
h-
av-
g

the
s
ed

a
e-
n-

hus
g
ck-
ce
nly
of
ion
n-
er
d

ur-

er
,

ce
nd
on
le
ob-
es
r’s

le-
e
ds
ThreadMon:
A Tool for Monitoring Multithreaded Program Performance

Bryan M. Cantrill1 Thomas W. Doeppner Jr.2

SunSoft, Inc. Department of Computer Science
2550 Garcia Ave., MS MPK17-301 Brown University

Mountain View, CA 94043-1100 Providence, RI 02912-1910
bryan.cantrill@eng.sun.com twd@cs.brown.edu

Abstract
This paper describes ThreadMon, a monitoring tool for
improving the performance of multithreaded programs,
and how we have used it to examine various aspects of the
many-to-many (or two-level) threads implementation
model. We run unmodified binary subject code, insert soft-
ware probes to collect data, and analyze and present the
results in real time on another machine. We show that the
behavior of multithreaded programs, particularly those
running on multiprocessors, often defies intuition when the
many-to-many threads implementation model is used.

1. Introduction

Multithreaded programming can be surprisingly more
subtle than single-threaded programming. One’s intuition
about how one’s program is behaving may well be at odds
with reality. For example, one is tempted to think that
threads are processors and that the only synchronization
being employed is that explicitly supplied in one’s own
code. Through the use of our performance tool, Thread-
Mon, we show some of the performance problems that can
occur in multithreaded programs as the result of such
assumptions.

Determining the causes of such problems in multi-
threaded programs can be challenging. Most commercially
available tools (such as gprof and thread analyzer) depend
on the availability of source code. However, while pro-
grammer-supplied code can appear faultless, library code,
for which no source code is available, can make one’s
threads perform unanticipated (and expensive) actions.
User and kernel schedulers can make conflicting decisions
about which threads should be running.

1This work was performed while this author was a student at Brown
University.

2The work of this author was supported by a grant from Sun Micro-
systems and by ARPA order 8225, ONR grant N00014-91-J-4052.

In ThreadMon we use some relatively simple tec
niques to uncover surprising information about the beh
ior of multithreaded programs, particularly those runnin
on multiprocessors. These techniques, which include
insertion of data-collection routines into existing binarie
and the real-time analysis and display of the collect
data, have allowed us to do the following:

1) Bottleneck analysis: concurrent programs consist of
number of threads, each executing instructions ind
pendently and competing for various resources. Co
tention for these resources hinders performance—t
its minimization is an important goal. By interposin
itself between the application and the threads pa
age, ThreadMon can monitor a program’s resour
usage and display the extent of contention, not o
for individual resources but for aggregates
resources. Compounding this resource-content
problem is that many library routines cause conte
tion for resources that the application programm
may not even know exist. Our tool identifies an
shows the conflicts for these resources, providing f
ther valuable information to the programmer.

2) Processor-utilization analysis: an important concern
to the user of a multiprocessor workstation is wheth
all processors are being effectively utilized. If so
could adding more processors yield performan
gains? By showing what the program’s threads a
the workstation’s processors are doing, ThreadM
gives the programmer sufficient information to hand
these concerns: it does not solve performance pr
lems, but points out that problems exist and provid
feedback on the effectiveness of the programme
solutions.

3) Studying the effectiveness of two-level threads-imp
mentation strategies: Most thread packages give th
application programmer simple, easy-to-use threa

ta-
ns,
-

into
ed

se-
pli-

n-
er-
l-
ro-
sor

-
ages

red
-

o
ry
es,
ni-

he
. If
on-
er

e
ack
the

ny

are
d

th-

ys-
ser
 is
ile
abstractions. Hidden behind many of these packages,
however, is a two-level implementation model (also
known as themany-to-many model) in which the user-
level library schedulesuser threads on kernel threads
and the kernel scheduleskernel threads onprocessors.
Potential programmer concerns when using this
model include insuring adequate concurrency (e.g.,
making certain that threads can execute when they are
ready and processors are available) and minimizing
overhead in managing user and kernel threads. We
demonstrate that without knowledge of both the
implementation model and its runtime behavior with
respect to one’s application, programmers can
unknowingly encounter performance problems.
ThreadMon is being used to help the programmer dis-
cover these problems and develop tactics for over-
coming them. We discuss what we have learned about
the two-level implementation model and compare it
with other implementation models, such as Scheduler
Activations.

The technique of code insertion has been used in a
number of systems, including Parasight [2], Atom [6], and
Paradyn [10]. Parasight used this technique to establish
cheap breakpoints (or “scan points”). Atom allows one to
add arbitrary code to existing binaries. Paradyn, a very
sophisticated system that has been used in many environ-
ments, not only extracts information from running pro-
grams through code insertion, but also uses a variety of
techniques to find bottlenecks automatically. Our system is
not so general-purpose, but is focused solely on analyzing
concurrency-related aspects of a program. Our contribu-
tions are less in the technology of our tool, but in its appli-
cation to study the effectiveness of multithreaded
implementations.

In the remainder of this paper, we first discuss the vari-
ous implementation models that have been used for sup-
porting multithreaded programs. This is important since
one of things we have done with ThreadMon is to study
the effectiveness of one of these models. We then give a
brief description of the Solaris implementation of the
models we have studied. Next we describe the implemen-
tation of ThreadMon. In the following section we go over
three programs to which ThreadMon has been applied.
Finally we discuss some problems with the thread model
implemented in Solaris and then present some conclu-
sions.

2. Implementation Models

The performance of a multithreaded program is
strongly dependent on the underlying implementation of
the threads package. Though for many applications the

programmer need not be concerned with the implemen
tion strategy of the threads package, for some applicatio
particularly compute-intensive applications on multipro
cessors, various crucial aspects must be taken
account. In this section we summarize the commonly us
implementation strategies in preparation for our sub
quent discussion of the impact of the strategy on the ap
cation.

