ThreadMon:
A Tool for Monitoring Multithreaded Program Performance

Bryan M. Cantrilt
SunSoft, Inc.
2550 Garcia Ave., MS MPK17-301
Mountain View, CA 94043-1100
bryan.cantrill@eng.sun.com

Abstract

Thomas W. Doeppner 3r.
Department of Computer Science
Brown University
Providence, R1 02912-1910
twd@cs.brown.edu

In ThreadMon we use some relatively simple tech-

This paper describes ThreadMon, a monitoring tool for Niques to uncover surprising information about the behav-
improving the performance of multithreaded programs, ior of multithreaded programs, particularly those running

and how we have used it to examine various aspects of then multiprocessors. These techniques, which include the
many-to-many (or two-level) threads implementation insertion of data-collection routines into existing binaries

model. We run unmodified binary subject code, insert soft-and the real-time analysis and display of the collected
ware probes to collect data, and analyze and present thedata, have allowed us to do the following:

results in real time on another machine. We show that thel)
behavior of multithreaded programs, particularly those
running on multiprocessors, often defies intuition when the
many-to-many threads implementation model is used.

1. Introduction

Multithreaded programming can be surprisingly more
subtle than single-threaded programming. One’s intuition
about how one’s program is behaving may well be at odds
with reality. For example, one is tempted to think that
threads are processors and that the only synchronization
being employed is that explicitly supplied in one’s own
code. Through the use of our performance tool, Thread-
Mon, we show some of the performance problems that can
occur in multithreaded programs as the result of such
assumptions. 2

Determining the causes of such problems in multi-
threaded programs can be challenging. Most commercially
available tools (such as gprof and thread analyzer) depend
on the availability of source code. However, while pro-
grammer-supplied code can appear faultless, library code,
for which no source code is available, can make one’s
threads perform unanticipated (and expensive) actions.
User and kernel schedulers can make conflicting decisions
about which threads should be running.

IThis work was performed while this author was a student at Brown 3)
University.

2The work of this author was supported by a grant from Sun Micro-
systems and by ARPA order 8225, ONR grant N00014-91-J-4052.

Bottleneck analysisoncurrent programs consist of a
number of threads, each executing instructions inde-
pendently and competing for various resources. Con-
tention for these resources hinders performance—thus
its minimization is an important goal. By interposing
itself between the application and the threads pack-
age, ThreadMon can monitor a program’s resource
usage and display the extent of contention, not only
for individual resources but for aggregates of
resources. Compounding this resource-contention
problem is that many library routines cause conten-
tion for resources that the application programmer
may not even know exist. Our tool identifies and
shows the conflicts for these resources, providing fur-
ther valuable information to the programmer.

Processor-utilization analysisan important concern
to the user of a multiprocessor workstation is whether
all processors are being effectively utilized. If so,
could adding more processors yield performance
gains? By showing what the program’s threads and
the workstation’s processors are doing, ThreadMon
gives the programmer sufficient information to handle
these concerns: it does not solve performance prob-
lems, but points out that problems exist and provides
feedback on the effectiveness of the programmer’s
solutions.

Studying the effectiveness of two-level threads-imple-
mentation strategiesMost thread packages give the
application programmer simple, easy-to-use threads

abstractions. Hidden behind many of these packagesprogrammer need not be concerned with the implementa-
however, is a two-level implementation model (also tion strategy of the threads package, for some applications,
known as thenany-to-many modgin which the user- particularly compute-intensive applications on multipro-
level library scheduleaser threadon kernel threads cessors, various crucial aspects must be taken into
and the kernel schedulkernel thread®nprocessors account. In this section we summarize the commonly used
Potential programmer concerns when using thisimplementation strategies in preparation for our subse-
model include insuring adequate concurrency (e.g.,quent discussion of the impact of the strategy on the appli-
making certain that threads can execute when they areation.

ready and processors are available) and minimizing

overhead in managing user and kernel threads. We2 1. Many-to-one Model

demonstrate that without knowledge of both the
implementation model and its runtime behavior with
respect to one’s application,
unknowingly encounter

For kernels that do not support multiple threads of con-
programmers Canrg| multithreading can be implemented entirely as a user-
performance problems. |eye| library. These libraries, without the kernel's knowl-

ThreadMon is being used to help the programmer dis-gqge, schedule multiple threads of control onto the pro-
cover these problems and develop tactics for over-cesg's single kernel thread. Thus, just as a uniprocessor
coming them. We discuss what we have learned aboupyovides the illusion of parallelism by multiplexing multi-
the two-level implementation model and compare it pje processes on a single CPU, user-level threads packages
with other implementation models, such as Schedulerproyide the illusion of parallelism by multiplexing multi-

Activations.

The technique of code insertion has been used in
number of systems, including Parasight [2], Atom [6], and
Paradyn [10]. Parasight used this technique to establish
cheap breakpoints (or “scan points”). Atom allows one to
add arbitrary code to existing binaries. Paradyn, a very
sophisticated system that has been used in many environ-
ments, not only extracts information from running pro-
grams through code insertion, but also uses a variety of
techniques to find bottlenecks automatically. Our system is
not so general-purpose, but is focused solely on analyzing
concurrency-related aspects of a program. Our contribu-
tions are less in the technology of our tool, but in its appli-
cation to study the effectiveness of multithreaded ®
implementations.

In the remainder of this paper, we first discuss the vari-
ous implementation models that have been used for sup-
porting multithreaded programs. This is important since
one of things we have done with ThreadMon is to study’
the effectiveness of one of these models. We then give a
brief description of the Solaris implementation of the
models we have studied. Next we describe the implemens
tation of ThreadMon. In the following section we go over
three programs to which ThreadMon has been applied.
Finally we discuss some problems with the thread model
implemented in Solaris and then present some conclu-
sions.

ple user threads on a single kernel thread; this is referred
6{0 as thamany-to-onemodel [9]. There are several advan-
tages to this model:

Cheap synchronizatioiwWhen a user thread wishes to
perform synchronization, the user-level thread library
checks to see if the thread needs to block. If it does,
then the library enqueues the thread on the synchroni-
zation primitive, dequeues a user thread from the
library’s run queue, and switches the active thread. If
it does not need to block, then the active thread con-
tinues to run. No system calls are required in either
case.

