for the graph such that the
time for a k�path query is output�sensitive� i�e�� O�f�n�� �� with f�n� � o�n�� Ideally� we would
like to achieve f�n� � O��� with linear space�

��� Previous Results on Path and Connectivity Queries

In this section� we overview previous results on k�path and k�connectivity queries� First� we
consider algorithms that do not exploit preprocessing� Using network �ow techniques ����� a k�
path query can be answered in O�m

p
n� time for arbitrary k� and in O�n�m� time for any 	xed

k� Regarding planar graphs� it has been recently shown that a k�path query can be performed
in O�n� time for any k ��
��

Faster query time can be achieved if preprocessing is allowed� For k � �� it is easy to see
that a spanning forest allows one to perform ��connectivity queries in O��� time and ��path
queries in O��� time� For general graphs and k � �� or for �k � ���connected graphs and 	xed
k � �� there are O�n��space data structures that perform k�connectivity queries in O��� time�
but do not support output�sensitive k�path queries �see ���� ��� for k � �� ���� for k � �� ����
for k � �� and �
� for k � ���

Table � in Appendix A summarizes previous and new results on methods for k�path and
k�connectivity queries�

��� Previous Results on Orientations and Orderings of Graphs

Orientations and orderings are powerful combinatorial structures that have been successfully
applied to solving various graph problems� Here� we overview previous work related to our
combinatorial results�

Bipolar orientations and st�numberings of biconnected graphs were 	rst de	ned in conjunc�
tion with a planarity testing algorithm ���� ���� and were later used for a variety of topolog�
ical and geometric graph problems� such as embedding �see� e�g�� ��� ��� ����� visibility �see�
e�g�� ���� ��� ����� drawing �see� e�g�� ��� ��� ����� point location �see� e�g�� ���� ����� and �oor�
planning �see� e�g�� ������ One of the notable properties of planar bipolar orientations is that
they induce a ��dimensional lattice ���� on the vertices of the graph� See ���� for a recent
comprehensive study of bipolar orientations�

Canonical orderings were 	rst de	ned by de Fraysseix� Pach and Pollack ���� for maximal
planar graphs and later extended by Kant ��
� to triconnected planar graphs� They have been
successfully applied to the construction of various types of planar drawings �straight�line� or�
thogonal� and polyline� �see� e�g�� ��� ��� �
���

Schnyder ���� de	nes realizers of maximal planar graphs in his study of the order dimension
of planar graphs� and shows their application to planar straight�line drawings ����� The con�
struction of realizers of maximal planar graphs can also be e�ciently parallelized ����� Brightwell
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and Trotter ��� �� de	ne normal families of paths for a class of planar graphs that includes tri�
connected planar graphs� Normal families of paths are related to Schnyder�s realizers� However�
they do not analyze the time complexity of their construction� Normal families of paths are
important for the study of the order dimension of convex polytopes and planar maps�

Graph drawing methods based on orientations� numberings and realizers are surveyed in �����

��� Previous Results on Independent Spanning Trees

In recent years the problem of 	nding independent spanning trees of a given graph has received
increasing attention� Two spanning trees of a graph G having the same root r are said in�
dependent if for each vertex v of G the two paths between v and r along the two trees are
vertex�disjoint� Independent spanning trees 	nd applications in fault�tolerant protocols for dis�
tributed computing networks�

An interesting conjecture about independent spanning trees is the following� for each k�
connected graph G and each vertex r of G� there exist k independent spanning trees of G
rooted at r� The conjecture has been proved for k � � by Itai and Rodeh ����� and for k � ��
independently� by Cheriyan and Maheshwari ���� and Zehavi and Itai ����� While the proof of
Zehavi and Itai is existential� the proofs of Itai and Rodeh� and of Cheriyan and Maheshwari
are constructive� In particular� Itai and Rodeh used bipolar orientations� while Cheriyan and
Maheshwari proved that every triconnected graph has a nonseparating ear decomposition and
presented an algorithm to construct such decomposition and the three spanning trees�

For general k�connected graphs with k � � the conjecture is still open� but recently Huck
has proved it for k�connected planar graphs with k � � ���� and k � � ���� �i�e�� for all planar
graphs� since ��connected graphs are nonplanar��

Similar conjectures have been formulated considering edge�connectivity instead of vertex�
connectivity ���� ��� and for directed graphs ���� ��� ��� ����

��� New Results

Our new results are outlined as follows�

� We de	ne realizers of triconnected planar graphs� and show how to construct them in
linear time� Our de	nition naturally extends the one by Schnyder ���� using a chromatic
framework such that each edge of the graph has one or two colors from the set fblue�
green� redg� Our realizers induce an orientation of a triconnected planar graph with
properties closely related to those of bipolar orientations for biconnected planar graphs�
Our O�n��time construction of a realizer of triconnected planar graph G with n vertices
has the following additional applications�

� We show how to compute a normal family of paths ��� �� forG in O�n� time� Brightwell
and Trotter ��� �� previously showed the existence of such families� but did not study
the time complexity of their construction�

� We give an alternative O�n��time algorithm for constructing a convex grid drawing
of G with O�n�� area� �A convex grid drawing is a planar straight�line drawing with
faces drawn as convex polygons and vertices placed at integer coordinates�� This
extends to triconnected planar graphs Schnyder�s barycentric drawing method for
maximal planar graphs ����� and gives an alternative proof of Kant�s result ��
��

� Based on realizers� we show how to construct a linear�space data structure that supports
output�sensitive ��path queries on a triconnected planar graph� Using this result� we show
how to construct in O�n� time a data structure for an n�vertex planar graph G �of arbitrary
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connectivity� that uses O�n� space and supports k�path queries� for k � �� in O��� time�
where � is the total size of the paths reported�

� By exploiting the result of Cheriyan and Maheshwari ���� we show how to construct a
linear�space data structure that supports output�sensitive ��path queries on a triconnected
graph� Using this result� we show how to construct in O�n�� time a data structure for an
n�vertex graph G �of arbitrary connectivity� that uses O�n� space and supports k�path
queries� for k � �� in O��� time� where � is the total size of the paths reported�

The rest of this paper is organized as follows� In Section �� we present preliminary results on
output�sensitive ��path queries� Realizers of triconnected planar graphs and their combinatorial
properties are introduced in Section �� The data structure and the output�sensitive algorithm
for ��path queries in triconnected planar graphs are given in Section �� The data structure and
the output�sensitive algorithm for ��path queries in general triconnected graphs are given in Sec�
tion �� The extension to graphs of arbitrary connectivity is contained in Section �� In Section �
we present the algorithm for convex grid drawing of triconnected planar graphs� Conclusions
are contained in Section ��

� Preliminaries

In this section� we de	ne basic concepts used in the paper� present preliminary results on output�
sensitive ��path queries� and overview previous results on canonical orderings�

��� Basic De�nitions

We assume familiarity with graph theory ��� ���� We recall some basic de	nitions on connectiv�
ity� A separating k�set of a graph is a set of k vertices whose removal disconnects the graph�
separating ��sets and ��sets are called cut�vertices and separation pairs� respectively� A graph is
k�connected if there exists no separating �k� ���set� ��connected� ��connected� and ��connected
graphs are usually called connected� biconnected� and triconnected� respectively�

Unless otherwise speci	ed� all the paths referred to in this paper are simple� Two paths
are vertex�disjoint when they have no vertex in common except� possibly� the endpoints� Since
we deal only with vertex connectivity� for brevity we will say disjoint instead of vertex�disjoint�
Two paths cross when they share at least one vertex distinct from their endpoints or one edge�
The set of vertices and edges shared by two crossing paths is called a crossing�

A drawing of a graph G is a mapping of each vertex of G to a distinct point of the plane and
of each edge �u� v� of G to a simple Jordan curve with end�points u and v� A drawing is planar
if no two edges intersect� except� possibly� at common end�points� A graph is planar if it has a
planar drawing�

Two planar drawings of a planar graph G are equivalent if� for each vertex v� they have the
same circular clockwise sequence of edges incident with v� Hence� the planar drawings of G
are partitioned into equivalence classes� Each of those classes is called an embedding of G� An
embedded planar graph �also plane graph� is a planar graph with a prescribed embedding� A
triconnected planar graph has a unique embedding� up to a re�ection� A planar drawing divides
the plane into topologically connected regions delimited by cycles� such cycles are called faces�
The external face is the cycle delimiting the unbounded region� Two drawings with the same
embedding have the same faces�

Let G be a plane graph� A vertex or edge of G is said to be external if it lies on the external
face� and internal otherwise� A path or crossing of G is said to be external if it consists only of
external vertices and edges and is said to be internal if it consists only of internal vertices and
edges�
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��� Bipolar Orientations and ��Path Queries

In this section we show how to perform output�sensitive ��path queries on biconnected graphs�
Let G be an n�vertex graph with an edge �s� t�� A bipolar orientation �also called st�

orientation� ���� ��� of G with respect to an edge �s� t� is an orientation of the edges of G
such that the resulting digraph D is acyclic� s is the unique source of D� and t is the unique
sink of D� A biconnected graph admits a bipolar orientation with respect to any edge �s� t��
which can be computed in linear time ����� An st�numbering of G is a numbering v�� � � � � vn of
the vertices of G such that s � v�� t � vn� and each other vertex vi� � � i � n� is adjacent to at
least one vertex vj � j � i� and to at least one vertex vk� k � i�

Given a bipolar orientation of a biconnected graph G� we construct two spanning trees of G�
Ts and Tt� rooted at s and t� respectively� as shown by Itai and Rodeh ����� Tree Ts is obtained
by selecting an incoming edge for every vertex distinct from s �for vertex t an incoming edge
distinct from �s� t��� Tree Tt is similarly obtained by selecting an outgoing edge for every vertex
distinct from t �for vertex s an outgoing edge distinct from �s� t��� Clearly� for every vertex v

of G� the path ps�v� along Ts between v and s and the path pt�v� along Tt between v and t are
disjoint� As shown in the following lemma� trees Ts and Tt contain all the information needed
to answer ��path queries in G�

Lemma � For any two vertices u and v of G� the subgraph of G formed by edge �s� t� and by
the four paths ps�u�� ps�v�� pt�u�� and pt�v�� contains two disjoint paths between u and v�

Proof� W�r�t� the bipolar orientation used to construct Ts and Tt� we indicate� for each vertex
w of G� the st�number of w with stn�w�� Let lcas �lcat� be the lowest common ancestor of u
and v in Ts �Tt�� Three cases are possible for u and v�

�� neither vertex is an ancestor of the other in the two trees� the 	rst path between u and v

is obtained by concatenating the path between u and lcas with the path between v and
lcas� the second is obtained by concatenating the path between u and lcat with the path
between v and lcat� the two paths between u and v are clearly disjoint� for each ancestor
x of u or v in Ts and each ancestor y of u or v in Tt� stn�x� � stn�y� holds�

�� one vertex is an ancestor of the other in one of the two trees� w�l�o�g�� let u be an ancestor
of v in Ts� the 	rst path between u and v is the one along Ts� the second is obtained
by concatenating the path between u and lcat with the path between v and lcat� the
disjointnes of the two paths between u and v can be proved as in the previous case�

�� u is an ancestor of v in one tree and v is an ancestor of u in the other� w�l�o�g�� let let u
be an ancestor of v in Ts and v be an ancestor of u in Tt� the 	rst path between u and v

is the one along Ts or the one along Tt� the second is obtained by concatenating the path
between u and s� with edge�s� t�� with the path between v and t� the two paths between u

and v are clearly disjoint� let x be an ancestor of u in Ts� y be an ancestor of v in Tt� and
w be a vertex of the path between u and v along Ts or along Tt� stn�x� � stn�w� � stn�y�
holds and �s� t� is neither an edge of Ts nor an edge of Tt�

Note that� by the construction of Ts and Tt� the case in which one vertex is an ancestor of
the other in both trees is not possible� �

Theorem � Let G be a biconnected graph with n vertices and m edges� There exists an O�n��
space data structure for G that can be constructed in O�n�m� time and supports ��path queries
in O��� time� where � is the size of the reported paths�
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Proof� The data structure simply stores rooted trees Ts and Tt with parent pointers� It is
easy to see that this data structure can be constructed in time O�n � m� and requires O�n�
space ����� A ��path query for vertices u and v is performed by traversing paths ps�u�� ps�v��
pt�u�� and pt�v� one edge at the time� alternating between them� until the two following halting
events occur�

� lcas is reached and

� lcat is reached�

Note that lcas �� lcat may be coincident with u or v� If both lowest common ancestors are
di�erent from u and v� then Case � of the proof of Lemma � applies� If exactly one of the lowest
common ancestors coincides with u or v� then Case � of the proof of Lemma � applies� If one
of the lowest common ancestors coincides with u and the other coincides with v� then Case � of
the proof of Lemma � applies�

Once the proper case has been determined� reporting the two paths between u and v can
be done in O��� time by simply traversing trees Ts and Tt� Thus� it remains to be proved that
the computation of the two lowest common ancestors lcas or lcat can be carried out in O���
time� This is guaranteed by the alternating traversal technique and by the fact that the paths
explored to compute lcas or lcat are reused for constructing one or two paths between u and v�

�

��� Canonical Orderings

In this section we recall the de	nition of canonical orderings of triconnected plane graphs� as
given by Kant ��
��

Let G be a triconnected plane graph with n vertices� and u�� u�� u� be three consecutive ex�
ternal vertices of G� A canonical ordering ofG �see Fig� �� is an ordering v�� � � � � vn of the vertices
of G that can be partitioned into subsequences V�� � � � � Vh� where Vk � fvsk � � � � � vsk����g� � �
k � h� and � � s� � s� � � � � � sh � sh�� � n � �� such that the following conditions are
veri	ed�

�� v� � u�� v� � u�� and V� � fv�� v�g�
�� Let Gk be the plane subgraph of G induced by V�� � � ��Vk� k � h� and Ck be the external

face of Gk� For each � � k � h � � one of the following cases occurs�

�a� Vk � fvskg is a vertex of Ck and has at least one neighbor in G�Gk�

�b� Vk � fvsk � � � � � vsk�dkg is a subpath of Ck� and each vi� sk � i � sk �dk� has at least
one neighbor in G�Gk and no neighbor in Gk���

�� Each subgraph Gk is biconnected and internally triconnected� i�e�� removing two internal
vertices of Gk does not disconnect it�

�� vn � u� and Vh � fvng�

In the example of Fig� �� each vertex is labeled with its rank in the canonical ordering�
and the partition of the vertices is given by V� � fv�� v�g� V� � fv�� v�� v�g� V� � fv�� v	g�
V� � fv
g� V� � fv�� v��g� V� � fv��g� V	 � fv��g� V
 � fv��g� V� � fv��g� V�� � fv��� v��g�
V�� � fv�	� v�
g� V�� � fv��g� V�� � fv��g� V�� � fv��g�

Lemma � ���	 Each triconnected plane graph has a canonical ordering� which can be computed
in linear time and space�

�



� Realizers of Triconnected Planar Graphs

��� De�nition

A realizer of a triconnected plane graph G is a triplet of rooted directed spanning trees of G
with the following properties �see Fig� ��a���c��

�� In each spanning tree� the edges of G are directed from children to parent�

�� The sinks �roots� of the spanning trees are three external vertices of G�

�� Each edge of G is contained in at least one and in at most two spanning trees�

�� If an edge of G is contained in two spanning trees� then it has di�erent directions in the
two trees�

�� Consider the edges of G with the directions they have in the three spanning trees� where
an edge with two opposite directions is considered twice �see Fig� ���

�a� Each non�sink vertex v of G� has exactly three outgoing edges� the circular order of
the outgoing edges around v induces a circular order of the spanning trees around v�
all the non�sink vertices of G have the same circular order of the spanning trees�

(a) (b)

(c)

21

1 2

3
4

5

67
8

9
10

11
1213

15
1614

1718

19

20

21

1 2

3
4

5

67
8

9
10

11
1213

15
1614

1718

19

20

1 2

21

3
4

5

67
8

9
10

111213

151614
1718

19

20

Figure �� A realizer of a triconnected planar graph G� �a� The blue tree of G� �b� The green
tree of G� �c� The red tree of G�
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�b� For each vertex of G the incoming edges that belong to the same spanning tree appear
consecutively between the outgoing edges of the two other spanning trees �the 	rst
and last incoming edges are possibly coincident with the outgoing edges��

�� For the sink of each spanning tree� all the incoming edges belong to that spanning tree�

(a) (b)

Figure �� Two cases of Property � of the realizers�

Let Tb� Tg� and Tr be the spanning trees forming a realizer of a triconnected plane graph G

�see Fig� ��b���c�� We assign a color to the edges of G contained in Tb� Tg� and Tr� say blue�
green� and red� respectively� According to Property � of the realizers� each edge of G is assigned
one or two colors� and is said to be ��colored or ��colored� respectively� For example� in the
realizer shown in Fig� �� edge �v�� v��� is ��colored� while edge �v�� v�� is ��colored�

Lemma 
 Each triconnected plane graph G has a realizer� which can be computed in linear time
and space�

Proof� A realizer can be constructed by assigning colors and directions to the edges of G as
follows�

�� a canonical ordering of the vertices of G is computed�

�� v�� v�� and vn are the sinks of the blue� green� and red tree� respectively�

�� �v�� v�� is an outgoing blue edge for v� and an outgoing green edge for v��

�� for each � � k � h�

�a� if Vk � fvskg� let cr� � � � � cl be the consecutive neighbors of vsk on Ck��� �vsk � cl�
is an outgoing blue edge for vsk � and possibly an outgoing red edge for cl if cl has
no neighbor in G � Gk� �vsk � cr� is an outgoing green edge for vsk � and possibly an
outgoing red edge for cr if cr has no neighbor in G � Gk � edges �vsk � ci�� r � i � l

are outgoing red edges for ci �see Fig� ��a� from now on we represent a ��colored edge
half with one color and half with the other� dashes represent optionality��

�b� if Vk � fvsk � � � � � vsk�dkg� let cr and cl be the neighbors of vsk and vsk�dk on Ck���
respectively� �vsk�dk � cl� is an outgoing blue edge for vsk�dk � and possibly an outgoing
red edge for cl if cl has no neighbor in G�Gk� �vsk � cr� is an outgoing green edge for
vsk � and possibly an outgoing red edge for cr if cr has no neighbor in G � Gk� edge
�vi� vi���� sk � i � sk�dk is an outgoing blue edge for vi and an outgoing green edge
for vi�� �see Fig� ��b��






Note that v� has no outgoing blue edge� v� has no outgoing green edge� and vn has no
outgoing red edge� Besides� for each � � k � h� the following invariants hold�

� every vertex of Vk has exactly one outgoing blue edge� exactly one outgoing green edge�
and no outgoing red edge� the outgoing blue edge precedes the outgoing green edge in the
clockwise circular order of the edges of Ck� and all the �possible� incoming red edges are
incident with vertices of Gk � Vk�

� for every vertex of Ck the �possible� incoming blue edge of Ck follows the �possible� in�
coming green edge of Ck in the clockwise circular order of the edges of Ck�

� no vertex of Ck�� has an outgoing blue or green edge incident with a vertex of Vk�

� every vertex of Ck�� with no neighbor in G�Gk has exactly one outgoing red edge� while
every vertex of Ck�� with neighbors in G�Gk has no outgoing red edge�

� Gk contains no cycle such that a common color is assigned to all its edges�

All the properties of a realizer easily follow from these invariants� By Lemma �� the above
construction can be carried out in linear time and space� �

��� Properties

In this section� we consider a triconnected plane graph G equipped with a realizer Tb� Tg� Tr� We
denote v�� v�� and vn as sb� sg� and sr� respectively� For each vertex v of G� the blue path pb�v� is
the path of G along Tb with endpoints v and sb� In the same way� we de	ne the green path pg�v�
as the path of G along Tg with endpoints v and sg and the red path pr�v� as the path of G along
Tr with endpoints v and sr� In the rest of the paper� the subpath of path pi�v�� i � fb� g� rg�
with endpoints v and the ancestor u of v in Ti is denoted by pi�v� u��

The subpath of the external face with endpoints sg and sr and not containing sb is denoted
by ext�sg� sr�� Similarly� the subpath of the external face with endpoints sr and sb and not
containing sg is denoted by ext�sr � sb� and the subpath of the external face with endpoints sb
and sg and not containing sr is denoted by ext�sb� sg��

The lowest common ancestor of vertices u and v in Ti� i � fb� g� rg is denoted by lcai�u� v��
in the rest of the paper� we will use lcai instead of lcai�u� v� for brevity�

From the construction in the proof of Lemma �� it follows that� for each vertex of G� the
colors of the three outgoing edges appear in the following counterclockwise circular order� blue�
green� red� W�l�o�g�� set fb� g� rg will be considered accordingly ordered in the rest of the paper�

(a) (b)
v1

vsk+dk
vsk

v2

cl cr

vsk

cl cr

v1 v2

Figure �� The coloring of the edges in the construction of a realizer� �a� Vk � fvskg� �b�
Vk � fvsk � � � � � vsk�dkg�
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Lemma � Let G be a triconnected plane graph with n vertices and m edges� For every realizer
of G� the number of ��colored edges of G is �n�m� ��

Proof� For each planar graph� m � �n� �� Each tree with n vertices has n� � edges� thus the
total number of edges in the three spanning trees of the realizer is ��n � �� � m� The thesis
follows from Property � of the realizers� �

Lemma � Let v be a vertex of G and i� j� k be three consecutive colors in the set fb� g� rg� Let
x �� sj be a vertex of pj�v� and y be its parent in Tj� The i�colored �k�colored� outgoing edge
of x is on the right �left� of pj�v�� while each �possible� i�colored �k�colored� incoming edge of x
di
erent from �y� x� is on the left �right� of pj�v��

Proof� Easily follows from Properties �a and �b of the realizers� from the circular order of set
fb� g� rg� and from planarity of G� �

Lemma � For each vertex v of G� pb�v�� pg�v�� and pr�v� have only vertex v in common�

Proof� Let i� j and k be three consecutive colors in the set fb� g� rg� Suppose� for a contradiction�
that pi�v� and pj�v� have vertex x in common and that pi�v� x� and pj�v� x� have no vertex in
common with pk�v�� By Property � of the realizers� x �� sj � From Property �a of the realizers
and by planarity of G� it follows that the edge of pi�v� incoming to x is on the right of pj�v��
thus contradicting Lemma �� �

Lemma 
 Let u and v be two vertices of G� If there exist two colors i� j � fb� g� rg� i �� j� such
that v � pi�u� and u � pj�v�� then pi�u� v� � pj�v� u��

Proof� Suppose� for a contradiction� that pi�u� v� and pj�v� u� have only vertices u and v in
common� Since G is planar� two cases are possible� pj�v� u� is an internal path in the subgraph
with external face formed by pi�u�� pj�u� and ext�si� sj�� or pi�u� v� is an internal path in the
subgraph with external face formed by pi�v�� pj�v� and ext�si� sj�� It is easy to see that in the
	rst case Property �b of the realizers is not satis	ed for vertex u� and in the second case it is
not satis	ed for vertex v� Thus� pi�u� v� and pj�v� u� have a third vertex w in common besides u
and v� The same argument can be recursively applied to pi�u� w� and pj�w� u�� and to pi�w� v�
and pj�v� w�� This completes the proof� �

Lemma � For vertices sb� sg� and sr of G the following properties hold� pr�sg� � pg�sr� �
ext�sg � sr�� pb�sr� � pr�sb� � ext�sr� sb�� pg�sb� � pb�sg� � ext�sb� sg��

Proof� We prove that pr�sg� � pg�sr� � ext�sg � sr�� the other two cases are analogous�
Equality pr�sg� � pg�sr� follows from Lemma �� so we only have to prove that pr�sg� � pg�sr�

is external�
We 	rst prove that the 	rst edge �sg� wg� and the last edge �wr� sr� of pr�sg� � pg�sr� are

external� By Properties �a and � of the realizers� the outgoing blue edge and the outgoing
red edge of sg are consecutive in the counterclockwise circular order of the edges around sg�
Suppose� for a contradiction� that the edge of ext�sg � sr� incident with sg is not the outgoing
red edge of sg� By planarity of G� pb�sg� and pr�sg� have at least one vertex in common� thus
contradicting Lemma �� Similarly� it can be proved that the edge of ext�sg � sr� incident with sr
is the outgoing green edge of sr�

We now complete the proof by showing that also the other edges of pr�sg� � pg�sr� are
external� Suppose� for a contradiction� that pr�sg� � pg�sr� �� ext�sg � sr�� hence� there exists a
vertex x �� sg � wg� sr� wr of ext�sg� sr� which is not a vertex of pr�wg� � pg�wr�� Since the graph
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is planar� pg�x� �pr�x�� has at least a vertex y �z� in common with pr�wg� � pg�wr�� It is easy
to see that Property �b of the realizers is not satis	ed for vertices y and z� �

For each vertex v of G the blue region Rb�v� is the subgraph of G with external face formed
by pg�v�� pr�v� and ext�sg � sr� �see Fig� ��� In the same way� the green region Rg�v� is the
subgraph of G with external face formed by pb�v�� pr�v� and ext�sr� sb� and the red region Rr�v�
is the subgraph of G with external face formed by pb�v�� pg�v� and ext�sb� sg��

Lemma � For each pair of vertices u and v of G� two cases are possible�

�� there are exactly two colors i� j � fb� g� rg� i �� j� such that pi�v� and pj�u� cross� three
subcases are possible�

�a� u �� pi�v� and v �� pj�u� �see Fig� ��a��

�b� either u � pi�v� or v � pj�u� �see Fig� ��b��

�c� u � pi�v� and v � pj�u� �see Fig� ��c��

�� there are no two colors i� j � fb� g� rg� i �� j� such that pi�v� and pj�u� cross� in this case
there is exactly one color k � fb� g� rg such that either pk�v� � pk�u� or pk�u� � pk�v� �see
Fig� ��d��

Proof� Consider path pr�u� �pb�u� and of pg�u� are analogous�� Also� suppose that u and v

do not coincide with sb� sg � and sr� otherwise the proof can be trivially extended but involves
some more details� In order to simplify the exposition of the proof of this property� we de	ne
�pi�v� � pi�v��fvg� i � fb� g� rg� and �Ri�v� � Ri�v��fpj�v��pk�v�g� i� j� k � fb� g� rg� i �� j �� k�

By exploiting Lemmas � and �� we can prove the following properties of pr�u�� Path pr�u� is
composed by four consecutive subpaths pr��u�� pr��u�� pr��u�� and pr��u�� where an endvertex
of pr��u� is sr� The vertices of path pr��u� belong to �Rr�v�� For the vertices of pr��u� and pr��u�
two cases are possible� �i� the vertices of pr��u� belong to �pb�v� and the vertices of pr��u� belong
to �Rg�v�� �ii� the vertices of pr��u� belong to �pg�v� and the vertices of pr��u� belong to �Rb�v��
The vertices of pr��u� belong to �pr�v��

According to the position of u w�r�t� v� some of these subpaths may be empty�

� if u � �Rr�v� then either pr��u� and pr��u� are both empty� or only pr��u� is empty� or none
of the subpaths is empty�
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� if u � �pb�v� or u � �pg�v� then pr��u� is empty� also� pr��u� is possibly empty� while pr��u�
and pr��u� are not empty�

� if u � �Rb�v� or u � �Rg�v� then pr��u� and pr��u� are empty� pr��u� and pr��u� are not
empty�

� if u � �pr�v� then pr��u�� pr��u�� and pr��u� are empty� pr��u� is not empty�

The above properties allow to easily prove the claims� �

Corollary � Let u and v be two vertices of G� If there exist two colors i� j � fb� g� rg� i �� j�
such that pi�v� and pj�u� cross� then u � Rj�v� and v � Ri�u��

Proof� Easily follows from the proof of Lemma 
� �

Lemma �� Let i� j� and k be three consecutive colors in the circularly ordered set fb� g� rg� For
each pair of vertices u and v of G� if u � Rk�v� the following 	ve cases are possible�

�� if u �� pi�v� and u �� pj�v�� then Rk�u� � Rk�v��

�� if u � pi�v� and v �� pj�u�� then Rk�u� � Rk�v��

�� if u � pj�v� and v �� pi�u�� then Rk�u� � Rk�v��
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�� if u � pi�v� and v � pj�u�� then Rk�u� � Rk�v��

�� if u � pj�v� and v � pi�u�� then Rk�u� � Rk�v��

Proof� Case �� By planarity of G and by Lemma 
� either pk�u� and pi�v� cross or pk�u� and
pj�v� cross or pk�v� � pk�u�� in all three subcases� by Lemma 
� pi�u� lcai� and pj�u� lcaj� are
internal paths of Rk�v�� hence Rk�u� � Rk�v��

Case �� Since u � pi�v�� then pi�u� � pi�v�� by Lemma 
� pj�u� lcaj� is an internal path of
Rk�v�� hence Rk�u� � Rk�v��

Case �� Analogous to Case ��
Case �� By Lemma �� pi�v� u� � pj�u� v�� hence Rk�u� � Rk�v��
Case �� Analogous to Case �� �

The properties of a normal family of paths ��� for a plane graph and three distinguished
external vertices� are similar to the properties of Lemmas �� �� and ��� Brightwell and Trotter ���
proved that each triconnected plane graph has a normal family of paths for any three external
vertices� Using the terminology of ���� we can say that Lemmas �� �� and �� show that the set
fpi�v�ji � fb� g� rg� v � V g is a normal family of paths for the three vertices sb� sg � and sr�
Also� a normal family of paths of a triconnected planar graph can be constructed� for any three
external vertices x� y� and z� by adding a vertex w adjacent to x� y� and z� by constructing a
single�sink realizer �which will be de	ned in Section ���� rooted at w� and then by removing w�

��� Faces Colored by Realizers

Let G be a triconnected plane graph equipped with a realizer Tb� Tg� Tr� Let f be an internal
�external� face of G� and let e be an edge of f in Tb� We say that e is positive blue if the
orientation of e in Tb follows f clockwise �counterclockwise�� we say that e is negative blue if the
orientation of e in Tb follows f counterclockwise �clockwise�� We de	ne positive green� negative
green� positive red� and negative red in a similar way� The following lemmas characterize the
chromatic structure of a face induced by the realizer�

Lemma �� An internal face of G can be decomposed into six clockwise consecutive paths Pbg�
prg� Prb� pgb� Pgr� pbr where �see Fig� 
��
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� Pbg consists of exactly one edge that is either positive blue� or positive blue and negative
green� or negative green�

� prg consists of a possibly empty sequence of edges� each positive red and negative green�

� Prb consists of exactly one edge that is either positive red� or positive red and negative blue�
or negative blue�

� pgb consists of a possibly empty sequence of edges� each positive green and negative blue�

� Pgr consists of exactly one edge that is either positive green� or positive green and negative
red� or negative red�

� pbr consists of a possibly empty sequence of edges� each positive blue and negative red�

Proof� Let f be an internal face of G� and let a clockwise circular order of the vertices around
f be de	ned�

We consider the most general case in which f contains no vertex from the set fsb� sg� srg�
The cases in which f contains one or two vertices from the set fsb� sg� srg are particular cases
of this one�

For each vertex of f � by Properties � and � of the realizers� at least one of the three outgoing
edges does not belong to f �

We 	rst prove that� for each color i � fb� g� rg� there exists at least one vertex of f whose
i�colored outgoing edge does not belong to f � Suppose the contrary� since each vertex of f has
exactly one i�colored outgoing edge� these edges would form an i�colored cycle� a contradiction�
since Ti is a tree�

Then we prove that� for each color i � fb� g� rg� there exists at least one vertex v of f such
that f 	 Ri�v�� In particular� we will prove the result for i � r� the other two cases are
analogous�

Let v be a vertex of f whose red outgoing edge does not belong to f � let u �w� be the vertex
of f preceding �following� v� We consider the clockwise circular order around v of its outgoing
edges and of the two edges belonging to f � Three cases are possible�

�� �u� v�� the outgoing green edge �possibly coincident with �u� v��� the outgoing blue edge�
the outgoing red edge� and �v� w� appear in this order around v� thus� f �	 Rr�v�� however�
by Property � of the realizers� �w� v� is an outgoing blue edge for w� and is followed� around
w� by the outgoing red edge and by the outgoing green edge� thus� f 	 Rr�w��

�� �u� v�� the outgoing blue edge �possibly coincident with �u� v��� the outgoing red edge�
the outgoing green edge �possibly coincident with �v� w��� and �v� w� appear in this order
around vi� thus� f 	 Rr�v��

�� �u� v�� the outgoing red edge� the outgoing green edge� the outgoing blue edge �possibly
coincident with �v� w��� and �v� w� appear in this order around v� thus� f �	 Rr�v�� however�
by Property � of the realizers� �u� v� is an outgoing green edge for u� and is preceded� around
u� by the outgoing red edge and by the outgoing blue edge� thus� f 	 Rr�u��

It is also easy to see that� if f 	 Ri�v�� then f �	 Rj�v�� i� j � fb� g� rg� i �� j� hence� for
each color i � fb� g� rg� the vertex of f such that f 	 Ri�v� is distinct from the vertices of f for
the other two colors�

By making use of the vertices of f whose red region contains f � we will now prove the claim
for Prb� pgb� and Pgr�
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We 	rst consider the case in which there exists only one vertex v of f such that f 	 Rr�v��
Let u �w� be the vertex of f preceding �following� v� The outgoing blue edge of v either
follows �u� v� in the clockwise circular order around v or coincides with �u� v�� in the 	rst case�
by Property � of the realizers� �u� v� is the outgoing red edge of u� in the second case� still
by Property � of the realizers� �u� v� may or may not be also the outgoing red edge of u� It
follows that �u� v� is either positive red� or positive red and negative blue� or negative blue� i�e��
Prb � �u� v�� Analogously� �v� w� is either positive green� or positive green and negative red� or
negative red� i�e�� Pgr � �v� w�� In this case pgb is empty�

We now consider the case in which there exists more than one vertex v of f such that
f 	 Rr�v�� Let v�� � � � � vk be these vertices� By Lemma ��� it is easy to prove that all vertices
vh� � � h � k are consecutive in f � and that Rr�v�� � Rr�v�� � � � � � Rr�vk�� It follows that
edge �vh� vh���� � � h � k is an outgoing green edge for vh and an outgoing blue edge for
vh��� thus �vh� vh��� is positive green and negative blue� i�e�� pgb � �v�� v��� � � � � �vh��� vh�� Let
u �w� be the vertex of f preceding v� �following vk�� as in the previous case Prb � �u� v� and
Pgr � �v� w��

The proof of the claim for Pgr� pbr� and Pbg �Pbg� prg� and Prb� is analogous and makes use
of the vertices of f whose green �blue� region contains f � �

Lemma �� The external face of G can be decomposed into three counterclockwise consecutive
paths pgb� prg� pbr where �see Fig� ���

� pgb consists of a sequence of edges� each positive green and negative blue�

� prg consists of a sequence of edges� each positive red and negative green�

� pbr consists of a sequence of edges� each positive blue and negative red�

Proof� Immediately follows from Lemma �� �

It is well known that the dual graph of a triconnected planar graph is triconnected� We
consider a triconnected planar graph G equipped with a realizer� and de	ne the extended dual
graph G� of G as follows�

��



� each internal face of G has a corresponding vertex in G�� the external face of G has three
corresponding vertices v�b � v

�

g � and v�r in G��

� each edge of G has a corresponding edge in G��

� two vertices of G�� di�erent from v�b � v
�

g � and v�r � are adjacent if and only if the correspond�
ing faces of G have an edge in common�

� v�b is adjacent to all the vertices of G� corresponding to faces of G incident with an edge
of prg �see Lemma ���� v�g is adjacent to all the vertices of G� corresponding to faces of G
incident with an edge of pbr� v

�

r is adjacent to all the vertices of G� corresponding to faces
of G incident with an edge of pgb�

� v�b is adjacent to v�g � v
�

g is adjacent to v�r � v
�

r is adjacent to v�b �

It is easy to see that also the extended dual graph of a triconnected planar graph is tricon�
nected planar�

Lemma �
 The realizer of a triconnected planar graph induces a realizer of its extended dual�

Proof� Let G be a triconnected planar graph equipped with a realizer and G� be its extended
dual� Let v� be a vertex of G�� di�erent from v�b � v

�

g � and v�r � e be an edge of G and e� be its
corresponding edge in G�� We color the edges incident with v� as follows �see Lemma ����

� if e is the edge of Pbg and it is positive blue� then e� is an outgoing red and incoming green
edge for v�� if e is positive blue and negative green� then e� is an outgoing red edge for v��
if e is negative green� then e� is an outgoing red and incoming blue edge for v��

� if e is an edge of prg� e� is an incoming blue edge for v��

� if e is the edge of Prb and it is positive red� then e� is an outgoing green and incoming
blue edge for v�� if e is positive red and negative blue� then e� is an outgoing green edge
for v�� if e is negative blue� then e� is an outgoing green and incoming red edge for v��

� if e is an edge of pgb� e� is an incoming red edge for v��

� if e is the edge of Pgr and it is positive green� then e� is an outgoing blue and incoming
red edge for v�� if e is positive green and negative red� then e� is an outgoing blue edge
for v�� if e is negative red� then e� is an outgoing blue and incoming green edge for v��

� if e is an edge of pbr� e� is an incoming green edge for v��

� �v�b � v
�

g� is an outgoing green edge for v�b and an outgoing blue edge for v�g � �v
�

g � v
�

r� is an
outgoing red edge for v�g and an outgoing green edge for v�r � �v

�

r � v
�

b � is an outgoing blue
edge for v�r and an outgoing red edge for v�b �

Let i� j� and k be three consecutive colors in the circularly ordered set fb� g� rg� We prove
that� for each color k� the k�colored edges form a spanning tree T �

k of G�� Each vertex v� of G��
di�erent from v�k has exactly one k�colored outgoing edge� For each face of G such that pji is
not empty� i�e�� for each vertex v� of G� which is not a leaf in T �

k � let v�� v�� � � � � vd be the vertices
of pji and let u� and u� be the endpoints of Pij � From the coloring of pji and Pij in Lemma ���
it follows that Case � of Lemma �� applies for v� and v�� � � � � vd�� and vd� and for u� and u��
Still from Lemma ��� it follows that either Case � or Case � of Lemma �� applies for u� and v��
Then Rk�u�� � Rk�u�� � Rk�v�� � Rk�v�� � � � � � Rk�vd�� hence there are no k�colored cycles�

As for Properties ��� of the realizers� they easily follow from the coloring above and from
Lemmas �� and ��� �

��



� Planar ��Path Queries

In this section we apply the combinatorial results of Section � to devise a data structure that
supports output�sensitive ��path queries on a triconnected planar graph� The algorithm and its
underlying data structure are simple to implement�

��� Preprocessing

In order to simplify the algorithm� we use a single�sink realizer for a triconnected planar graph
G� i�e�� a realizer in which a common vertex s of degree three is chosen as sb� sg and sr� If G
has no vertex of degree three� we 	rst apply the algorithm of Nagamochi and Ibaraki ���� to
obtain a sparse triconnected spanning subgraph G� of G� which is guaranteed to have a vertex
of degree three �see Lemma ��� of ������ Otherwise� G� is identical to G� Then� a realizer of G� is
computed� as shown in the proof of Lemma �� with v� � s� A realizer of G� is also a realizer of
G� Finally� a single�sink realizer of G� is obtained in the following way� let �sg� wg� be the edge
following �sg� sb� in the clockwise order around sg� and let �sr� wr� be the edge preceding �sr� sb�
in the clockwise order around sr� �sg� sb� is made an outgoing green edge for sg� �sg� wg� is made
an outgoing blue edge for sg and an outgoing green edge for wg� �sr� sb� is made an outgoing
red edge for sr� �sr� wr� is made an outgoing blue edge for sr and an outgoing red edge for wr�
sg and sr are identi	ed with sb�

Note that the single�sink realizer of G� induces a realizer of the subgraph obtained from G�

by removing sb and its three incident edges� The three distinct sinks of the induced realizer are
the three vertices adjacent to sb in G�� Such induced realizer satis	es all the properties of the
realizers described in Section ��

��� Three Disjoint Paths

Let G be a triconnected plane graph equipped with a single�sink realizer� To answer a ��path
query for vertices u and v of G� we assemble three paths between u and v by suitably traversing
the paths pi�u�� pi�v�� i � fb� g� rg� Since such paths can share vertices and edges� a careful
choice is needed�

In the rest of paper the following notation is used� The concatenation of two paths pi�u� w�
and pj�v� w�� i� j � fb� g� rg� i �� j� having only vertex w in common is denoted by pi�u� w� �
pj�v� w�� If w � si � sj � the concatenation of paths pi�u� and pj�v� is denoted by pi�u� � pj�v��
If pi�v� and pj�u�� i �� j have a common subpath� then we de	ne stopvertexij�u� v� any vertex
of the subpath� in the rest of the paper we will use stopvertexij instead of stopvertexij�u� v� for
brevity� and in the 	gures we will use svij instead of stopvertexij �

Lemma �� For each pair of vertices u and v of G� the subgraph of G formed by the six paths
pb�u�� pg�u�� pr�u�� pb�v�� pg�v�� and pr�v� contains three disjoint paths between u and v�

Proof� Let �sb� x� be the blue incoming edge of sb� �sb� y� be the green incoming edge of sb�
and �sb� z� be the red incoming edge of sb� As noted in Section ���� the single�sink realizer of G
induces a realizer of the subgraph obtained from G by removing sb and its three incident edges�
In the induced realizer� x is the blue sink� y is the green sink� and z is the red sink�

We 	rst consider the case in which either u or v is coincident with sb� W�l�o�g�� let u be this
vertex� By Lemma �� pb�v� x�� pg�v� y�� and pr�v� z� have only vertex v in common� thus the
three disjoint paths between u and v are simply pb�v�� pg�v�� and pr�v��

We then consider the case in which neither u nor v coincides with sb� By Lemma 
� two
cases are possible for u and v�

��



sb = =sg sr

u

v

lcag

lcar

lcar

v

u

lcab

lcar

lcab
svbg

u v

sb = =sg sr

sb = =sg sr

sb = =sg sr

sb = =sg sr
(a) (b)

(c) (d)

(e) (f)

lcag

svrb

u

v

svgr

v

u

lcab

lcab

sb = =sg sr

u

v lcag
lcab

Figure �� The cases of disjoint paths with endpoints u and v�

�� If Case � of Lemma 
 applies� then there are exactly two colors i� j � fb� g� rg� i �� j such
that paths pi�v� and pj�u� cross� These two paths are exploited to determine a 	rst path
with endpoints u and v� A second path is determined using pj�v� and pi�u�� Let k �� i� j

be the other color in fb� g� rg� The third path is the one along Tk� More formally� the three
disjoint paths between u and v are the following �see Fig� ��a���c� where the portions of
the paths that are used to assemble the three disjoint paths are thicker��

� p� � pk�u� lcak� � pk�v� lcak��

�




� p� � pi�u� � pj�v��

� p� � pj�u� stopvertexij� � pi�v� stopvertexij��

Note that� if i� j �� b� the crossing between pi�v� and pj�u� may be external�

�� If Case � of Lemma 
 applies� then there is exactly one color k � fb� g� rg such that either
pk�u� � pk�v� or pk�v� � pk�u�� W�l�o�g�� let pk�u� � pk�v�� and let i� j �� k be the other
two colors in fb� g� rg� The three paths are the non�common part of pk�u� and pk�v�� and
the paths along Ti and along Tj � More formally� the three disjoint paths between u and v

are the following �see Fig� ��d���f��

� p� � pi�u� lcai� � pi�v� lcai��

� p� � pj�u� lcaj� � pj�v� lcaj��

� p� � pk�v� u��

We now prove the disjointness of p�� p�� and p� in both cases� Of the six possible choices of
colors for i� j� and k in each case� we will consider only one� the proof for the other choices is
analogous�

Case �� Let i � g� j � r� and k � b �see Fig� ��c�� It is easy to see that neither lcab
nor stopvertexgr coincides with sb� thus� in proving the disjointness of the three paths we can
consider pg�u� y� instead of pg�u�� and pr�v� z� instead of pr�v��

First� we prove that p� and p� are disjoint� By Lemma �� pb�u� lcab� and pg�u� y� are disjoint�
By Case � of Lemma 
� and since pr�u� and pg�v� cross� pb�u� lcab� and pr�v� z� are disjoint�
Analogously� pb�v� lcab� and pr�v� z� are disjoint� and pb�v� lcab� and pg�u� y� are disjoint�

Second� we prove that p� and p� are disjoint� By Lemma �� pb�u� lcab� and pr�u� stopvertexgr�
are disjoint� By Case � of Lemma 
 and since pr�u� and pg�v� cross� pb�u� lcab� and
pg�v� stopvertexgr� are disjoint� Analogously� pb�v� lcab� and pg�v� stopvertexgr� are disjoint�
and pb�v� lcab� and pr�u� stopvertexgr� are disjoint�

Third� we prove that p� and p� are disjoint� By Lemma �� pr�u� stopvertexgr� and pg�u� y� are
disjoint� Since pr�u� and pg�v� cross� it follows fromCorollary � that pr�u� stopvertexgr� � Rr�v��
while� by Lemma �� pr�v� 
 Rr�v� � fvg� hence� pr�u� stopvertexgr� and pr�v� z� are disjoint�
Analogously� pg�v� stopvertexgr� and pr�v� z� are disjoint� and pg�v� stopvertexgr� and pg�u� y�
are disjoint�

Finally� we prove that p�� p�� and p� are simple paths� Path p� is composed by the two paths
along Tb between u or v and their lowest common ancestor� Path p� is simple by being pr�v�
and pg�u� simple and non�crossing� Path p� is simple by being pr�u� and pg�v� simple and by
Lemma ��

Case �� Let i � g� j � r� and k � b �see Fig� ��d�� It is easy to see that neither lcag nor lcar
coincides with sb�

First� we prove that p� and p� are disjoint� By Lemma �� pg�u� lcag� and pr�u� lcar� are
disjoint� By Case � of Lemma 
� and by being pb�u� a proper subpath of pb�v�� pg�u� lcag� and
pr�v� lcar� are disjoint� Analogously� pg�v� lcag� and pr�v� lcar� are disjoint� and pr�u� lcar� and
pg�v� lcag� are disjoint�

Second� we prove that p� and p� are disjoint� By Lemma �� pg�v� lcag� and pb�u� v� are
disjoint� By Case � of Lemma 
 and by being pb�u� a proper subpath of pb�v�� pg�u� lcag� and
pb�u� v� are disjoint�

Third� we prove that p� and p� are disjoint� By Lemma �� pr�v� lcar� and pb�u� v� are disjoint�
By Case � of Lemma 
 and by being pb�u� a proper subpath of pb�v�� pr�u� lcar� and pb�u� v�
are disjoint�
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Finally� to prove that p�� p�� and p� are simple paths� we observe that p� is composed by the
two paths along Tg between u or v and their lowest common ancestor� p� is composed by the
two paths along Tr between u or v and their lowest common ancestor� and that p� is a subpath
of the simple path pb�v�� �

��� Data Structure and Complexity

In this section we present a data structure for performing ��path queries on a triconnected planar
graph G with n vertices� By Lemma � and by Theorem ��� of ����� we assume that G has been
embedded and a single�sink realizer Tb� Tg� Tr of G has been constructed� this can be done in
O�n� time�

Trees Tb� Tg� and Tr are implemented with parent pointers� We then add to those trees a
component for computing stopvertexij and lcak� i� j� k � fb� g� rg�

For this purpose� we de	ne for each tree Ti� i � fb� g� rg� a binary relations �i on the vertex
set of G� For a pair of vertices fu� vg� such relations determine the relative positions of u and v

in Ti� Namely� u �i v if u is a vertex of the subtree of Ti rooted at v�
We implement relations �i� i � fb� g� rg� by associating to each vertex w of Ti three positive

integers� mini�w�� maxi�w�� and leveli�w�� We consider the leaves of Ti in the order induced
by a visit of Ti� for the 	rst leaf� we set mini�w� � maxi�w� � �� for the second leaf� we set
mini�w� � maxi�w� � �� etc� For any other vertex of Ti� we set mini�w� equal to the value of
its 	rst descendant leaf� and maxi�w� equal to the value of its last descendant leaf� Besides� we
set leveli�si� � �� and� for any other vertex w of Ti with parent x� we set level�w� � level�x����

The binary relation can be easily tested in the following way� For each pair of vertices u and
v of G� u �i v if and only if one of the following three cases apply�

� mini�u� � mini�v� and maxi�u� � maxi�v��

� mini�u� � mini�v� and maxi�u� � maxi�v��

� mini�u� � mini�v� and maxi�u� � maxi�v� and leveli�u� � leveli�v��

Thus� testing if u �i v can be done in O��� time� It is easy to see that the above data
structure can be constructed in O�n� time�

Using this data structure� we can compute the three disjoint paths between u and v� The
two cases in which either u or v coincides with sb are trivial� In all other cases� we consider
vertex u and 	rst traverse path pb�u� until one of the following halting events occurs�

� lcab is reached�

� stopvertexbg or stopvertexrb is reached�

In particular� testing whether we have reached lcab� requires testing� for each vertex w of
pb�u�� if v �b w� Testing whether we have reached stopvertexbg or stopvertexrb� requires testing�
for each vertex w of pb�u�� fug� if v �g w or v �r w� respectively� Note that lcab can coincide
with u� and that stopvertexbg or stopvertexrb cannot coincide with u �but can coincide with v��

We then traverse pg�u� and pr�u� in the same way� At the end of the process� if we have
reached one stopvertexij � then Case � in the proof of Lemma �� applies� else Case � applies�
During this process� we have only visited vertices and edges which are contained in the three
disjoint paths between u and v� The report of the three paths can now be completed by suitably
traversing pb�v�� pg�v�� and pr�v� and by possibly continuing the traversal of one path among
pb�u�� pg�u�� and pr�u��

Theorem � Let G be a triconnected planar graph with n vertices� There exists an O�n��space
data structure for G that can be constructed in O�n� time and supports ��path queries in O���
time� where � is the size of the reported paths�
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� General ��Path Queries

In this section we extend to general triconnected graphs the results on planar triconnected graphs
of Section ��

��� Preprocessing

The realizer used for triconnected planar graphs is replaced by three independent spanning
trees ��� ���� For three independent spanning trees of a triconnected graph G� the following
properties hold�

�� In each spanning tree� the edges of G are directed from children to parent�

�� The sinks �roots� of the spanning trees are three �possibly coincident� vertices of G�

�� Each edge of G is contained in at least one and in at most two spanning trees�

�� If an edge of G is contained in two spanning trees� then it has di�erent directions in the
two trees�

�� For each vertex v of G� the paths from v to the sinks along the three spanning trees have
only vertex v in common�

We brie�y review the algorithm by Cheriyan and Maheshwari ��� for constructing three
independent spanning trees of a triconnected graph G with n vertices�

The main step of their algorithm is the computation of a nonseparating ear decomposition
of the triconnected graph� An ear decomposition of a graph G is a partition of G into an
ordered collection of edge�disjoint simple paths P�� P�� � � � � Ph� such that P� is a cycle� and each
Pk � � � k � h has only its two distinct endpoints in common with Gk�� � P� � P� � � � �� Pk���
Each path Pk is an ear� An ear decomposition is said to be through edge �v�� v�� and avoiding
vertex vn if cycle P� contains edge �v�� v��� and the last ear Ph� di�erent from a single edge
contains vertex vn as its only internal vertex� An ear decomposition through edge �v�� v�� and
avoiding vertex vn is said a nonseparating ear decomposition if� for each � � k � h�� graph
G�Gk is connected and each internal vertex of ear Pk has at least one neighbor in G� Gk�

A nonseparating ear decomposition has at most n ears di�erent from a single edge� For each
vertex v of G� we de	ne the ear number ear�v� as the index k of the 	rst ear in P�� P�� � � � � Ph

containing v�
Given an ear decomposition of G and an edge �s� t� of the 	rst ear P�� an st�numbering of

G is consistent with the ear decomposition if� for each � � k � h� the numbering induced by Gk

is an st�numbering of Gk� For each vertex v of G� we indicate with stn�v� the st�number of v�
Note that the canonical ordering de	ned in Section ��� is a particular case of nonseparating

ear decomposition for triconnected planar graphs�

Lemma �� ��	 Let G be a triconnected graph with n vertices and m edges� Let �v�� v�� be an
edge and vn �� v�� v� be a vertex of G� There exists a nonseparating ear decomposition of G
through �v�� v�� and avoiding vn� It can be computed in O�nm� time and O�m� space�

The time complexity of the algorithm can be reduced from O�nm� to O�n�� by computing
a sparse triconnected spanning subgraph G� of G in O�m� time ���� and by then computing a
nonseparating ear decomposition of G�� As noted in Section ���� G� is guaranteed to have a
vertex of degree three�

The three independent spanning trees can be constructed in the following way�

��



�� let v� be a vertex of degree three� and let v�� and vn be two vertices adjacent to v�� a
nonseparating ear decomposition of G� through �v�� v�� and avoiding vn is computed�

�� let s � v� and t � v�� an st�numbering of G consistent with the ear decomposition is
computed�

�� v�� v�� and vn are the sinks of the blue� green� and red tree� respectively�

�� �v�� v�� is an outgoing blue edge for v� and an outgoing green edge for v��

�� for each � � k � h� let cl and cr be the two endpoints of ear Pk � such that� either
ear�cl� � ear�cr�� or ear�cl� � ear�cr� and stn�cl� � stn�cr�� two cases are possible�

�a� if Pk is a single edge� then �cl� cr� is an ougoing red edge for cl�

�b� if Pk is not a single edge� let cr� vsk � � � � � vsk�dk � cl� dk � �� be the consecutive vertices
of Pk� �vsk�dk � cl� is an outgoing blue edge for vsk�dk � and possibly an outgoing red
edge for cl if cl has no neighbor in G � Gk� �vsk � cr� is an outgoing green edge for
vsk � and possibly an outgoing red edge for cr if cr has no neighbor in G � Gk� edge
�vi� vi���� sk � i � sk�dk is an outgoing blue edge for vi and an outgoing green edge
for vi���

As for the planar case� we denote v�� v�� and vn as sb� sg� and sr� respectively� Properties ��
� of the independent spanning trees immediately follow from the previous construction� while
Property � can be proved by observing that� from the previous construction� it follows�

� for each vertex v �� sb of G� let x be the parent of v in Tb� ear�u� � ear�v� and stn�x� �
stn�v��

� for each vertex v �� sg of G� let y be the parent of v in Tg� ear�y� � ear�v� and stn�y� �
stn�v��

� for each vertex v �� sr of G� let z be the parent of v in Tr� ear�z� � ear�v��

In the rest of the section� we will use three independent spanning trees with a common
sink� which can be obtained from the three independent spanning trees computed above in the
following way� let �sg� wg� be the edge of P� incident with sg and di�erent from �sg� sb�� �sg� sb�
is made an outgoing green edge for sg � �sg� wg� is made an outgoing blue edge for sg and an
outgoing green edge for wg� note that� by construction� �sr� sb� is an outgoing red edge for sr�
sg and sr are identi	ed with sb�

��� Three Disjoint Paths

Lemma �� For each pair of vertices u and v of G� if there are two colors i� j � fb� g� rg� i �� j�
such that pi�v� and pj�u� cross� then pj�v� and pi�u� do not cross�

Proof� Six cases are possible for i and j�

�� i � b and j � g� let w be a vertex of the crossing between pb�v� and pg�u�� x �� u be a vertex
of pb�u�� and y �� v be a vertex of pg�v�� stn�x� � stn�u� � stn�w� � stn�v� � stn�y�
holds�

�� i � g and j � b� analogous to Case ��
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�� i � g and j � r� let w be a vertex of the crossing between pg�v� and pr�u�� y �� u be a vertex
of pg�u�� and z �� v be a vertex of pr�v�� ear�y� � ear�u� � ear�w� � ear�v� � ear�z�
holds�

�� i � r and j � g� analogous to Case ��

�� i � r and j � b� let w be a vertex of the crossing between pr�v� and pb�u�� x �� v be a vertex
of pb�v�� and z �� u be a vertex of pr�u�� ear�x� � ear�v� � ear�w� � ear�u� � ear�z�
holds�

�� i � b and j � r� analogous to Case ��

In all the cases� it is easy to see that pj�v� and pi�u� do not cross� �

With analogous techniques� we can prove the following two lemmas�

Lemma �
 For each pair of vertices u and v of G� if pr�v� and pi�u�� i � fb� gg� cross� then
pr�u� and pj�v�� j � fb� gg� j �� i� do not cross�

Lemma �� For each pair of vertices u and v of G� pb�v� and pg�u�� or pg�v� and pb�u�� may
cross at most once� pb�v� and pr�u�� or pr�v� and pb�u�� may cross multiple times� pg�v� and
pr�u�� or pr�v� and pg�u�� may cross multiple times�

We now state the equivalent� for general triconnected graphs� of Lemma 
 for planar graphs�
Note how� being the graph nonplanar� the number of possible cases has increased�

Lemma �� For each pair of vertices u and v of G� six cases are possible�

�� there are three colors i� k � fb� g� rg� j � fb� gg� i �� j �� k� such that pi�v� and pj�u�� pi�v�
and pk�u�� pj�v� and pk�u� cross�

�� there are three colors i� j� k � fb� g� rg� i �� j �� k� such that pi�v� and pj�u�� pi�v� and
pk�u� cross�

�� there are three colors i� j� k � fb� g� rg� i �� j �� k� such that pj�v� and pi�u�� pk�v� and
pi�u� cross �analogous to Case � with u and v switched��

�� there are three colors i � fb� gg� j� k � fb� g� rg� i �� j �� k� such that pi�v� and pj�u�� pk�v�
and pi�u� cross�

�� there are exactly two colors i� j � fb� g� rg� i �� j� such that pi�v� and pj�u� cross�


� there are no two colors i� j � fb� g� rg� i �� j� such that pi�v� and pj�u� cross�

Proof� By Lemma ��� out of the six potential crossings between di�erently colored paths from
u and v� at most three may exist� It is easy to see that� by Lemmas �� and ��� the six claimed
cases are exhaustive� �

As for planar graphs� we de	ne stopvertexij � i� j � fb� g� rg� i �� j� any vertex of the crossing
between pi�v� and pj�u� or between pj�v� and pi�u��

Lemma �� For any two vertices u and v of G� the subgraph of G formed by the six paths pb�u��
pb�v�� pg�u�� pg�v�� pr�u�� and pr�v� contains three disjoint paths between u and v�
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Proof� We will prove the claim by considering Cases ��� of Lemma �
� Cases � and � are
analogous to those of Lemma �� for planar graphs�

We will prove in detail only Case � of Lemma �
� in which three crossings occur between
di�erently colored paths from u and v� This is the most complex case� The proofs for Cases ����
in which two crossings occur� are similar�

Path pi�v� crosses both pj�u� and pk�u�� path pk�u� crosses both pi�v� and pj�v�� W�l�o�g��
let i � g� j � b� and k � r� We 	rst prove that stopvertexgr �is closer to v along pg�v� than
stopvertexbg � or� more formally� that pg�v� stopvertexgr� � pg�v� stopvertexbg�� This follows
from ear�stopvertexbg� � ear�u� � ear�stopvertexgr� � ear�v��

Then we consider stopvertexgr and stopvertexbg � Two cases are possible�

�� stopvertexgr �is closer to u along pr�u� than stopvertexrb� or� more formally�
pr�u� stopvertexgr� � pr�u� stopvertexrb�� the three disjoint paths are� as in the planar
case� the following�

� p� �� pb�u� lcab� � pb�v� lcab��

� p� �� pg�u� � pr�v��

� p� �� pr�u� stopvertexgr� � pg�v� stopvertexgr��

since we use neither pg�stopvertexgr� nor pr�stopvertexgr�� pg�v� in the construction of
the three disjoint paths� we can simply ignore stopvertexbg and stopvertexrb�

�� stopvertexrb �is closer to u along pr�u� than stopvertexgr� or� more formally�
pr�u� stopvertexrb� � pr�u� stopvertexgr�� in this case it is not possible to construct the
three disjoint paths as in the planar case� however three disjoint paths still exist�

� p� �� pg�u� � pr�v��

� p� �� pb�u� stopvertexbg� � pg�v� stopvertexbg��

� p� �� pr�u� stopvertexrb� � pb�v� stopvertexrb��

since we do not use pr�stopvertexrb��pg�v� in the construction of the three disjoint paths�
we can simply ignore stopvertexgr �

In both cases� the disjointness of p�� p�� and p� can be easily proved by the ear number and
st�number properties of the colored paths from u and v� �

��� Data Structure and Complexity

In this section we present a data structure for performing ��path queries in a triconnected graph
G with n vertices� By Lemma �� and by Theorem ��� of ����� we assume that G has been
embedded and three independent spanning trees Tb� Tg� and Tr of G with a common sink have
been constructed� this can be done in O�n�� time�

As for planar graphs� trees Tb� Tg� and Tr are implemented with parent pointers� and are
augmented with the component implementing the relations �i� i � fb� g� rg on the vertex set of
G� It is easy to see that the above data structure can be constructed in O�n� time�

Using this data structure� we can compute the three disjoint paths between u and v similarly
to the planar case� However� by Lemma ��� pr�v� may cross pb�u� and pg�u� multiple times� or
pr�u� may cross pb�v� and pg�v� multiple times� In the proof of Lemma ��� we have seen that
only the 	rst crossing� if any� found traversing pr�u� from u or pr�v� from v need be considered�
This imply that� di�erently from the planar case� the 	rst traversed path is pr�u�� the halting
events for the traversal are the same of the planar case� if a crossing with pb�v� or pg�v� is found�
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then we continue by traversing pb�u� or pg�u�� otherwise we switch to v and 	rst traverse pr�v��
and then traverse pb�v� and pg�v��

At the end of the process� we have all the necessary information to decide which of the cases
of Lemma �
 applies� We have only visited vertices and edges which are contained in the three
disjoint paths between u and v� The report of these paths can now be completed by suitably
traversing the remaining paths from u or v and by possibly continuing the traversal of some of
the already traversed paths�

Theorem 
 Let G be a triconnected graph with n vertices� There exists an O�n��space data
structure for G that can be constructed in O�n�� time and supports ��path queries in O��� time�
where � is the size of the reported paths�

� Graphs of Arbitrary Connectivity

In this section we extended the results of Theorems � and � to graphs of arbitrary connectivity
k � ��

We 	rst consider biconnected �non�triconnected� graphs� We use a suitably augmented
version of the SPQR�tree data structure for ��connectivity queries ����� A description of the
SPQR�tree is contained in Appendix B for the reader�s convenience� An example of SPQR�tree
is shown in Fig� 
�

Let G be a biconnected graph with n vertices and m edges� and let T be an SPQR�tree of
G� Each R�node � of T is equipped with a realizer of skeleton���� If G is nonplanar� then�
for each R�node � of T � instead of storing skeleton���� we store a sparse triconnected spanning
subgraph of skeleton��� ����� this reduces the space requirements to O�n�� Computing the
spanning subgraphs requires an O�m� total time�

As usual� let u and v be the two vertices on which we want to perform a ��paths query� We
	rst perform a ��connectivity query on u and v as shown in �����

Lemma �� ���	 A ��connectivity query on vertices u and v returns true if and only if there
is a P�node or an R�node � of T such that u and v are both allocated at �� Node � can be
determined in O��� time�

If the ��connectivity query on vertices u and v returns true� the ��path query can be answered
as follows�

If � is a P�node� u and v are the poles of � and the endpoints of at least three virtual edges
in skeleton���� Three disjoint paths between u and v in skeleton��� are obtained by taking
three of these virtual edges� Note that� since we are considering simple graphs� at least two of
these three virtual edges are non�trivial�

If � is an R�node� we determine three disjoint paths between u and v in skeleton��� as shown
in Sections � and �� In general� these three paths contain some non�trivial virtual edges �see
Fig� 
b��

In both cases� let p��� p��� and p�� be the three disjoint paths between u and v in skeleton����
Three disjoint paths between u and v in G can be obtained from p��� p��� and p�� by recursively
replacing each non�trivial virtual edge e� � corresponding to a node �� with a path p� between
the poles of skeleton���� The graph can be preprocessed so that for each node � of T a path p�
in skeleton��� between its poles �di�erent from the virtual edge corresponding to the parent of
�� is stored� In the example of Fig� 
b� paths p� are represented with the purple color�

It remains to be proved that this recursive process requires ��� time� We need the following
lemma�

Lemma �� ���	 Two S�nodes cannot be adjacent in T � Two P�nodes cannot be adjacent in T �
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During the recursive process� each virtual edge e� contained in one of the three paths is
replaced with a path p� � Path p� contains exactly one edge and this edge is non�trivial virtual
only if � is a P�node� In all other cases� p� is either a trivial virtual edge or contains more than
one edge� Thus� by Lemma ��� the total number of virtual edges substituted with a path during
the recursive process� i�e�� the total number of nodes of T visited� is O����

If� on the contrary� the ��connectivity query on vertices u and v returns false� we can answer
a ��path query using the data structure of Theorem ��

We now consider connected �non�biconnected� graphs� We use a suitably augmented version
of the BC�tree data structure for ��connectivity queries ����� A description of the BC�tree is
contained in Appendix C for the reader�s convenience�

Let G be a connected graph and let T be a BC�tree of G� Each B�node of T is equipped
with an augmented SPQR�tree described above�

Let again u and v be the two vertices on which we want to perform a ��paths query� We
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Figure 
� �a� A biconnected graph G� �b� The split components used in the reporting of three
disjoint paths between vertices v� and v�� of G� �c� The SPQR�tree of G with respect to reference
edge �v�� v	� and the skeletons of its nodes�
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	rst perform a ��connectivity query on u and v as shown in �����

Lemma �
 ���	 A ��connectivity query on vertices u and v returns true if and only if there is
a B�node � of T such that u and v are both allocated at �� Node � can be determined in O���
time�

If the ��connectivity query on vertices u and v returns true� then we can apply the methods
described above for answering a ��path or a ��path query�

If� on the contrary� the ��connectivity query on vertices u and v returns false� we can easily
answer a ��path query using a spanning tree of G�

Finally� we consider non�connected graphs� We use the BC�forest data structure� which is a
forest of the BC�trees of the connected components of G�

We 	rst perform a ��connectivity query on u and v simply testing if u and v are both allocated
in the same BC�tree of the BC�forest� this can be done in O��� time� If the ��connectivity query
on vertices u and v returns true� then we can apply the methods described above for answering
a ��path� ��path� or ��path query�

The results described in this section can be summarized in the following two theorems�

Theorem � Let G be a planar graph with n vertices� There exists an O�n��space data structure
for G that can be constructed in O�n �m� time and supports �� �� and ��path queries in O���
time� where � is the size of the reportedpaths�

Theorem � Let G be a graph with n vertices� There exists an O�n��space data structure for G
that can be constructed in O�n�� time and supports �� �� and ��path queries in O��� time� where
� is the size of the reported paths�

� Applications of Realizers to Graph Drawing

In this section we show a graph drawing application for the realizers of triconnected planar
graphs�

A straight�line drawing is a drawing in which each edge is mapped to a straight�line segment�
Planar straight�line drawings of planar graphs are a classical topic in graph drawing �a survey
on graph drawing can be found in ������

A classical result independently established by Steinitz and Rademacher ����� Wagner �����
Fary ��
�� and Stein ���� shows that every planar graph has a planar straight�line drawing�

A grid drawing is a drawing such that the vertices have integer coordinates� Independently�
de Fraysseix� Pach� and Pollack ���� and Schnyder ���� ��� have shown that every planar graph
with n vertices has a planar straight�line grid drawing with O�n�� area� In particular� they
presented algorithms for computing a planar straight�line grid drawing of a maximal planar
graph� de Fraysseix� Pach� and Pollack de	ne the canonical ordering for maximal planar graphs�
the drawing is constructed by assigning integer coordinates to the vertices according to this
canonical ordering� Schnyder de	nes the realizers for maximal planar graphs� and� based on
such realizer� the vertices are assigned integer coordinates in �D space which have a purely
combinatorial meaning and such that all the vertices lie on a plane� A drawing in the plane is
then obtained by projection�

Planar straight�line drawings have also been studied with the constraint that all faces be rep�
resented by convex polygons �convex drawings�� Tutte ���� ��� has shown that for a triconnected
planar graph a convex drawing can be constructed by solving a system of linear equations� More
recently� Kant has presented an algorithm for constructing grid convex drawings with quadratic
area ��
�� His approach can be seen as the natural extension to triconnected planar graphs of the
result by de Fraysseix� Pach� and Pollack for maximal planar graphs� He de	nes the canonical
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ordering for triconnected planar graphs recalled in Section ��� and the drawing is constructed
assigning integer coordinates to the vertices according to this canonical ordering� Recent results
on convex grid drawings in the plane and in �D space are presented in ����

The realizers we have de	ned for triconnected planar graphs in Section � naturally extend
those de	ned by Schnyder ���� ��� for maximal planar graphs� and can be used to devise a new
algorithm for constructing grid convex drawings of triconnected planar graphs with quadratic
area� as shown below�

We recall here the de	nition of weak barycentric representation of a graph given by Schny�
der ���� ���� A weak barycentric representation of a graph G is a mapping of each vertex v of G
to a distinct point �vb� vg� vr� in �D space such that the following conditions are satis	ed�

�� for each vertex v of G� vb � vg � vr � c� where c is a constant dependent on G�

�� for each edge �u� w� and each vertex v �� u� w of G� there exist coordinates i� j � fb� g� rg
such that �ui� uj� �lex �vi� vj� and �wi� wj� �lex �vi� vj��

Following Schnyder ���� ���� we can obtain a weak barycentric representation of a tricon�
nected planar graph by using a realizer to assign coordinates to the vertices� these coordinates
have a purely combinatorial meaning�

Lemma �� Let G be a triconnected planar graph equipped with a realizer� For each vertex v

of G� let lb�v�� lg�v�� and lr�v� be the number of faces in Rb�v�� Rg�v�� and Rr�v�� respectively�
The mapping �vb� vg� vr� � �lb�v�� lg�v�� lr�v�� is a weak barycentric representation�

Proof� Condition � of weak barycentric representations is trivially satis	ed� since� for each
vertex v� vb � vg � vr � l � �� where l is the number of faces of G�

As for Condition �� let i� j and k be three consecutive colors in the circularly ordered set
fb� g� rg� let �u� w� be an edge of G and v �� u� w be a vertex of G� In order to simplify the
exposition of the proof� we de	ne �pi�v� � pi�v�� fvg� �pj�v� � pj�v�� fvg� �pk�v� � pk�v�� fvg�
�Ri�v� � Ri�v��fpj�v�� pk�v�g� �Rj�v� � Rj�v��fpk�v�� pi�v�g� and �Rk�v� � Rk�v�� fpi�v��
pj�v�g� W�l�o�g�� let u � Rk�v�� If u � �Rk�v�� then� by planarity of G� w �� �Ri�v� and w �� �Rj�v��
Thus� the following 	ve cases are possible�

�� u� w � �Rk�v�� by Lemma ��� Rk�u� � Rk�v� and Rk�w� � Rk�v�� hence uk � vk and
wk � vk�

�� u � �Rk�v� and w � pi�v�� by Lemma ��� Rk�u� � Rk�v�� hence uk � vk� two subcases are
possible�

�a� v �� pj�w�� by Lemma ��� Rk�w� � Rk�v�� hence wk � vk �

�b� v � pj�w�� by Lemma ��� Rk�w� � Rk�v�� hence wk � vk � however� still by Lemma ���
Rj�w� � Rj�v�� hence wj � vj �

�� u � �Rk�v� and w � pj�v�� analogous to Case ��

�� u� w � pi�v�� w�l�o�g�� let w be an ancestor of u in Ti� four subcases are possible�

�a� u �� pj�w� and v �� pj�u�� by Lemma ��� Rk�w� � Rk�u� � Rk�v� hence wk � uk � vk�

�b� u � pj�w� and v �� pj�u�� by Lemma ��� Rk�w� � Rk�u� � Rk�v�� hence wk � uk �

vk�

�c� u �� pj�w� and v � pj�u�� by Lemma ��� Rk�w� � Rk�u� � Rk�v�� hence wk � uk �
vk� however� still by Lemma ��� Rj�u� � Rj�v�� hence uj � vj �

�




�d� u � pj�w� and v � pj�u�� by Lemma ��� Rk�w� � Rk�u� � Rk�v�� hence wk � uk �
vk� however� still by Lemma ��� Rj�w� � Rj�u� � Rj�v�� hence wj � uj � vj �

�� u� w � pj�v�� analogous to Case ��

In all 	ve cases� Condition � is satis	ed� �

Theorem � Let G be a triconnected plane graph with n vertices and l faces� A convex grid
drawing of G with height l� � and width l � � can be computed in O�n� time and O�n� space�

Proof� Let ! be the straight�line drawing of G resulting from the weak barycentric representa�
tion of Lemma ���

First� note that� by Condition � of weak barycentric representations� all the points represent�
ing vertices of G lie on plane 	 in �D space de	ned by equation b� g � r � l� �� in particular�
vertices sb� sg� and sr are mapped to points �l� �� �� ��� ��� l� �� ��� ��� �� l� ��� respectively�

The planarity of ! follows from Lemma ��� in �����
The convexity of ! can be proved as follows� Let v be an internal vertex of G� By Condition �

of weak barycentric representations� if we 	x coordinate vb� then the point representing v lies on
line lb of 	 which is the projection on 	 of line g� r � cb of the g�r plane� where cb � l� �� vb�
Lines lg and lr� and constants cg and cr are de	ned in a similar way� Since 	 intersects the
b�� g�� and r�axis at the same coordinate l � �� lines lb� lg and lr cross at �vb� vg� vr� and form
six ��� angles �see Fig� ���� For each line li� i � fb� g� rg� let the positive �negative� halfplane
be the open halfspace containing �not containing� si� Let the blue positive �negative� wedge
be the portion of the positive �negative� halfspace of lb delimited by lg and lr� the green and
red positive �negative� wedges are de	ned in a similar way� Let x� y and z be the parents of
v in Tb� Tg� and Tr� respectively� Thus v � Rb�x�� and by Lemma �� �Case �� or �� or � with
k � b� i � g� and j � r� Rb�v� � Rb�x�� hence vb � xb� still by Lemma ��� Rg�x� 	 Rg�v� and
Rr�x� 	 Rr�v� �where only one equality may hold�� hence xg � vg and xr � vr �where only one
equality may hold�� If we 	x coordinate xb� then the point representing x lies on line l�b of 	
which is the projection on 	 of line g�r � c�b of the g�r plane� where c

�

b � l���xb � cb� Hence�
l�b lies in the positive halfspace of lb� In a similar way� l�g lies in the negative halfspace of lg or
l�g � lg� and l�r lies in the negative halfspace of lr or l�r � lr �where only one equality may hold��
It follows that the point representing x must lie in the positive blue wedge of v� Similarly it can
be proved that the point representing y and z must lie in the positive green and red wedges of
v� respectively� Hence� no angle incident on v can be greater then �����

v

lb

lr

lg

Figure ��� The blue� green� and red wedges of a vertex�
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Figure ��� A convex grid drawing of the triconnected plane graph of Fig� ��

As for the external face� the points representing sb� sg and sr are the vertices of an equilateral
triangle� Let i� j� and k be three consecutive colors in fb� g� rg� For each two consecutive vertices
u and v of ext�si� sj�� uk � vk � �� It follows that� by Condition � of weak barycentric repre�
sentations� all the vertices of ext�si� sj� are collinear� Thus� also the external face is represented
as a convex polygon�

A convex grid drawing with height l � � and width l � � in the plane can be obtained by
projecting !� e�g�� by dropping the red coordinate�

Finally� we prove the time and space complexity� To compute the coordinates we will use
both a realizer Tb� Tg� Tr of G� and the induced realizer T �

b � T
�

g � T
�

r of the extended dual graph
G� of G� The extended dual graph of G� can be easily constructed in linear time� By Lemma ��
a realizer of G and the induced realizer of G� can be constructed in linear time and space� Thus
we only have to prove that the coordinates for the vertices of G can be computed in linear time�
In particular� we will prove that� the number of faces in Rk�v�� for each vertex v of G� can be
computed by visiting Ti and Tj�

For each vertex v of G we initialize coordinate vk to l��� i�e�� to the number of internal faces
of G� We will then subctract from vk the number of the faces which are not contained in Rk�v��
this can be done by visiting Ti and Tj as follows� First we compute� for each vertex v� of T �

k �
the number of its descendants� including v� itself� and store it in variable numdescendantsk�v���
this can be done by a postorder visit of T �

k � Second� we perform a preorder visit of Ti� we use an
auxiliary variable sumdescendantsi initialized to �� For each edge �u� v� traversed during the
visit� let �u�� v�� be the dual edge of �u� v�� where v� is the vertex of G� corresponding to the face
of G on the left of �u� v�� if �u�� v�� � T �

k � we sum numdescendantsk�v�� to sumdescendantsi
and then subtract sumdescendantsi from coordinate vk � Third� we perform a similar preorder
visit of Tj � The only di�erence with the previous visit of Ti is that now� for each edge �u� v�
traversed during the visit� v� is the vertex of G� corresponding to the face of G on the right of

��



�u� v��
It is easy to see that� after the visits of Ti and Tj � for each vertex v of G coordinate vk is

equal to the number of faces in Rk�v�� �

A similar result was claimed by Schnyder and Trotter ��
�� but since then� to the best of our
knowledge� no proof has been published�

A convex grid drawing of the triconnected plane graph of Fig� � produced by the above
algorithm is shown in Fig� ���

	 Conclusions

The contributions of this paper can be summarized as follows�

� We have de	ned� analyzed� and shown how to e�ciently compute realizers of triconnected
planar graphs� a combinatorial structure that uni	es and extends various previous con�
structions� Realizers play for triconnected planar graphs a similar role as bipolar orienta�
tions for biconnected planar graphs�

� We have presented the 	rst data structure that supports output�sensitive �� and ��path
queries in general graphs� The previous best methods for performing queries do not exploit
preprocessing and have O�n� time complexity� irrespectively of the output size� Our data
structure and query algorithm are both theoretically optimal and practically useful�

� We have presented a new O�n��time algorithm for constructing a convex grid drawing of
G with O�n�� area� which extends to triconnected planar graphs the barycentric drawing
method for maximal planar graphs�
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A Results on k�Path and k�Connectivity Queries

Table � summarizes the previous and new results on methods for k�path and k�connectivity
queries�

graph k space preprocessing k�conn� k�path references
Previous Results

general any O�n �m� � O�m
p
n� O�m

p
n� ��	


general �xed O�n �m� � O�n�m� O�n�m� ��	

planar any O�n� � O�n� O�n� ��


�k � ���conn� �xed k � � O�n� O�n�m� O��� O�n� �


general k � � O�n� O�n �m� O��� O�n� ���� ��� ��

general k � � O�n� O�n��m�n� �m� O��� O�n� ���

general k � � O�n� O�n �m� O��� O��� �

New Results

general k � � O�n� O�n� O��� O��� x ���
planar k � � O�n� O�n� O��� O��� x �
general k � � O�n� O�n�� O��� O��� x �
planar k � � O�n� O�n� O��� O��� x �
general k � � O�n� O�n�� O��� O��� x �

Table �� Summary of results on methods for k�path and k�connectivity queries�

B The SPQR�Tree

In this appendix� the SPQR�tree presented in ���� ��� is described� Let G be a biconnected
graph� A split pair of G is either a pair of adjacent vertices or a separation pair� In the former
case the split pair is said trivial� in the latter non�trivial� A split component of a split pair fu� vg
is either an edge �u� v� or a maximal subgraph C of G such that C contains u and v� and fu� vg
is not a split pair of C� In the former case the split component is said trivial� in the latter
non�trivial� Note that each vertex of G distinct from u and v belongs to exactly one non�trivial
split component of fu� vg� Let fs� tg be a split pair of G� A maximal split pair fu� vg of G with
respect to fs� tg is a split pair of G distinct from fs� tg such that for any other split pair fu�� v�g
of G� there exists a split component of fu�� v�g containing vertices u� v� s� and t�

In the example of Fig� 
�a� fv�� v�g is a trivial split pair� fv�� v��g is a non�trivial split pair�
edge �v�� v�� is a trivial split component� the subgraph induced by v�� v��� v��� and v�� is a non�
trivial split component� fv�� v��g is a maximal split pair with respect to fv�� v	g� while fv�� v��g
is not�

Let e � �s� t� be an edge of G� called reference edge� The SPQR�tree T of G with respect to e
describes a recursive decomposition ofG induced by its split pairs� Tree T is a rooted ordered tree
whose nodes are of four types� S� P� Q� and R� Each node � of T has an associated biconnected
multigraph� called the skeleton of � and denoted by skeleton���� Also� it is associated with an
edge of the skeleton of the parent � of �� called the virtual edge of � in skeleton���� Tree T is
recursively de	ned as follows�

Trivial Case� If G consists of exactly two parallel edges between s and t� then T consists of a
single Q�node whose skeleton is G itself�

Parallel Case� If the split pair fs� tg has at least three split components G�� � � � � Gk �k � ���
the root of T is a P�node �� Graph skeleton��� consists of k parallel edges between s and
t� denoted e�� � � � � ek� with e� � e�

��



Series Case� If the split pair fs� tg has exactly two split components� one of them is the
reference edge e� and we denote with G� the other split component� If G� has cut�vertices
c�� � � � � ck�� �k � �� that partition G into its blocks G�� � � � � Gk� in this order from s to t�
the root of T is an S�node �� Graph skeleton��� is the cycle e�� e�� � � � � ek� where e� � e�
c� � s� ck � t� and ei connects ci�� with ci �i � �� � � � � k��

Rigid Case� If none of the cases above applies� let fs�� t�g� � � � � fsk� tkg be the maximal split
pairs of G with respect to fs� tg �k � ��� and for i � �� � � � � k� let Gi be the union of all
the split components of fsi� tig except the one containing the reference edge e� The root
of T is an R�node �� Graph skeleton��� is obtained from G by replacing each subgraph
Gi with the edge ei between si and ti�

Except for the trivial case� � has children ��� � � � � �k in this order� such that �i is the root
of the SPQR�tree of graph Gi � ei with respect to reference edge ei �i � �� � � � � k�� The tree so
obtained has a Q�node associated with each edge of G� except the reference edge e� We complete
the SPQR�tree by adding another Q�node� representing the reference edge e� and making it the
parent of � so that it becomes the root� An example of SPQR�tree is shown in Fig� 
�c� where
the Q�nodes are represented by squares� and the skeletons of the Q�nodes are not shown�

The virtual edge of node �i is edge ei of skeleton���� A virtual edge is said trivial if the
corresponding node �i is a Q�node� non�trivial otherwise� The endpoints of ei are called the
poles of �i� Graph Gi is called the pertinent graph of node �i� and the expansion graph of edge
ei�

In the example of Fig� 
� the non�trivial virtual edges are represented by dotted lines� the
trivial virtual edges are represented by solid lines�

Let � be a node of T � We have�

� if � is an R�node� then skeleton��� is a triconnected graph�

� if � is an S�node� then skeleton��� is a cycle�

� if � is a P�node� then skeleton��� is a triconnected multigraph consisting of a bundle of
multiple edges�

� if � is a Q�node� then skeleton��� is a biconnected multigraph consisting of two multiple
edges�

The skeletons of the nodes of T are homeomorphic to subgraphs of G� Also� the union of
the sets of split pairs of the skeletons of the nodes of T is equal to the set of split pairs of G�
It is possible to show that SPQR�trees of the same graph with respect to di�erent reference
edges are isomorphic and are obtained one from the other by selecting a di�erent Q�node as the
root� SPQR�trees are closely related to the classical decomposition of biconnected graphs into
triconnected components ����� Namely� the triconnected components of a biconnected graph
G are in one�to�one correspondence with the internal nodes of the SPQR�tree� the R�nodes
correspond to triconnected graphs� the S�nodes to polygons� and the P�nodes to bonds�

Let v be a vertex of G� The allocation nodes of v are the nodes of T whose skeleton contains v�
The least common ancestor � of the allocation nodes of v is itself an allocation node of v and is
called the proper allocation node of v� denoted � � proper�v�� If v � s or v � t �the endpoints
of the reference edge� we conventionally de	ne proper�v� as the unique child of the root of T
�recall that the root of T is the Q�node of the reference edge�� If v �� s� t� node � � proper�v�
is either an R�node or an S�node� also� � is the only allocation node of v such that v is not a
pole of �� The set of vertices v with proper allocation node � is denoted properset���� If � is a
�proper� allocation node of v� we say that v is �properly� allocated at ��

��



The SPQR�tree T of a graph with n vertices and m edges has m Q�nodes and O�n� S�� P��
and R�nodes� The total number of vertices of the skeletons stored at the nodes of T is O�n�� It
can be constructed in O�n�m� time using a variation of the algorithm given in �����

C The BC�Tree

In this appendix� the BC�tree presented in ���� ��� is described� Let G be a connected graph
with n vertices� The BC�tree T of G has a B�node for each block �biconnected component� of
G� and a C�node for each cutvertex of G� Edges in T connect each B�node � to the C�nodes
associated with the cutvertices in the block of �� The BC�tree is rooted at an arbitrary B�node�
Also the B�node of each nontrivial block B stores the SPQR�tree of B� Observe that the number
of blocks of G is O�n�� and the total number of vertices in the blocks of G is O�n� as well�

The BC�tree is a variation of the data structures for maintaining biconnected components
described in ���� ���� The main di�erence is that an SPQR�tree is attached at each B�node�

If vertex v is a cutvertex� bcproper�v� denotes the C�node associated with v� Otherwise�
bcproper�v� denotes the B�node of the unique block containing v� It is easy to see that� knowing
�� � bcproper�v�� and �� � bcproper�v��� we can determine in O��� time whether v� and v� are
in the same block of G ����� namely the block associated with node � contains vertices v� and
v� if and only if the undirected path of T between �� and �� contains � but no other B�node�

The BC�tree of a graph with n vertices and m edges can be constructed in O�n�m� time�
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