2.1. Many-to-one Model

For kernels that do not support multiple threads of co
trol, multithreading can be implemented entirely as a us
level library. These libraries, without the kernel’s know
edge, schedule multiple threads of control onto the p
cess’s single kernel thread. Thus, just as a uniproces
provides the illusion of parallelism by multiplexing multi
ple processes on a single CPU, user-level threads pack
provide the illusion of parallelism by multiplexing multi-
ple user threads on a single kernel thread; this is refer
to as themany-to-one model [9]. There are several advan
tages to this model:

• Cheap synchronization. When a user thread wishes t
perform synchronization, the user-level thread libra
checks to see if the thread needs to block. If it do
then the library enqueues the thread on the synchro
zation primitive, dequeues a user thread from t
library’s run queue, and switches the active thread
it does not need to block, then the active thread c
tinues to run. No system calls are required in eith
case.

• Cheap thread creation. To create a new thread, th
threads library need only create a context (i.e. a st
and registers) for the new thread and enqueue it in
user-level run queue.

• Resource efficiency. Kernel memory isn’t wasted on a
stack for each user thread. This allows as ma
threads as virtual memory permits.

• Portability. Because user-level threads packages
implemented entirely with standard UNIX™ an
POSIX™ library calls (e.g. withgetcontext andset-
context), they are often quite portable.

However, the many-to-one model does not come wi
out a price. Specifically:

• Single-threaded OS interface. Since there is only one
kernel thread, if a user thread executes a blocking s
tem call, the entire process blocks, since no other u
thread can execute until the kernel thread (which
blocked in the system call) becomes available. Wh

en
g a

as
 it.
 to
is-

er-
is
h
ulti-
re
nly
ul-
the
er-
(it
lit
d
 of
ile

 is
ely
f a
ely
eate
d of
ni-
yn-
.
i-

 the
ead
er
tem

rse
l is

lly
er
le.

ate a

ads
cre-
it adds significantly to implementation complexity,
the library can circumvent this problem where non-
blocking variants of system calls exist [5].

• No parallelism. Multithreaded programs under the
many-to-one model will run no faster on multiproces-
sors than they run on uniprocessors. The single kernel
thread acts as a bottleneck, preventing optimal use of
the multiprocessor.

Despite substantial disadvantages, the relative ease of
implementation of many-to-one threads packages has
made it the most popular model to date. For example, the
current implementations of Netscape™ browsers and
Java™ achieve their multithreading strictly through user-
level, many-to-one threads packages.

2.2. One-to-One Model

An obvious alternative to the many-to-one model is that
every user thread have its own kernel thread (i.e., that there
be aone-to-one correspondence between user threads and
kernel threads). This provides several advantages:

• Scalable parallelism. Because each kernel thread is
actually a different kernel-schedulable entity, multiple
threads can run concurrently on different processors.
Thus, multithreaded programs written under the one-
to-one model can achieve significant speedups when
migrated from uniprocessors to multiprocessors.

• Multithreaded OS interface. Unlike the many-to-one
model, threads blocking in the kernel do not impede
process progress under the one-to-one model. When
one user thread and its kernel thread block, the other
user threads can continue to execute since their kernel
threads are unaffected.

While the one-to-one model can yield a major perfor-
mance win, it too is not without its costs. Most of the ben-
efits of the many-to-one model do not carry over to the
one-to-one model:

• Expensive synchronization. Because kernel threads
require kernel involvement to be descheduled, kernel-
thread synchronization requires a system call if the
lock is not acquired immediately. Estimates vary, but
if a trap is required, synchronization is from three to
ten times more costly than for the many-to-one case
[12], [13].

• Expensive creation. Under the one-to-one model,
every thread creation requires explicit kernel involve-
ment and consumes kernel resources. The difference
in creation cost depends on the specific implementa-

tion, but creating a kernel thread is generally betwe
three and ten times more expensive than creatin
user thread [13].

• Resource inefficiency. Every thread created by the
user requires kernel memory for a stack, as well
some sort of kernel data structure to keep track of
Many parts of many kernels cannot be paged out
disk; the presence of kernel threads is likely to d
place physical memory for applications.

2.3. Many-to-Many Model

In an attempt to combine these two models, some op
ating systems, notably Mach 3.0 [8], SVR4/MP, Solar
2.x [12], and Digital UNIX 4.0, give the programmer bot
user-level and kernel threads. User-level threads are m
plexed on top of kernel-level threads, which in turn a
scheduled on top of processors. The kernel knows o
about the kernel-level threads; it does not know of the m
tiplexing performed by the user-level scheduler. Due to
many-to-many relationship between user threads and k
nel threads, this is called the many-to-many model [9]
is also referred to as the two-level model [3], the sp
model [13] and the LWP model). By taking a hybri
approach, this model aims to combine the advantages
the many-to-one model and the one-to-one model, wh
minimizing these models’ disadvantages.

The major advantage of the many-to-many model
that large numbers of threads can be supported relativ
cheaply. As with the many-to-one model, the creation o
user thread does not necessarily require the (relativ
expensive) creation of a kernel thread. Thus one can cr
a large number of user threads, but have the overhea
creating only a small number of kernel threads. Synchro
zation can also be inexpensive: the implementation of s
chronization primitives involves primarily user-level code
A user thread that must block on a synchronization prim
tive (such as a mutex) is queued on a wait queue and
underlying kernel thread finds and runs another user thr
on the user-level run queue. Only if no runnable us
thread is available does the kernel thread make a sys
call and block (orpark) in the kernel. Thus the cost of a
context switch from one thread to another can be no wo
than the cost of a few subroutine calls—a system cal
often not necessary.