Cheap thread creationTo create a new thread, the
threads library need only create a context (i.e. a stack
and registers) for the new thread and enqueue it in the
user-level run queue.

Resource efficienciKernel memory isn’'t wasted on a
stack for each user thread. This allows as many
threads as virtual memory permits.

Portability. Because user-level threads packages are
implemented entirely with standard UNIX™ and
POSIX™ library calls (e.g. witlgetcontextand set-
contex}, they are often quite portable.

However, the many-to-one model does not come with-

out a price. Specifically:

2. Implementation Models .

The performance of a multithreaded program is
strongly dependent on the underlying implementation of
the threads package. Though for many applications the

Single-threaded OS interfac8ince there is only one
kernel thread, if a user thread executes a blocking sys-
tem call, the entire process blocks, since no other user
thread can execute until the kernel thread (which is
blocked in the system call) becomes available. While

it adds significantly to implementation complexity,
the library can circumvent this problem where non-
blocking variants of system calls exist [5].

No parallelism Multithreaded programs under the -
many-to-one model will run no faster on multiproces-
sors than they run on uniprocessors. The single kernel
thread acts as a bottleneck, preventing optimal use of
the multiprocessor.

tion, but creating a kernel thread is generally between
three and ten times more expensive than creating a
user thread [13].

Resource inefficiencyEvery thread created by the

user requires kernel memory for a stack, as well as
some sort of kernel data structure to keep track of it.
Many parts of many kernels cannot be paged out to
disk; the presence of kernel threads is likely to dis-

. . . . place physical memory for applications.
Despite substantial disadvantages, the relative ease of

implementation of many-to-one threads packages ha
made it the most popular model to date. For example, th?'?" Many-to-Many Model
current implementations of Netscape™ browsers and
Java™ achieve their multithreading strictly through user-
level, many-to-one threads packages.

In an attempt to combine these two models, some oper-
ating systems, notably Mach 3.0 [8], SVR4/MP, Solaris
2.x [12], and Digital UNIX 4.0, give the programmer both
user-level and kernel threads. User-level threads are multi-
plexed on top of kernel-level threads, which in turn are
)]) scheduled on top of processors. The kernel knows only

An obvious alternative to the many-to-one model is that 4yt the kernel-level threads: it does not know of the mul-
every user thread have its own kernel thread (i.e., that therﬁplexing performed by the user-level scheduler. Due to the
be aone-to-one correspondentetween user threads and any to-many relationship between user threads and ker-
kernel threads). This provides several advantages: nel threads, this is called the many-to-many model [9] (it

« Scalable parallelismBecause each kemel thread is 'S &/S0 referred to as the two-level model [3], the split
actually a different kernel-schedulable entity, multiple M0del [13] and the LWP model). By taking a hybrid
threads can run concurrently on different processors.2PProach, this model aims to combine the advantages of
Thus, multithreaded programs written under the one-the many-to-one model and the one-to-one model, while
to-one model can achieve significant speedups wherninimizing these models’ disadvantages.

migrated from uniprocessors to multiprocessors. The major advantage of the many-to-many model is
that large numbers of threads can be supported relatively

e Multithreaded OS interfacdJnlike the many-to-one cheaply. As with the many-to-one model, the creation of a
model, threads blocking in the kernel do not impede user thread does not necessarily require the (relatively
process progress under the one-to-one model. Whermexpensive) creation of a kernel thread. Thus one can create
one user thread and its kernel thread block, the othema large number of user threads, but have the overhead of
user threads can continue to execute since their kernetreating only a small number of kernel threads. Synchroni-
threads are unaffected. zation can also be inexpensive: the implementation of syn-

)]] chronization primitives involves primarily user-level code.
While the one-to-one model can yield a major perfor- 5 ser thread that must block on a synchronization primi-
mance win, it too is not without its costs. Most of the ben- 4 (such as a mutex) is queued on a wait queue and the
efits of the many-to-one model do not carry over 10 the nqerlying kernel thread finds and runs another user thread
one-to-one model: on the user-level run queue. Only if no runnable user

. Expensive synchronizatiorBecause kernel threads thread is available doe_s the kernel thread make a system
require kernel involvement to be descheduled, kernel-Call @nd block (opark) in the kernel. Thus the cost of a
thread synchronization requires a system call if the context switch from one thread .to another can be no worse
lock is not acquired immediately. Estimates vary, but than the cost of a few subroutine calls—a system call is
if a trap is required, synchronization is from three to Oftén not necessary.

ten times more costly than for the many-to-one case_ USEr threads in the many-to-many model normally
[12], [13]. float” among kernel threads—they may run on whatever

kernel thread is available when they become runnable.
« Expensive creationUnder the one-to-one model, However, in some cases it may be necessary to associate a
every thread creation requires explicit kernel involve- user thread permanently with a kernel thread, i.ebjrtd
ment and consumes kernel resources. The differencehe user thread to the kernel thread. Such bound threads
in creation cost depends on the specific implementa-behave as threads do in the one-to-one model—their cre-

2.2. One-to-One Model

ation requires the creation of a kernel thread and synchromodel appears to solve many of the problems of the many-
nization operations requires system calls (to park theto-many family of models; its greatest drawback is per-
kernel thread in the kernel when the user thread is blockedhaps the frequent crossings of the user-kernel boundary.
and to unpark it when the user thread is released). Decid-

ing when to use bound threads is an issue we discuss i3 Solaris Implementation of the Many-to-
Section 6. Many Model

2.4. Scheduler Activations 3.1. Overview

The many-to-many model employs two schedulers, one
in the kernel and one in the user threads library. It is not
immediately obvious how the kernel scheduler can coop-
erate with the user scheduler. For example, say the us
scheduler has a high-priority thread to schedule, so it pre
empts the execution of a lower-priority thread, reassigning
its kernel thread to the high-priority user thread. But at the
same time, the kernel scheduler decides that the kernel i
thread's time slice has expired and reassigns the processar-2- User-level Thread Scheduling
to another kernel thread, perhaps one that has been
assigned by our user-level scheduler to a lower-priority 3.2.1. User-level Thread StatedJnbound threads in
thread. Thus the thread deemed the most important by th&olaris may be in one five stat&oppedBlocked Run
user-level scheduler is denied immediate use of the produeue Dispatchableor On LWP A thread that has been
cessor by the kernel scheduler in favor of a less importansuspended iStoppedwhile a thread blocked on a syn-
thread. chronization primitive i8locked If a thread is runnable

Another problem is the number of kernel threads. How but is not running on an LWP, then either it is onRue
many kernel threads should be created to support a particdueueor, if an LWP has been found to run the thread, it is
ular process? If there are too few, then the available conDispatchable Once a runnable thread is picked up by an
currency will not be realized—user threads that are readytWP, it isOn LWP While a thread cannot be actually run-
to run will stand idle, even though there may also be idlening on a CPU unless it @n LWPR beingOn LWPdoes
processors. If there are too many, then the kernel mayotimply that a thread is running on a CPU; the underly-
needlessly be multiplexing a number of kernel threads on dng LWP itself could be sleeping, waiting for a processor,
smaller number of processors, wasting time doing the con£tc.

text switching, even though the application has no need for , o
such time slicing. 3.2.2. Thread-LWP Interaction. Solaris implements the

One might be tempted to give a process just as manymuItipIexing of user-level threads onto LWPs by maintain-
kernel threads as there are processors. But if a user thredf9 @Pool of LWPs. Any unbound thread may run on any
executes a blocking system call (such as reading from arr"VP in the pool; when a thread is ready to run (i.e. in the

/0 device) or suffers a page fault, then its underlying ker- US€r-level run queue), the user-level scheduler takes an
WP out of the pool and assigns it to run the newly runna-

nel thread also blocks—another user thread may be readg _))
to execute, but no kernel thread is available to be assignef!€ thread (changing the thread's stat®LWF). This

to it. LWP continues to run the thread until either a thread at a
An elegant solution to both problems, not yet appearinghigher priority becomes runnable or the thread blocks on a

in a commercial system, ischeduler activationsan synchronization primitive. Thus, the user-level threads

approach devised at the University of Washington [1]. library isnonpreemptablevhen all threads have the same

This variant of the many-to-many model provides an Promnty.

explicit means for the user-level and kernel schedulers to When an LWP is idle (i.e. the LWP is in the pool and no
cooperate. The kernel assigns processors to processes atiteads are runnable), the user-level schequdeksit in

the user-level scheduler assigns these processors to ustre kernel. If a thread becomes runnable while LWPs are
threads. The user-level scheduler keeps the kernel apprisegarked, the user-level schedulgmparksone of the LWPs.

of how many processors it needs; the kernel schedule©Once an LWP is unparked, it dequeues and runs a user
notifies the user-level scheduler of all processor-relatedthread from the user-level run queue.

events that affect the user process, such as when proces-

sors become available to it or are taken away from it. This

Solaris 2.5 provides an implementation of the many-to-
many model [12] and introduces a new vocabulary: a ker-
el thread in Solaris is referred to aghtweight process
(LWP), while a user thread is simpltl@ead The Solaris
threads package is intended to isolate the programmer as
much as possible from the notion of LWPs.

3.3. LWP Pool Management To perform this kind of analysisuntimecorrelation of
thread, LWP and CPU behavior is required. To this end,

The size of the LWP pool has a critical impact on the We implemented hreadMon a tool which graphically dis-
performance of the many-to-many model: if the number of plays the runtime interactions in the Solaris implementa-
LWPs in the pool is nearly equal to the number of threads tion of the many-to-many threads model.
the implementation will act much like the one-to-one If we had Atom [6] at our disposal (and if it worked in a
model. Conversely, if there are very few LWPs in the pool, Solaris environment), we probably could have used it to
the implementation will act like the many-to-one model. ~ gather our performance data. Most of our data collection

Of particular concern is the risk of deadlock with an and display could possibly have been done with Paradyn
excessively small pool: one thread may block on al[10].
resource in the kernel and go to sleep, and by so doing
block the LWP needed to run the resource-holder. To solve4.2. ThreadMon Overview
this problem, the threads package makes a minimal guar-
antee to the threads programmer: progress will always be ThreadMon displays runtime information for each user-
made. This is implemented through the use of Shg- level thread, LWP and CPU. It provides not only stegte
WAITING signal. When the kernel realizes that all of a informationfor each of these computational elements, but
process’s LWPs are blocked at the kernel level, it drops aalso themappingsbetween them: which thread is running
SIGWAITINGon the process. Upon receipt of the signal, on which LWP and which LWP is running on which CPU.
the user-level threads package decides whether or not tThus, to a large degree, one can watch the scheduling deci-
create a new LWP, on the basis of the number of runnablgions made by both the user-level threads package and the
threads. TheSIGWAITINGmechanism makes no guaran- kernel, and view how those decisions affect thread state,
tees about optimal use of LWPs on a multiprocessor. Spet WP state, and most importantly, CPU usage. We have
cifically, a process may have many more runnable userbeen able to use this tool effectively to analyze the deci-
level threads than it has LWPs, but it does not receive aions made by the many-to-many model.
SIGWAITINGuntil all LWPs are blocked. Thus, even if
there are processors available and work to be done, thg 3. Features
SIGWAITINGmechanism does not guarantee that there is
a sufficient number of LWPs to run the user threads on the A shown in a number of the figures below, ThreadMon

available processors. If the programmer wishes 10 US& 4 gisplay a variety of information about a multithreaded
unbound threads and take advantage of all available PrOhrogram. Figure 2 is a display of the threads in a program,

cessors, he or she is required to advise the library on th%howing the percentage of time each thread spends in the

number of LWPs required. various user-thread states. Figure 3 shows the percentage
of time each LWP spends in the various LWP (kernel)
4. ThreadMon states. Figure 4 lists the synchronization primitives discov-

ered in a program’s three modulestekit main and
ThreadMon is our tool for monitoring multithreaded €erand4g.
programs. In this section we give a brief description of its ~ Figures 2 and 3 are a bit difficult to decipher in black
implementation, then discuss its use in subsequent secand white. The colors in the bars appear in the same order

tions. as they do in the legend, but not all colors in the legend
appear in the bars. In Figure 2, threads one through four
4.1. Traditional Tools are either system threads or irrelevant application threads.