User threads in the many-to-many model norma
“float” among kernel threads—they may run on whatev
kernel thread is available when they become runnab
However, in some cases it may be necessary to associ
user thread permanently with a kernel thread, i.e., tobind
the user thread to the kernel thread. Such bound thre
behave as threads do in the one-to-one model—their

ny-
r-
.

to-
er-

r as

is

-

-
r,

n-

e

a-

a
 a

o

are

ser
ation requires the creation of a kernel thread and synchro-
nization operations requires system calls (to park the
kernel thread in the kernel when the user thread is blocked
and to unpark it when the user thread is released). Decid-
ing when to use bound threads is an issue we discuss in
Section 6.

2.4. Scheduler Activations

The many-to-many model employs two schedulers, one
in the kernel and one in the user threads library. It is not
immediately obvious how the kernel scheduler can coop-
erate with the user scheduler. For example, say the user
scheduler has a high-priority thread to schedule, so it pre-
empts the execution of a lower-priority thread, reassigning
its kernel thread to the high-priority user thread. But at the
same time, the kernel scheduler decides that the kernel
thread’s time slice has expired and reassigns the processor
to another kernel thread, perhaps one that has been
assigned by our user-level scheduler to a lower-priority
thread. Thus the thread deemed the most important by the
user-level scheduler is denied immediate use of the pro-
cessor by the kernel scheduler in favor of a less important
thread.

Another problem is the number of kernel threads. How
many kernel threads should be created to support a partic-
ular process? If there are too few, then the available con-
currency will not be realized—user threads that are ready
to run will stand idle, even though there may also be idle
processors. If there are too many, then the kernel may
needlessly be multiplexing a number of kernel threads on a
smaller number of processors, wasting time doing the con-
text switching, even though the application has no need for
such time slicing.

One might be tempted to give a process just as many
kernel threads as there are processors. But if a user thread
executes a blocking system call (such as reading from an
I/O device) or suffers a page fault, then its underlying ker-
nel thread also blocks—another user thread may be ready
to execute, but no kernel thread is available to be assigned
to it.

An elegant solution to both problems, not yet appearing
in a commercial system, isscheduler activations, an
approach devised at the University of Washington [1].
This variant of the many-to-many model provides an
explicit means for the user-level and kernel schedulers to
cooperate. The kernel assigns processors to processes and
the user-level scheduler assigns these processors to user
threads. The user-level scheduler keeps the kernel apprised
of how many processors it needs; the kernel scheduler
notifies the user-level scheduler of all processor-related
events that affect the user process, such as when proces-
sors become available to it or are taken away from it. This

model appears to solve many of the problems of the ma
to-many family of models; its greatest drawback is pe
haps the frequent crossings of the user-kernel boundary

3. Solaris Implementation of the Many-to-
Many Model

3.1. Overview

Solaris 2.5 provides an implementation of the many-
many model [12] and introduces a new vocabulary: a k
nel thread in Solaris is referred to as alightweight process
(LWP), while a user thread is simply athread. The Solaris
threads package is intended to isolate the programme
much as possible from the notion of LWPs.

3.2. User-level Thread Scheduling

3.2.1. User-level Thread States. Unbound threads in
Solaris may be in one five states:Stopped, Blocked, Run
queue, Dispatchable or On LWP. A thread that has been
suspended isStopped, while a thread blocked on a syn-
chronization primitive isBlocked. If a thread is runnable
but is not running on an LWP, then either it is on theRun
queue or, if an LWP has been found to run the thread, it
Dispatchable. Once a runnable thread is picked up by an
LWP, it isOn LWP. While a thread cannot be actually run
ning on a CPU unless it isOn LWP, beingOn LWP does
not imply that a thread is running on a CPU; the underly
ing LWP itself could be sleeping, waiting for a processo
etc.

3.2.2. Thread-LWP Interaction. Solaris implements the
multiplexing of user-level threads onto LWPs by maintai
ing apool of LWPs. Any unbound thread may run on any
LWP in the pool; when a thread is ready to run (i.e. in th
user-level run queue), the user-level scheduler takes an
LWP out of the pool and assigns it to run the newly runn
ble thread (changing the thread’s state toOn LWP). This
LWP continues to run the thread until either a thread at
higher priority becomes runnable or the thread blocks on
synchronization primitive. Thus, the user-level threads
library isnonpreemptable when all threads have the same
priority.

When an LWP is idle (i.e. the LWP is in the pool and n
threads are runnable), the user-level schedulerparks it in
the kernel. If a thread becomes runnable while LWPs
parked, the user-level schedulerunparksone of the LWPs.
Once an LWP is unparked, it dequeues and runs a u
thread from the user-level run queue.

d,

ta-

a
 to
ion
yn

r-

ut
g
.
eci-
 the
te,
ve
ci-

on
ed
m,
 the
tage
el)
v-

ck
rder
nd
our
ds.
ed
end-
e
e

ys-
ot-
de,
tem
ous
3.3. LWP Pool Management

The size of the LWP pool has a critical impact on the
performance of the many-to-many model: if the number of
LWPs in the pool is nearly equal to the number of threads,
the implementation will act much like the one-to-one
model. Conversely, if there are very few LWPs in the pool,
the implementation will act like the many-to-one model.

Of particular concern is the risk of deadlock with an
excessively small pool: one thread may block on a
resource in the kernel and go to sleep, and by so doing
block the LWP needed to run the resource-holder. To solve
this problem, the threads package makes a minimal guar-
antee to the threads programmer: progress will always be
made. This is implemented through the use of theSIG-
WAITING signal. When the kernel realizes that all of a
process’s LWPs are blocked at the kernel level, it drops a
SIGWAITING on the process. Upon receipt of the signal,
the user-level threads package decides whether or not to
create a new LWP, on the basis of the number of runnable
threads. TheSIGWAITING mechanism makes no guaran-
tees about optimal use of LWPs on a multiprocessor. Spe-
cifically, a process may have many more runnable user-
level threads than it has LWPs, but it does not receive a
SIGWAITING until all LWPs are blocked. Thus, even if
there are processors available and work to be done, the
SIGWAITING mechanism does not guarantee that there is
a sufficient number of LWPs to run the user threads on the
available processors. If the programmer wishes to use
unbound threads and take advantage of all available pro-
cessors, he or she is required to advise the library on the
number of LWPs required.