For threads five through twelve, the bottommost shaded
region represents the percentage time each thread is spend-
ing On LWP (see Section 3.2.1), the next region is time
spenddispatchable the next region is time spend on the
Run Queugand the top region is time spdbdcked

In Figure 3, LWPs two and three are dedicated to sys-

Traditional performance debuggers (e.g. call profilers)
are generally not terribly useful for determining the effec-
tiveness of the multithreaded implementation model; sim-
ply knowingwherea thread spent its time does not aid in
ESSLyjzn?iiéCve(f:Q?ndgﬁrgg:‘lg ;Iﬁjs\:lmg:ﬁ g] pgzglrn%a;%cgs tem thre_ads. For LWPs one and four throggh_nine, the bot-
analysis of specific programs, they offer little insight into tom region represents time spent executing in user mode,

the effectiveness of the model itself. Moreover, the sheerthe next region represents time spend executing in system

volume of data generated makes it difficult to spot detri- mpde, and the remaining regions represent the various
mental anomalous performance behavior. miscellaneous system states indicated in the legend.

4.4. Implementation Details « Kernel statistics interfaceThekstatinterface is used
to obtain CPU usage statistics.

To minimize probe effects, we did not want to display |
runtime data on the same machine as the monitored pro-
gram. Thus, ThreadMon consists of two discrete parts: a
library sidethat gathers data in the monitored program and
a remotedisplay sidethat presents the data graphically.
See Figure 1.

To allow monitoring of arbitrary binaries, the library
side is implemented as a shared library. Thus, to monitor a
program, the user sets thé PRELOAD environment
variable to point to the ThreadMon library. This forces
ThreadMon to be loaded before other shared libraries.
Once loaded, ThreadMon connects to the remote display Mmapping of /dev/kmemFor some statistics, we have
side and goes on with the program. As the program contin- found it significantly faster to delve straight into ker-
ues, ThreadMon monitor thread (bound to its own LWP) nel memory.
wakes up every 10 milliseconds, gathers data, and for-
wards that data to the display side. The gathering of data ag Sample Problems
the 10-millisecond rate requires approximately ten percent
of one CPU on a four-processor 40-MHz SparcStation 10.

In practice, we have found that this probe effect is not sig- We have l_Jsed ThreadMorj to analyze a number of pro-
nificant enough to drastically change a program'’s perfor-9rams. In this section we discuss thret_e programs whose
mance characteristics. However, for the skeptical, a niceoerformance problems are represer?tatlve of the s_orts. of
fringe benefit of ThreadMon is its ability to monitor itself; Problems we have been able to diagnose and fix with
by examining the thread and LWP which ThreadMon uses,] NréadMon. The first of these, calledutex loop was

the probe effect can be measured.

Trace Normal FormUnfortunately, there is no exist-
ing operating-system service to determine the map-
pings between LWPs and CPUs. To get this
information, we used the TNF kernel probes present
in Solaris 2.5 and extrapolated the mapping informa-
tion. For a variety of reasons, this extrapolation is
extremely expensive. The TNF monitoring is off by
default; when it is turned on, ThreadMon typically
consumes fifty percent of one CPU on a four-proces-
sor SparcStation 10.

intended to be a test of the performance of mutexes. The
secondflow, simulates and displays the flow of air across
a model of the space shuttle. The thirgtrix mult multi-

plies two matrices using one thread per processor.

Application
prélode

5.1. Mutex Loop
analysis
probe code ThreadMon

an
R This program was intended to be a means for modeling
Thread and testing how mutexes behave in “real” programs. It
Library maintained a set of mutexes. Each thread randomly selects
a mutex from the set, locks it, loops for a small (specified)
period of time, unlocks the mutex, loops for a period of
Figure 1. ThreadMon time randomly selected over a particular interval, and then
repeats (for a specified number of iterations). Our expecta-
tion was that there would be few collisions; i.e., when a
E%hread attempted to lock a mutex, it was unlikely that it
would find the mutex locked by another thread and have to
« Interpositioning The most important data is gathered wait. This would mean that the running time of the pro-
by the library byinterpositioningbetween the user- gram would improve almost linearly with the number of
level threads library and itself. That is, ThreadMon processors employed, up to the number of threads being
redefines many of the functions that the user-levelused. However, when we performed the experiment, we
threads library uses internally to change the state ofdiscovered that there was no such linear speedup—the

Application Process ThreadMon Process

ThreadMon uses several OS services to perform dat
gathering:

threads and LWPs. program did speed up as more processors were added, but
not nearly as quickly as expected.
* Process file systef]. The/proc file system offers a Examination of the program with ThreadMon showed
wealth of performance information. Specifica®O- the cause of the lackluster speedup to be a mutex inside the
CLUSAGEs used to determine LWP states. library implementation ofrand48 the random-number

generator we were employing (see Figure 4). The use of a

mutex in this routine was totally unexpected, since there
was no apparent reason for its existence—since all state

information used bgrand48is supplied in an argument, it

has no need to access data that is potentially shared wit

other threads. We substituted a different random-numbe
generator rand_r) that we verified lacked internal

mutexes, and finally achieved the speedups we had bee

expecting (see Figure 5).

100%]

Legend
Stopped
Blocked

Run queue

Dispatchable

On LWP

1234567 89101112

ITI Affect | Disrniss
Figure 2. Threads and the Time Spent in Each
State
100%
Legend
Kern fault
Text fault
Stopped
Wait CPU
o
,TI Affect | Dismiss

Figure 3. LWPs and the Time Spent in Each
State

5.2. Flow

Flow, written by Thomas W. Meyer and discussed in
[11], is atime-critical (or soft real-timé program, in that it

must maintain a relatively constant performance level. It

displays the flow of air around the Space Shuttle. One ca

rlatexit e
»lnain e]
[dlerandas vean N |
> oxefet1c7s 2 tine blocked [SN |

I Al mutex_Tock MEANI:l
»oxz12ds % time blocked|]
»|0x212a8 % time blocked]
»oxziz290 % time blocked|]
»loxziies % time blocked|]
rloxziers % time blocked]
»|oxz12c0 % time b]ockedlzl
»oxziz4s % time blogked |
»ox21230 % time blocked]
»ox212f0 % time blocked]

¥ ox21200 % time blocked|]
»ox21278 % time blocked]]
»oxziz60 % time blocked|]

ign Afeit Cismiss

Figure 4. Synchronization Variables Discovered
and Time Spent Blocked in Each

»atexit wea|]
Hnain e]
Emutexj ock MEANI:'
»ox21200 % tine blocked]]
¥ ox212a8 % tine blocked |
»ox21280 % tine blockedl[]
> ox21243 % tine blocked |
¥ om21200 % time b'\ockedl:l
M ox21213 % otine blockedl |
»loxe12ds % tine blockedll]
> 0x21200 % tine blocked[|
»lox21230 % tine blockedll]
> ox21273 wovine blockedl |
»lox212f0 % tine blocked]
| oxzt1es % tine blocked__ |
View Miect Disrnizs
Figure 5. Results of Replacing erand48 with
rand_r

manipulate the shuttle as well as any number of rakes that
emit streamlines (simulated smoke) showing the flow. The
program displays a new frame every fraction of a second, a
rate which must be kept fairly steady. The display of each
frame requires, for each of a number of objects, the com-
putation of the object itself and then the rendering of the
computed object. Since the graphics pipeline is single-
threaded, all rendering must be done by the same thread.
However, since the computations can be done by any num-
ber of threads, we have one compute thread per processor.
Scheduling the computations, subject to the constraints
that each object must be computed before it is rendered
and that the combined time for computing and rendering
all objects must be less than the time between frames, is an

ri\nherently difficult problem. The scheduler computes an

initial feasible schedule and then refines it as time permitsmodel, n kernel threads are used and thus, at the kernel
A poor job of scheduling makes the frame rate vary; goodscheduler’s discretion, up to processors are used; with
scheduling results in a steady and relatively fast framethe many-to-many modelN kernel threads are used,
rate. Due to the time limitations of maintaining the desired whereN is some number less than or equal {ahich one
frame rate, not all objects are computed and rendered irwould have to set to b@® and thus up t&\ processors are
each frame—the scheduler determines which objects ar@ised. Even with the scheduler-activations model, one is
to appear. still at the mercy of the kernel scheduler as to how many
The program is driven by the desired frame rate. Theprocessors are actually used.
more time available to compute, the more detailed is the With all models, certainly no more processors can be in
frame produced. The time required for each of the com-use at any one time than the number of runnable threads.
pute and rendering tasks is known; the scheduler’s job is tol'he authors of [9] suggest using two more threads than
ensure that enough computation tasks are performed thgtrocessors, so that, for example, if one thread blocks for
sufficient detail is available for each frame, but that thesesome reason, another thread is available to run on the pro-
tasks are done in the time allotted to produce a frame. Taessor that has just been made available.
obtain the best use of a multiprocessor, the scheduler We ran the code on a four-processor machine, and thus
should distribute the computing tasks evenly over all of theused six threads. To study the behavior of this program on
processors—any idle time on a processor is time that couldhe many-to-many model (using Solaris threads), we var-
have been spent performing a task assigned to another préed the number of kernel threads. First we used one kernel
cessor (and thus speeding up the computation) or performthread, taking time B (whereT is the time required for
ing an additional task (and thus adding more detail to theone thread to compute its portion of the computation).
frame). We then used two kernel threads: not surprisingly, this
Debugging the scheduler with conventional tools wasran in time J. Figures 6 and 7, snapshots of the Thread-
difficult—it was not easy, for example, to verify that its Mon displays, show that two threads are on LWPs at once
determination of the running times of the various tasksand two processors are active. We got the expected perfor-
was correct and that the schedule produced resulted in thmmance when increasing the number of kernel threads to
balanced use of the processors. When we first appliedhree: 4. However, when we increased the number of ker-
ThreadMon to the program we found that there werenel threads to four, the running time was still, 2ven
unsuspected bugs in the scheduler and that the processtiiough we were able to use four processors rather than
usage was, indeed, unbalanced—this was clearly indicatethree. By increasing the number of kernel threads to five
by both the activity displays of the compute threads andthe running time actually increased to approximately
the activity displays of the synchronization variables. 2.25T. Only by increasing the number of kernel threads to
Once the problem was identified, it was easily fixed andsix did we get the fourfold speedup of .5
the solution verified by monitoring the program with If you are viewing these figures in black and white, the

ThreadMon. explanation given in Section 4.3 applies here as well. In
Figure 6, the only threads of interest are five through ten.
5.3. Matrix Mult Threads seven and ten are spending most of theirQime