4. ThreadMon

ThreadMon is our tool for monitoring multithreaded
programs. In this section we give a brief description of its
implementation, then discuss its use in subsequent sec-
tions.

4.1. Traditional Tools

Traditional performance debuggers (e.g. call profilers)
are generally not terribly useful for determining the effec-
tiveness of the multithreaded implementation model; sim-
ply knowingwhere a thread spent its time does not aid in
analysis of the model. While postmortem tracing tools
such astnfview (from SunSoft) allow some performance
analysis of specific programs, they offer little insight into
the effectiveness of the model itself. Moreover, the sheer
volume of data generated makes it difficult to spot detri-
mental anomalous performance behavior.

To perform this kind of analysis,runtime correlation of
thread, LWP and CPU behavior is required. To this en
we implementedThreadMon, a tool which graphically dis-
plays the runtime interactions in the Solaris implemen
tion of the many-to-many threads model.

If we had Atom [6] at our disposal (and if it worked in
Solaris environment), we probably could have used it
gather our performance data. Most of our data collect
and display could possibly have been done with Parad
[10].

4.2. ThreadMon Overview

ThreadMon displays runtime information for each use
level thread, LWP and CPU. It provides not only thestate
information for each of these computational elements, b
also themappings between them: which thread is runnin
on which LWP and which LWP is running on which CPU
Thus, to a large degree, one can watch the scheduling d
sions made by both the user-level threads package and
kernel, and view how those decisions affect thread sta
LWP state, and most importantly, CPU usage. We ha
been able to use this tool effectively to analyze the de
sions made by the many-to-many model.

4.3. Features

As shown in a number of the figures below, ThreadM
can display a variety of information about a multithread
program. Figure 2 is a display of the threads in a progra
showing the percentage of time each thread spends in
various user-thread states. Figure 3 shows the percen
of time each LWP spends in the various LWP (kern
states. Figure 4 lists the synchronization primitives disco
ered in a program’s three modules (atexit, main, and
erand48).

Figures 2 and 3 are a bit difficult to decipher in bla
and white. The colors in the bars appear in the same o
as they do in the legend, but not all colors in the lege
appear in the bars. In Figure 2, threads one through f
are either system threads or irrelevant application threa
For threads five through twelve, the bottommost shad
region represents the percentage time each thread is sp
ing On LWP (see Section 3.2.1), the next region is tim
spenddispatchable, the next region is time spend on th
Run Queue, and the top region is time spentblocked.

In Figure 3, LWPs two and three are dedicated to s
tem threads. For LWPs one and four through nine, the b
tom region represents time spent executing in user mo
the next region represents time spend executing in sys
mode, and the remaining regions represent the vari
miscellaneous system states indicated in the legend.

p-
is
nt
a-
is
y
y
s-

r-

ro-
ose
 of
ith

The
ss

ing
 It
ects
d)
of
en
ta-
 a
 it
 to

o-
f
ing
we
the
, but

d
 the

of a
4.4. Implementation Details

To minimize probe effects, we did not want to display
runtime data on the same machine as the monitored pro-
gram. Thus, ThreadMon consists of two discrete parts: a
library side that gathers data in the monitored program and
a remotedisplay side that presents the data graphically.
See Figure 1.

To allow monitoring of arbitrary binaries, the library
side is implemented as a shared library. Thus, to monitor a
program, the user sets theLD_PRELOAD environment
variable to point to the ThreadMon library. This forces
ThreadMon to be loaded before other shared libraries.
Once loaded, ThreadMon connects to the remote display
side and goes on with the program. As the program contin-
ues, ThreadMon monitor thread (bound to its own LWP)
wakes up every 10 milliseconds, gathers data, and for-
wards that data to the display side. The gathering of data at
the 10-millisecond rate requires approximately ten percent
of one CPU on a four-processor 40-MHz SparcStation 10.
In practice, we have found that this probe effect is not sig-
nificant enough to drastically change a program’s perfor-
mance characteristics. However, for the skeptical, a nice
fringe benefit of ThreadMon is its ability to monitor itself:
by examining the thread and LWP which ThreadMon uses,
the probe effect can be measured.

ThreadMon uses several OS services to perform data
gathering:

• Interpositioning. The most important data is gathered
by the library byinterpositioning between the user-
level threads library and itself. That is, ThreadMon
redefines many of the functions that the user-level
threads library uses internally to change the state of
threads and LWPs.

• Process file system [7]. The /proc file system offers a
wealth of performance information. Specifically,PIO-
CLUSAGE is used to determine LWP states.

• Kernel statistics interface. Thekstat interface is used
to obtain CPU usage statistics.

• Trace Normal Form. Unfortunately, there is no exist-
ing operating-system service to determine the ma
pings between LWPs and CPUs. To get th
information, we used the TNF kernel probes prese
in Solaris 2.5 and extrapolated the mapping inform
tion. For a variety of reasons, this extrapolation
extremely expensive. The TNF monitoring is off b
default; when it is turned on, ThreadMon typicall
consumes fifty percent of one CPU on a four-proce
sor SparcStation 10.

• Mmapping of /dev/kmem. For some statistics, we have
found it significantly faster to delve straight into ke
nel memory.

5. Sample Problems

We have used ThreadMon to analyze a number of p
grams. In this section we discuss three programs wh
performance problems are representative of the sorts
problems we have been able to diagnose and fix w
ThreadMon. The first of these, calledmutex loop, was
intended to be a test of the performance of mutexes.
second,flow, simulates and displays the flow of air acro
a model of the space shuttle. The third,matrix mult, multi-
plies two matrices using one thread per processor.