LWR threads five, six, eight, and nine are spending most of
This program, taken from a recent book on multi- their ime on theun queueIn Figure 7, CPUs two and

threaded programming [9], uses a straightforward algo-three are spending most of their time executing code in
fithm for multiplying two matrices: each element of the USer mode, CPUs zero and one are mostly idle.
product matrix is computed as an inner product of a row The subsequent analysis obtained with ThreadMon
and a column of the multiplier and multiplicand matrices. Showed what, in hindsight, was the obvious problem here.
These inner products are divided evenly among the thread¥Vith one kernel thread, we employed only one processor
of the program, each of which computes its set of innerand thus there was no parallelism. In fact, since there is no
products and then waits for the others at a barrier. Thdime-slicing in the Solaris user-level scheduler, each thread
intent of this strategy is to insure that all processors arg@n to completion (i.e., until it reached the barrier) before
employed in computing the solution. The intuitive view of the next thread started. With two kemnel threads, two
most programmers is that each thread represents a procefiréads could run simultaneously, and thus the running
sor. Thus, if one has processors, one should uge fime was reduced by a factor of two. With three kernel
threads. However, the number of processors really utilizedthréads, the running time was reduced proportionally
can depend very strongly on the implementation model.more. However, with four kernel threads, first four user
With the many-to-one model, only one kernel thread is threads ran in parallel and reached the barrier at more or
used and thus one processor is used; with the one-to-oniess the same time. Thus four threads ran at once followed

by two threads running at once, which produced the sam (o EEEEFEF}F}Y}Y}YFYTww

overall running time as the three-kernel-thread solution
(three threads running at once followed by three threadsg
running at once). But then two user threads remained tg
run—though four processors were available to run them,
only two could be used. Figures 8 and 10 show the status
of the threads in the two phases: in phase one four thread
are on LWPs, in phase 2 two threads are. Figures 9 and 1
show the status of CPUs in the two phases.

For readers with a black-and-white copy of this paper:
in Figure 8, threads six through nine are mafty LWR
threads five and ten are mainly on tha queue and
threads one through four are irrelevant. Then, in Figure 10
threads five and ten are mair®n LWPand threads six

through nine are mainly on tlman queueln Figure 9, all

CPUs are primarily executing instructions in user mode,
while in Figure 11, only CPUs zero and one are so occu-
pied.

With five kernel threads, first five user threads ran (mul-
tiplexed) on four processors, requiring time I.26en the

100%
Legend
PIO Wait
10 Wait
o% lll -
cpu@0 cpu@1 cpu@2 cpu@3
Afect Dismiss
Figure 7. CPU Activity for Matrix Mult with Two
LWPs

final thread ran, increasing the total time to Z.28ith six s
kernel threads, all six user threads ran on four processors Legend
requiring a total time of 1B Stopped
Blocked
100%
Dispatchable
Legend
Stapped On LWP
Blocked
- 0%
Dispatchable 1 23 45678 910
On LWP Aifect Distrias
Figure 8. Thread Activity for Matrix Mult with
Four LWPs (Snapshot 1)
0%
P28 456782910 6. The Many-to-Many Model Vs. the One-to-
One Model
Figure 6. Thread Activity for Matrix Mult with
Two LWPs The many-to-many model appears to have all the

Figure 12 shows threads five throughCQ® LWP(so is

advantages of both the many-to-one model and the one-to-
one model. This is certainly the case in those applications

thread four, but it is a system thread with its own dedicatedthat are ideally suited for it, ones in which there are suffi-
LWP). Figure 13 shows all CPUs active executing usercient number of active user threads so that kernel threads

instructions.

rarely have to “park.” But what if the application is not so
ideally suited? Will the many-to-many model always per-
form at least as well as the one-to-one model? By binding
a user thread to a kernel thread, we can get the effects of
the one-to-one model within the many-to-many model.
This is useful both for comparison purposes and for per-

e w .~ ___________________

100%

— . . 100%
Legend Legend
PIO Wait PIO Wait
0% 0% I I
cpu@0 cpu@l cpu@2 cpu@3 cpu@d cpu@1 cpu@2 cpu@l
Affect Disriss Afect Dismiz
Figure 9. CPU Activity for Matrix Mult with Four Figure 11. CPU Activity for Matrix Mult with Four
LWPs (Snapshot 1) LWPs (Snapshot 2)
100% 100%]
Legend Lagend
Stopped Stopped
Blocked Blocked
Dispatchable Dispatchable
On LWP On LWP
0% 0%
12 3 45 6 7 8 910 1 2 3 45 6 7 8 910
Affect Cismiss Afect Disrriss
Figure 10. Thread Activity for Matrix Mult with Figure 12. Thread Activity for Matrix Mult with
Four LWPs (Snhapshot 2) Six LWPs

formance, should there be situations in which the one-to-varies along the-axis. Figure 15 is derived from Figure
one model is superior to the many-to-many model. 14 and represents the percentage penalty for using four
We focused our attention on compute-intensive applica-unbound threads rather than four bound threads.
tions on multiprocessors. We took as the archetypal com- It is not immediately clear to most programmers what
pute-intensive application the matrix-mult example of the significance is of being bound. The common wisdom
Section 5.3 and reduced it to a program whose thread@n Solaris has been that it is important to bind a thread to
make successive iterations of an arbitrary computation fol-an LWP if one wants the thread to be scheduled by the
lowed by synchronization at a barrier [4]. The amount of operating system at a high priority—since the operating
computation per iteration was made a parameter, so thasystem schedules only LWPs, one must bind the thread to
we could adjust the granularity of the synchronization. its LWP to take advantage of the LWP’s priority (other-
Figure 14 gives log-log plots of the performance of a wise the LWP might be switched to running some other
fine-grained barrier on a four-processor machine with fourthread). As we discuss below, however, there are other rea-
bound threads and the performance of four unboundsons to consider using bound threads.
threads with an LWP pool of size four on the same
machine. The number of iterations made by each thread

| Swap Wait |
| ldle
| User
0%
cpu@1

Affect Disrmiss

100% —

cpu@o cpu@2 cpu@s3

Figure 13.

CPU Activity for Matrix Mult with Six
LWPs

Microseconds
8
o

| Unbound ——
Bound —--

Figure

16
14
12

Percent penalty

N b OO

10 F

4 16 64 256 1024 4096 16384
Iterations

14. Bound and Unbound Barrier
Performance

4 16 64 256 1024 4096 16384
Iterations

Figure 15. Bound and Unbound Percent

Difference

6.1. Synchronization Overhead

On a multiprocessor machine witlprocessors, we felt
that a multithreaded program withbound threads should
perform no differently from a program with unbound
threads and an LWP pool of siagi.e., the performance of
the many-to-many model should be no worse than the per-
formance of the one-to-one model. To test this hypothesis,
we ran our barrier code on a four-processor machine (a
SPARCstation 10) with four unbound threads and an
LWP-pool size of four (set witthr_setconcurrengyand
again with four bound threads. Our results were surpris-
ing: when the granularity was fine, the program using
unbound threads ran slower than the one using bound
threads. Moreover, the difference was highly dependent
upon the amount of work done between barrier synchroni-
zation operations; as more work was done, the difference
became increasingly small.

Before discussing the monitoring results, we note how
to interpret the screen shots: in all of the examples, threads
one through three are blocked for various reasons. This is
entirely normal; thread one is the main thread, which
spawns the worker threads and then goes to sleep. Thread
two is the thread assigned to handling callouts, and is thus
bound to an LWP; it spends virtually all of its life blocked
in the kernel. Thread three is the thread assigned to the
dynamic creation of LWPs (i.e. it handIB8GWAITING;
it spends its life blocked at user-level. Finally, thread four
is the bound thread that the monitor itself uses for report-
ing to the display side. Thus, all interesting behavior is
seen by examining threads five and higher.

ThreadMon showed that, as expected, the working
threads were dividing their time between being blocked in
the barrier (in thélockedstate) and running their compu-
tation (in theOn LWPstate). It revealed, however, that in
the unbound version threads were also spending a signifi-
cant amount of time in th®ispatchablestate. In the
bound version, on the other hand, threads did not spend
time in this state.

Synchronization is supposed to be cheap under the
many-to-many model, in part because blocking a thread
does not necessarily imply blocking the LWP; threads that
need to block are separated from their underlying LWP,
which then attempts to find other work. As mentioned in
Section 3.2.2, if there is no work for an LWP to do, the
user-level scheduler parks it in the kernel. When a thread
is made runnable, the user-level scheduler marks the
threadDispatchableand unparks an LWP. When the LWP
returns from parking, it finds thB®ispatchablethread,
changes its state @n LWR and runs it.

If there are always user threads in fspatchable
state, then this scenario would never occur—there would
be no need to park an LWP, since there would always be a

thread for it to run. However, the need to park an LWP can 6, it is important to make certain that one is using the
certainly occur, and there is a cost associated with unpark- underlying threads model to its best advantage. A
ing an LWP and getting it to find a dispatchable thread. number of nonintuitive effects can be made apparent
Our experiment shows that much of this cost can be with ThreadMon.

avoided by binding threads to LWPs, i.e., by moving to the .) i
one-to-one model. On the other hand, the synchronization e are very much interested in applying ThreadMon to

of bound threads always involves system calls—there is nd® SYStem employing scheduler activations. The first two
potential for eliminating system calls as there is with classes of problems will still be important. What is

unbound threads, in which an LWP running one thread carfNknown are what, if any, problems there will be of the
quickly switch from a blocked thread to a dispatchable third class. _ _

thread [12], [3], [13], [9]. The programmer must decide The largest program to which we have applied Thread-

which strategy will be the most efficient—ThreadMon Mon has been Flow (Section 5.2), which is several thou-
provides the means for doing so. sand lines in length, although with relatively simple

synchronization. We are currently studying the analysis of
programs with thousands of threads—a situation that is
likely to occur in large server applications, such as web
. . . servers. A major concern here is reducing the volume of
As was clear in our matrix-mult example (Section 5.3), data presented to the user to an amount that taxes neither

the execution of user threads on LWPs is not time-sliced iny, display processing nor the users ability to compre-
the Solaris implementation of the many-to-many model— hend. We are experimenting with various ways for han-

each thread runs unt_il i.t blocks, terminates, or Is p.re'dling such large amounts of data, so as to present the
gmpted by a higher-priority thread. Th|§ I?Ck.Of time-slic- overall situation, but yet allow the user to focus in on areas
ing is not a performance problem, but it is different from that require attention

what many programmers expect. If it is important that Despite the recent popularity of multithreaded pro-

T_k\l/(/e;dsspe tl_me-ghr(]:ed, tgey shdqluld be bound :10 the'_rgramming, we have been having a difficult time obtaining

s. =Ihce |t_m|g t. qot € readry apparent fo t € PO nontrivial test programs. This is perhaps indicative of the

grammer that time slicing is important, ThreadMon is an perceived difficulty of writing multithreaded code. We

important aid to discovering one’s need for time slicing. hope that with research into tools such as ThreadMon,
] some of the mystery behind multithreaded programs will

7. Conclusions and Future Work go away and people will be more willing to take advantage

of this useful paradigm.
ThreadMon has proven to be a valuable tool for perfor-

mance debugging. It has solved a number of mysteries fog, Acknowledgments

us—performance problems that we would have had a diffi-

cult time analyzing with other tools. Like many bugs, our

problems often ended up having simple explanations an

simple solutions. We have shown three classes of prob

lems for which ThreadMon has been of great help:

6.2. Time Slicing

Dr. Barry Medoff of Sun Microsystems Computer Cor-
oration facilitated our work immensely by providing
encouragement, advice, leads, and assistance in obtaining
funding. Greg Foxman of Brown not only has given us
1) Unexpected interaction with library routinesas numerous suggestions and helped in the production of our
shown in our mutex-loop example (Section 5.1), figures, but also has produced a more solid version of
library routines can contain unsuspected synchroniza-ThreadMon that we will be making available to other par-
tion and other code that interferes with a multi- t€s-
threaded program.