5.1. Mutex Loop

This program was intended to be a means for model
and testing how mutexes behave in “real” programs.
maintained a set of mutexes. Each thread randomly sel
a mutex from the set, locks it, loops for a small (specifie
period of time, unlocks the mutex, loops for a period
time randomly selected over a particular interval, and th
repeats (for a specified number of iterations). Our expec
tion was that there would be few collisions; i.e., when
thread attempted to lock a mutex, it was unlikely that
would find the mutex locked by another thread and have
wait. This would mean that the running time of the pr
gram would improve almost linearly with the number o
processors employed, up to the number of threads be
used. However, when we performed the experiment,
discovered that there was no such linear speedup—
program did speed up as more processors were added
not nearly as quickly as expected.

Examination of the program with ThreadMon showe
the cause of the lackluster speedup to be a mutex inside
library implementation oferand48, the random-number
generator we were employing (see Figure 4). The use

Figure 1. ThreadMon

Application

Thread

ThreadMonprobe code
analysis

and
display code

Application Process ThreadMon Process

 Code

Library

that
he
d, a
ch
m-
he
le-
ead.
um-
ssor.
ints
red
ing
s an
an
mutex in this routine was totally unexpected, since there
was no apparent reason for its existence—since all state
information used byerand48 is supplied in an argument, it
has no need to access data that is potentially shared with
other threads. We substituted a different random-number
generator (rand_r) that we verified lacked internal
mutexes, and finally achieved the speedups we had been
expecting (see Figure 5).

5.2. Flow

Flow, written by Thomas W. Meyer and discussed in
[11], is atime-critical (or soft real-time) program, in that it
must maintain a relatively constant performance level. It
displays the flow of air around the Space Shuttle. One can

manipulate the shuttle as well as any number of rakes
emit streamlines (simulated smoke) showing the flow. T
program displays a new frame every fraction of a secon
rate which must be kept fairly steady. The display of ea
frame requires, for each of a number of objects, the co
putation of the object itself and then the rendering of t
computed object. Since the graphics pipeline is sing
threaded, all rendering must be done by the same thr
However, since the computations can be done by any n
ber of threads, we have one compute thread per proce
Scheduling the computations, subject to the constra
that each object must be computed before it is rende
and that the combined time for computing and render
all objects must be less than the time between frames, i
inherently difficult problem. The scheduler computes

Figure 2. Threads and the Time Spent in Each
State

Figure 3. LWPs and the Time Spent in Each
State

Figure 4. Synchronization Variables Discovered
and Time Spent Blocked in Each

Figure 5. Results of Replacing erand48 with
rand_r

nel

,

 is
ny

 in
ads.
an
for
pro-

hus
 on
ar-
rnel

is
d-

nce
rfor-
 to
r-

han
ve
ly

 to

he
 In
en.

t of

 in

on
re.
sor
 no
ad
re
o

ing
el
lly
er
 or
ed
initial feasible schedule and then refines it as time permits.
A poor job of scheduling makes the frame rate vary; good
scheduling results in a steady and relatively fast frame
rate. Due to the time limitations of maintaining the desired
frame rate, not all objects are computed and rendered in
each frame—the scheduler determines which objects are
to appear.

The program is driven by the desired frame rate. The
more time available to compute, the more detailed is the
frame produced. The time required for each of the com-
pute and rendering tasks is known; the scheduler’s job is to
ensure that enough computation tasks are performed that
sufficient detail is available for each frame, but that these
tasks are done in the time allotted to produce a frame. To
obtain the best use of a multiprocessor, the scheduler
should distribute the computing tasks evenly over all of the
processors—any idle time on a processor is time that could
have been spent performing a task assigned to another pro-
cessor (and thus speeding up the computation) or perform-
ing an additional task (and thus adding more detail to the
frame).

Debugging the scheduler with conventional tools was
difficult—it was not easy, for example, to verify that its
determination of the running times of the various tasks
was correct and that the schedule produced resulted in the
balanced use of the processors. When we first applied
ThreadMon to the program we found that there were
unsuspected bugs in the scheduler and that the processor
usage was, indeed, unbalanced—this was clearly indicated
by both the activity displays of the compute threads and
the activity displays of the synchronization variables.
Once the problem was identified, it was easily fixed and
the solution verified by monitoring the program with
ThreadMon.

5.3. Matrix Mult

This program, taken from a recent book on multi-
threaded programming [9], uses a straightforward algo-
rithm for multiplying two matrices: each element of the
product matrix is computed as an inner product of a row
and a column of the multiplier and multiplicand matrices.
These inner products are divided evenly among the threads
of the program, each of which computes its set of inner
products and then waits for the others at a barrier. The
intent of this strategy is to insure that all processors are
employed in computing the solution. The intuitive view of
most programmers is that each thread represents a proces-
sor. Thus, if one hasn processors, one should usen
threads. However, the number of processors really utilized
can depend very strongly on the implementation model.
With the many-to-one model, only one kernel thread is
used and thus one processor is used; with the one-to-one

model, n kernel threads are used and thus, at the ker
scheduler’s discretion, up ton processors are used; with
the many-to-many model,N kernel threads are used
whereN is some number less than or equal ton (which one
would have to set to ben) and thus up toN processors are
used. Even with the scheduler-activations model, one
still at the mercy of the kernel scheduler as to how ma
processors are actually used.

With all models, certainly no more processors can be
use at any one time than the number of runnable thre
The authors of [9] suggest using two more threads th
processors, so that, for example, if one thread blocks
some reason, another thread is available to run on the
cessor that has just been made available.

We ran the code on a four-processor machine, and t
used six threads. To study the behavior of this program
the many-to-many model (using Solaris threads), we v
ied the number of kernel threads. First we used one ke
thread, taking time 6T (whereT is the time required for
one thread to compute its portion of the computation).

We then used two kernel threads: not surprisingly, th
ran in time 3T. Figures 6 and 7, snapshots of the Threa
Mon displays, show that two threads are on LWPs at o
and two processors are active. We got the expected pe
mance when increasing the number of kernel threads
three: 2T. However, when we increased the number of ke
nel threads to four, the running time was still 2T, even
though we were able to use four processors rather t
three. By increasing the number of kernel threads to fi
the running time actually increased to approximate
2.25T. Only by increasing the number of kernel threads
six did we get the fourfold speedup of 1.5T.

If you are viewing these figures in black and white, t
explanation given in Section 4.3 applies here as well.
Figure 6, the only threads of interest are five through t
Threads seven and ten are spending most of their timeOn
LWP, threads five, six, eight, and nine are spending mos
their time on therun queue. In Figure 7, CPUs two and
three are spending most of their time executing code
user mode, CPUs zero and one are mostly idle.

The subsequent analysis obtained with ThreadM
showed what, in hindsight, was the obvious problem he
With one kernel thread, we employed only one proces
and thus there was no parallelism. In fact, since there is
time-slicing in the Solaris user-level scheduler, each thre
ran to completion (i.e., until it reached the barrier) befo
the next thread started. With two kernel threads, tw
threads could run simultaneously, and thus the runn
time was reduced by a factor of two. With three kern
threads, the running time was reduced proportiona
more. However, with four kernel threads, first four us
threads ran in parallel and reached the barrier at more
less the same time. Thus four threads ran at once follow

he
-to-
ns

ffi-
ads
o
r-
ing
s of
el.
er-
by two threads running at once, which produced the same
overall running time as the three-kernel-thread solution
(three threads running at once followed by three threads
running at once). But then two user threads remained to
run—though four processors were available to run them,
only two could be used. Figures 8 and 10 show the status
of the threads in the two phases: in phase one four threads
are on LWPs, in phase 2 two threads are. Figures 9 and 11
show the status of CPUs in the two phases.

For readers with a black-and-white copy of this paper:
in Figure 8, threads six through nine are mainlyOn LWP,
threads five and ten are mainly on therun queue, and
threads one through four are irrelevant. Then, in Figure 10,
threads five and ten are mainlyOn LWP and threads six
through nine are mainly on therun queue. In Figure 9, all
CPUs are primarily executing instructions in user mode,
while in Figure 11, only CPUs zero and one are so occu-
pied.

With five kernel threads, first five user threads ran (mul-
tiplexed) on four processors, requiring time 1.25T, then the
final thread ran, increasing the total time to 2.25T. With six
kernel threads, all six user threads ran on four processors,
requiring a total time of 1.5T.

Figure 12 shows threads five through 10On LWP (so is
thread four, but it is a system thread with its own dedicated
LWP). Figure 13 shows all CPUs active executing user
instructions.

6. The Many-to-Many Model Vs. the One-to-
One Model

The many-to-many model appears to have all t
advantages of both the many-to-one model and the one
one model. This is certainly the case in those applicatio
that are ideally suited for it, ones in which there are su
cient number of active user threads so that kernel thre
rarely have to “park.” But what if the application is not s
ideally suited? Will the many-to-many model always pe
form at least as well as the one-to-one model? By bind
a user thread to a kernel thread, we can get the effect
the one-to-one model within the many-to-many mod
This is useful both for comparison purposes and for p

Figure 6. Thread Activity for Matrix Mult with
Two LWPs

Figure 7. CPU Activity for Matrix Mult with Two
LWPs

Figure 8. Thread Activity for Matrix Mult with
Four LWPs (Snapshot 1)

four

at
m
 to
the
ng
d to
r-
er
rea-
formance, should there be situations in which the one-to-
one model is superior to the many-to-many model.

We focused our attention on compute-intensive applica-
tions on multiprocessors. We took as the archetypal com-
pute-intensive application the matrix-mult example of
Section 5.3 and reduced it to a program whose threads
make successive iterations of an arbitrary computation fol-
lowed by synchronization at a barrier [4]. The amount of
computation per iteration was made a parameter, so that
we could adjust the granularity of the synchronization.

Figure 14 gives log-log plots of the performance of a
fine-grained barrier on a four-processor machine with four
bound threads and the performance of four unbound
threads with an LWP pool of size four on the same
machine. The number of iterations made by each thread

varies along thex-axis. Figure 15 is derived from Figure
14 and represents the percentage penalty for using
unbound threads rather than four bound threads.

It is not immediately clear to most programmers wh
the significance is of being bound. The common wisdo
in Solaris has been that it is important to bind a thread
an LWP if one wants the thread to be scheduled by
operating system at a high priority—since the operati
system schedules only LWPs, one must bind the threa
its LWP to take advantage of the LWP’s priority (othe
wise the LWP might be switched to running some oth
thread). As we discuss below, however, there are other
sons to consider using bound threads.

Figure 9. CPU Activity for Matrix Mult with Four
LWPs (Snapshot 1)

Figure 10. Thread Activity for Matrix Mult with
Four LWPs (Snapshot 2)

Figure 11. CPU Activity for Matrix Mult with Four
LWPs (Snapshot 2)

Figure 12. Thread Activity for Matrix Mult with
Six LWPs

er-
sis,
 (a
an

ris-
ng
und
ent
ni-

nce

w
ads
s is
ch
read
hus
d
the

ur
rt-
is

ng
 in
-
n
nifi-

end

the
ad
at
P,
in
e
ad
the

uld
e a
6.1. Synchronization Overhead

On a multiprocessor machine withn processors, we felt
that a multithreaded program withn bound threads should
perform no differently from a program withn unbound
threads and an LWP pool of sizen, i.e., the performance of
the many-to-many model should be no worse than the p
formance of the one-to-one model. To test this hypothe
we ran our barrier code on a four-processor machine
SPARCstation 10) with four unbound threads and
LWP-pool size of four (set withthr_setconcurrency) and
again with four bound threads. Our results were surp
ing: when the granularity was fine, the program usi
unbound threads ran slower than the one using bo
threads. Moreover, the difference was highly depend
upon the amount of work done between barrier synchro
zation operations; as more work was done, the differe
became increasingly small.