_ _ _ 9. References
2) Debugging of control logicas shown in our flow
example (Section 5.2), it can be difficult to debug
..~ [1] Anderson, T.E., Bershad, B.N., Lazowska. E., and Levy,
code that controls when threads execute. The tlmmgH.M., Scheduler activations: effective kernel support for the

ISSUes involved are not easily observed with CONVEN-ser-level management of parallelis®CM Trans. on Comp.
tional tools. Syst. 104 (Feb 1992)53-70.
3) Taking advantage of (and avoiding disadvantages of)

the underlying thread modeds shown in our matrix-
mult example (Section 5.3) and discussed in Section

[2] Aral, Z., Gertner, |., and Schaffer, G., Efficient debugging
primitives for multiprocessors. [fhird International Conference
on Architectural Support for Programming Languages and Oper-

ating Systems Proceedin@pril 1989), ACM and IEEE Com-
puter Society, 87 — 95.

[3] Catanzaro, B.Multiprocessor System ArchitectureSun-
Soft Press (1994).

[4] Chen, D.K., Su, H.H., and Yew, P.C., The impact of syn-
chronization and granularity in parallel systemsPtoceedings

of the 17th Annual International Symposium on Computer Archi-
tecture(1990), 239-248.

[5] Doeppner, T. W., Threads: a system for the support of con-
current programming. Technical Report CS-87-11, Brown Uni-

versity, Department of Computer Science, Providence, RI (June
1987).

[6] Eustace, A. and Srivastava, A., ATOM: a flexible interface
for building high performance program analysis tooldJsenix
Technical Conference Proceedingdanuary 1995). USENIX
Assoc., Berkeley, Calif, 303-314.

[7] Faulkner, R., and Gomes, R., The process file system and
process model in UNIX System V. Winter USENIX Confer-
ence Proceedingflanuary 1991). USENIX Assoc., El Cerrito,
Calif., 243-252.

[8] Golub, D., Dean, R., Forin, A., and Rashid, R., UNIX as an
application program. I'summer USENIX Conference Proceed-
ings (June1990). USENIX Assoc., El Cerrito, Calif., 87-96.

[9] Kleiman, S.R., Shah, D., and Smaalders,ABagramming
with Threads SunSoft Press (1996).

[10] Miller, B.P., Callaghan, M.D., Cargile, J.M., Hollingsworth,
J.K., Irvin, R.B., Karavanic, K.L., and Newhall, T., The paradyn
parallel performance measurement todEEE Computer
(November 1995), 37-46.

[11] Meyer, T.W.,Scheduling time-critical graphics on multiple
processors Master’s thesis, Brown University, Department of
Computer Science, Providence, RI (1996).

[12] Powell, M.L., Kleiman, S.R., Barton, S., Shah, D., and
Stein, D., Weeks, M., SunOS multithread architectur&\Vimer
USENIX Conference Proceedin@fan 1991). USENIX Assoc.,
El Cerrito, Calif., 65—-80.

[13] Vahalia, U.,UNIX internals: the new frontier®rentice Hall
(1996).

	ThreadMon: A Tool for Monitoring Multithreaded Pro...
	Bryan M. Cantrill1 Thomas W. Doeppner Jr.2 SunSoft...
	1. Introduction
	1) Bottleneck analysis: concurrent programs consis...
	2) Processor-utilization analysis: an important co...
	3) Studying the effectiveness of two-level threads...

	2. Implementation Models
	2.1. Many-to-one Model
	2.2. One-to-One Model
	2.3. Many-to-Many Model
	2.4. Scheduler Activations

	3. Solaris Implementation of the Many-to- Many Mod...
	3.1. Overview
	3.2. User-level Thread Scheduling
	3.2.1. User-level Thread States. Unbound threads i...
	3.2.2. Thread-LWP Interaction. Solaris implements ...

	3.3. LWP Pool Management

	4. ThreadMon
	4.1. Traditional Tools
	4.2. ThreadMon Overview
	4.3. Features
	4.4. Implementation Details
	Figure 1. ThreadMon

	5. Sample Problems
	5.1. Mutex Loop
	Figure 2. Threads and the Time Spent in Each State...
	Figure 3. LWPs and the Time Spent in Each State
	Figure 4. Synchronization Variables Discovered and...
	Figure 5. Results of Replacing erand48 with rand_r...

	5.2. Flow
	5.3. Matrix Mult
	Figure 6. Thread Activity for Matrix Mult with Two...
	Figure 7. CPU Activity for Matrix Mult with Two LW...
	Figure 8. Thread Activity for Matrix Mult with Fou...
	Figure 9. CPU Activity for Matrix Mult with Four L...
	Figure 10. Thread Activity for Matrix Mult with Fo...
	Figure 11. CPU Activity for Matrix Mult with Four ...
	Figure 12. Thread Activity for Matrix Mult with Si...
	Figure 13. CPU Activity for Matrix Mult with Six L...

	6. The Many-to-Many Model Vs. the One-to- One Mode...
	Figure 14. Bound and Unbound Barrier Performance
	Figure 15. Bound and Unbound Percent Difference
	6.1. Synchronization Overhead
	6.2. Time Slicing

	7. Conclusions and Future Work
	1) Unexpected interaction with library routines: a...
	2) Debugging of control logic: as shown in our flo...
	3) Taking advantage of (and avoiding disadvantages...

	8. Acknowledgments
	9. References
	[1] Anderson, T.E., Bershad, B.N., Lazowska. E., a...
	[2] Aral, Z., Gertner, I., and Schaffer, G., Effic...
	[3] Catanzaro, B., Multiprocessor System Architect...
	[4] Chen, D.K., Su, H.H., and Yew, P.C., The impac...
	[5] Doeppner, T. W., Threads: a system for the sup...
	[6] Eustace, A. and Srivastava, A., ATOM: a flexib...
	[7] Faulkner, R., and Gomes, R., The process file ...
	[8] Golub, D., Dean, R., Forin, A., and Rashid, R....
	[9] Kleiman, S.R., Shah, D., and Smaalders, B., Pr...
	[10] Miller, B.P., Callaghan, M.D., Cargile, J.M.,...
	[11] Meyer, T.W., Scheduling time-critical graphic...
	[12] Powell, M.L., Kleiman, S.R., Barton, S., Shah...
	[13] Vahalia, U., UNIX internals: the new frontier...