Before discussing the monitoring results, we note ho
to interpret the screen shots: in all of the examples, thre
one through three are blocked for various reasons. Thi
entirely normal; thread one is the main thread, whi
spawns the worker threads and then goes to sleep. Th
two is the thread assigned to handling callouts, and is t
bound to an LWP; it spends virtually all of its life blocke
in the kernel. Thread three is the thread assigned to
dynamic creation of LWPs (i.e. it handlesSIGWAITING);
it spends its life blocked at user-level. Finally, thread fo
is the bound thread that the monitor itself uses for repo
ing to the display side. Thus, all interesting behavior
seen by examining threads five and higher.

ThreadMon showed that, as expected, the worki
threads were dividing their time between being blocked
the barrier (in theBlocked state) and running their compu
tation (in theOn LWP state). It revealed, however, that i
the unbound version threads were also spending a sig
cant amount of time in theDispatchable state. In the
bound version, on the other hand, threads did not sp
time in this state.

Synchronization is supposed to be cheap under
many-to-many model, in part because blocking a thre
does not necessarily imply blocking the LWP; threads th
need to block are separated from their underlying LW
which then attempts to find other work. As mentioned
Section 3.2.2, if there is no work for an LWP to do, th
user-level scheduler parks it in the kernel. When a thre
is made runnable, the user-level scheduler marks
threadDispatchable and unparks an LWP. When the LWP
returns from parking, it finds theDispatchable thread,
changes its state toOn LWP, and runs it.

If there are always user threads in theDispatchable
state, then this scenario would never occur—there wo
be no need to park an LWP, since there would always b

Figure 13. CPU Activity for Matrix Mult with Six
LWPs

Figure 14. Bound and Unbound Barrier
Performance

Figure 15. Bound and Unbound Percent
Difference

1000

2000

4000

8000

16000

32000

64000

128000

4 16 64 256 1024 4096 16384

M
ic

ro
se

co
nd

s

Iterations

Unbound
Bound

2

4

6

8

10

12

14

16

4 16 64 256 1024 4096 16384

Pe
rc

en
t p

en
al

ty

Iterations

he
 A
ent

 to
wo
is
e

d-
u-

le
 of
 is
eb
 of
ither
re-
n-
the
as

o-
ng
he
e
on,
ill

ge

r-
g
ning
s
our
 of
r-

y,
e

g

r-
thread for it to run. However, the need to park an LWP can
certainly occur, and there is a cost associated with unpark-
ing an LWP and getting it to find a dispatchable thread.
Our experiment shows that much of this cost can be
avoided by binding threads to LWPs, i.e., by moving to the
one-to-one model. On the other hand, the synchronization
of bound threads always involves system calls—there is no
potential for eliminating system calls as there is with
unbound threads, in which an LWP running one thread can
quickly switch from a blocked thread to a dispatchable
thread [12], [3], [13], [9]. The programmer must decide
which strategy will be the most efficient—ThreadMon
provides the means for doing so.

6.2. Time Slicing

As was clear in our matrix-mult example (Section 5.3),
the execution of user threads on LWPs is not time-sliced in
the Solaris implementation of the many-to-many model—
each thread runs until it blocks, terminates, or is pre-
empted by a higher-priority thread. This lack of time-slic-
ing is not a performance problem, but it is different from
what many programmers expect. If it is important that
threads be time-sliced, they should be bound to their
LWPs. Since it might not be readily apparent to the pro-
grammer that time slicing is important, ThreadMon is an
important aid to discovering one’s need for time slicing.

7. Conclusions and Future Work

ThreadMon has proven to be a valuable tool for perfor-
mance debugging. It has solved a number of mysteries for
us—performance problems that we would have had a diffi-
cult time analyzing with other tools. Like many bugs, our
problems often ended up having simple explanations and
simple solutions. We have shown three classes of prob-
lems for which ThreadMon has been of great help:

1) Unexpected interaction with library routines: as
shown in our mutex-loop example (Section 5.1),
library routines can contain unsuspected synchroniza-
tion and other code that interferes with a multi-
threaded program.

2) Debugging of control logic: as shown in our flow
example (Section 5.2), it can be difficult to debug
code that controls when threads execute. The timing
issues involved are not easily observed with conven-
tional tools.

3) Taking advantage of (and avoiding disadvantages of)
the underlying thread model: as shown in our matrix-
mult example (Section 5.3) and discussed in Section

6, it is important to make certain that one is using t
underlying threads model to its best advantage.
number of nonintuitive effects can be made appar
with ThreadMon.

We are very much interested in applying ThreadMon
a system employing scheduler activations. The first t
classes of problems will still be important. What
unknown are what, if any, problems there will be of th
third class.

The largest program to which we have applied Threa
Mon has been Flow (Section 5.2), which is several tho
sand lines in length, although with relatively simp
synchronization. We are currently studying the analysis
programs with thousands of threads—a situation that
likely to occur in large server applications, such as w
servers. A major concern here is reducing the volume
data presented to the user to an amount that taxes ne
the display processing nor the user’s ability to comp
hend. We are experimenting with various ways for ha
dling such large amounts of data, so as to present
overall situation, but yet allow the user to focus in on are
that require attention.

Despite the recent popularity of multithreaded pr
gramming, we have been having a difficult time obtaini
nontrivial test programs. This is perhaps indicative of t
perceived difficulty of writing multithreaded code. W
hope that with research into tools such as ThreadM
some of the mystery behind multithreaded programs w
go away and people will be more willing to take advanta
of this useful paradigm.

8. Acknowledgments

Dr. Barry Medoff of Sun Microsystems Computer Co
poration facilitated our work immensely by providin
encouragement, advice, leads, and assistance in obtai
funding. Greg Foxman of Brown not only has given u
numerous suggestions and helped in the production of
figures, but also has produced a more solid version
ThreadMon that we will be making available to other pa
ties.

9. References

[1] Anderson, T.E., Bershad, B.N., Lazowska. E., and Lev
H.M., Scheduler activations: effective kernel support for th
user-level management of parallelism.ACM Trans. on Comp.
Syst. 10, 4 (Feb 1992), 53–70.

[2] Aral, Z., Gertner, I., and Schaffer, G., Efficient debuggin
primitives for multiprocessors. InThird International Conference
on Architectural Support for Programming Languages and Ope

ating Systems Proceedings (April 1989), ACM and IEEE Com-
puter Society, 87 – 95.

[3] Catanzaro, B.,Multiprocessor System Architectures. Sun-
Soft Press (1994).

[4] Chen, D.K., Su, H.H., and Yew, P.C., The impact of syn-
chronization and granularity in parallel systems. InProceedings
of the 17th Annual International Symposium on Computer Archi-
tecture(1990), 239–248.

[5] Doeppner, T. W., Threads: a system for the support of con-
current programming. Technical Report CS-87-11, Brown Uni-
versity, Department of Computer Science, Providence, RI (June
1987).

[6] Eustace, A. and Srivastava, A., ATOM: a flexible interface
for building high performance program analysis tools. InUsenix
Technical Conference Proceedings (January 1995). USENIX
Assoc., Berkeley, Calif, 303–314.

[7] Faulkner, R., and Gomes, R., The process file system and
process model in UNIX System V. InWinter USENIX Confer-
ence Proceedings (January 1991). USENIX Assoc., El Cerrito,
Calif., 243–252.

[8] Golub, D., Dean, R., Forin, A., and Rashid, R., UNIX as an
application program. InSummer USENIX Conference Proceed-
ings(June1990). USENIX Assoc., El Cerrito, Calif., 87–96.

[9] Kleiman, S.R., Shah, D., and Smaalders, B.,Programming
with Threads. SunSoft Press (1996).

[10] Miller, B.P., Callaghan, M.D., Cargile, J.M., Hollingsworth,
J.K., Irvin, R.B., Karavanic, K.L., and Newhall, T., The paradyn
parallel performance measurement tool.IEEE Computer
(November 1995), 37–46.

[11] Meyer, T.W.,Scheduling time-critical graphics on multiple
processors. Master’s thesis, Brown University, Department of
Computer Science, Providence, RI (1996).

[12] Powell, M.L., Kleiman, S.R., Barton, S., Shah, D., and
Stein, D., Weeks, M., SunOS multithread architecture. InWinter
USENIX Conference Proceedings (Jan 1991). USENIX Assoc.,
El Cerrito, Calif., 65–80.

[13] Vahalia, U.,UNIX internals: the new frontiers.Prentice Hall
(1996).

	ThreadMon: A Tool for Monitoring Multithreaded Pro...
	Bryan M. Cantrill1 Thomas W. Doeppner Jr.2 SunSoft...
	1. Introduction
	1) Bottleneck analysis: concurrent programs consis...
	2) Processor-utilization analysis: an important co...
	3) Studying the effectiveness of two-level threads...

	2. Implementation Models
	2.1. Many-to-one Model
	2.2. One-to-One Model
	2.3. Many-to-Many Model
	2.4. Scheduler Activations

	3. Solaris Implementation of the Many-to- Many Mod...
	3.1. Overview
	3.2. User-level Thread Scheduling
	3.2.1. User-level Thread States. Unbound threads i...
	3.2.2. Thread-LWP Interaction. Solaris implements ...

	3.3. LWP Pool Management

	4. ThreadMon
	4.1. Traditional Tools
	4.2. ThreadMon Overview
	4.3. Features
	4.4. Implementation Details
	Figure 1. ThreadMon

	5. Sample Problems
	5.1. Mutex Loop
	Figure 2. Threads and the Time Spent in Each State...
	Figure 3. LWPs and the Time Spent in Each State
	Figure 4. Synchronization Variables Discovered and...
	Figure 5. Results of Replacing erand48 with rand_r...

	5.2. Flow
	5.3. Matrix Mult
	Figure 6. Thread Activity for Matrix Mult with Two...
	Figure 7. CPU Activity for Matrix Mult with Two LW...
	Figure 8. Thread Activity for Matrix Mult with Fou...
	Figure 9. CPU Activity for Matrix Mult with Four L...
	Figure 10. Thread Activity for Matrix Mult with Fo...
	Figure 11. CPU Activity for Matrix Mult with Four ...
	Figure 12. Thread Activity for Matrix Mult with Si...
	Figure 13. CPU Activity for Matrix Mult with Six L...

	6. The Many-to-Many Model Vs. the One-to- One Mode...
	Figure 14. Bound and Unbound Barrier Performance
	Figure 15. Bound and Unbound Percent Difference
	6.1. Synchronization Overhead
	6.2. Time Slicing

	7. Conclusions and Future Work
	1) Unexpected interaction with library routines: a...
	2) Debugging of control logic: as shown in our flo...
	3) Taking advantage of (and avoiding disadvantages...

	8. Acknowledgments
	9. References
	[1] Anderson, T.E., Bershad, B.N., Lazowska. E., a...
	[2] Aral, Z., Gertner, I., and Schaffer, G., Effic...
	[3] Catanzaro, B., Multiprocessor System Architect...
	[4] Chen, D.K., Su, H.H., and Yew, P.C., The impac...
	[5] Doeppner, T. W., Threads: a system for the sup...
	[6] Eustace, A. and Srivastava, A., ATOM: a flexib...
	[7] Faulkner, R., and Gomes, R., The process file ...
	[8] Golub, D., Dean, R., Forin, A., and Rashid, R....
	[9] Kleiman, S.R., Shah, D., and Smaalders, B., Pr...
	[10] Miller, B.P., Callaghan, M.D., Cargile, J.M.,...
	[11] Meyer, T.W., Scheduling time-critical graphic...
	[12] Powell, M.L., Kleiman, S.R., Barton, S., Shah...
	[13] Vahalia, U., UNIX internals: the new frontier...

