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Abstract. A digraph is upward planar if it has a planar drawing such that all the edges are
monotone with respect to the vertical direction. Testing upward planarity and constructing upward
planar drawings is important for displaying hierarchical network structures, which frequently arise
in software engineering, project management, and visual languages. In this paper we investigate
upward planarity testing of single-source digraphs; we provide a new combinatorial characterization
of upward planarity and give an optimal algorithm for upward planarity testing. Our algorithm tests
whether a single-source digraph with n vertices is upward planar in O(n) sequential time, and in
O(logn) time on a CRCW PRAM with n log logn/ logn processors, using O(n) space. The algorithm
also constructs an upward planar drawing if the test is successful. The previously known best result
is an O(n2)-time algorithm by Hutton and Lubiw [Proc. 2nd ACM–SIAM Symposium on Discrete
Algorithms, SIAM, Philadelphia, 1991, pp. 203–211]. No efficient parallel algorithms for upward
planarity testing were previously known.
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1. Introduction. The upward planarity of digraphs is a fundamental issue in
the area of graph drawing and has been extensively investigated. A digraph is upward
planar if it has a planar upward drawing, i.e., a planar drawing such that all the edges
are monotone with respect to the vertical direction (see Figure 1a). Planarity and
acyclicity are necessary but not sufficient conditions for upward planarity, as shown
in Figure 1b.

Testing upward planarity and constructing upward planar drawings are impor-
tant for displaying hierarchical network structures, which frequently arise in a wide
variety of areas. Key areas of application include software engineering, project man-
agement, and visual languages. Especially significant in a number of applications are
single-source digraphs, such as subroutine-call graphs, is-a hierarchies, and organiza-
tion charts. Also, upward planarity of single-source digraphs has deep combinatorial
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temistica, Università di Roma “La Sapienza,” Via Buonarroti, 12, 00185 Roma, Italy (mannino@
iasi.rm.cnr.it).

¶Department of Computer Science, Brown University, Providence, RI 02912-1910 (rt@cs.
brown.edu).

132



OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 133

implications in the theory of ordered sets. Namely, the orders defined by the transitive
closure of upward planar single-source digraphs have bounded dimension [34] so that
they can be compactly represented.

Fig. 1. Examples of planar acyclic digraphs: (a) upward planar; (b) not upward planar.

A survey on algorithms for planarity testing and graph drawing can be found in
[7]. Previous work on upward planarity is as follows.

Combinatorial results on upward planarity for covering digraphs of lattices were
first given in [22, 26]. Further results on the interplay between upward planarity
and ordered sets are surveyed by Rival [30]. Lempel, Even, and Cederbaum [23]
relate the planarity of biconnected undirected graphs to the upward planarity of st-
digraphs. A combinatorial characterization of upward planar digraphs is provided in
[21, 9]; namely, a digraph is upward planar if and only if it is a subgraph of a planar
st-digraph.

Di Battista, Tamassia, and Tollis [9, 12] give algorithms for constructing upward
planar drawings of st-digraphs and investigate area bounds and symmetry display.
Tamassia and Vitter [32] show that the above drawing algorithms can be efficiently
parallelized. Upward planar drawings of trees and series-parallel digraphs are studied
in [29, 31, 6, 13, 15] and [1, 2], respectively.

In [8] it is shown that for the special case of bipartite digraphs, upward planarity
is equivalent to planarity. In [3, 4] a polynomial-time algorithm is given for testing
the upward planarity of digraphs with a prescribed embedding. Thomassen [33] char-
acterizes the upward planarity of single-source digraphs in terms of forbidden circuits.
Hutton and Lubiw [19] combine Thomassen’s characterization with a decomposition
scheme to test the upward planarity of an n-vertex single-source digraph in O(n2)
time. Very recently, Papakostas [25] has given a polynomial-time algorithm for up-
ward planarity testing of outerplanar digraphs, and Garg and Tamassia [16] have
shown that upward planarity testing is NP-complete for general digraphs.

In this paper we investigate upward planarity testing of single-source digraphs.
Our main results are summarized as follows:

• We provide a new combinatorial characterization of upward planarity within a
given embedding in terms of a forest embedded in the face-vertex incidence graph.

• We reduce the upward planarity testing problem to that of finding a suitable
orientation of a tree that synthetically represents the decomposition of a graph into
its triconnected components.

• We show that the above combinatorial results yield an optimal O(n)-time
upward planarity testing algorithm for single-source digraphs. The algorithm also
constructs an upward planar drawing if the test is successful. Our algorithm is an
improvement over the previously known best result [19] by an O(n) factor in the time
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complexity. Our algorithm is easy to implement and does not require any complex
data structure.

• We efficiently parallelize the above algorithm to achieve O(logn) time on a
CRCW PRAM with n log logn/ logn processors. Hence, we provide the first efficient
parallel algorithm for upward planarity testing. Our parallel time complexity is the
same as that of the best parallel algorithm for planarity testing [28, 27].

• Finally, as a side effect we provide an optimal parallel algorithm for testing
acyclicity of a planar n-vertex single-source digraph in O(logn) time with n/ logn
processors on an EREW PRAM.

Open problems include the following:
• devising efficient dynamic algorithms for upward planarity testing of single-

source digraphs;
• exploring the area requirements of upward planar drawings of single-source

digraphs;
• reducing the time complexity of upward planarity testing of planar digraphs

with a prescribed embedding; and
• identifying additional classes of planar digraphs for which upward planarity

can be tested in polynomial time.
The remainder of this paper is organized as follows. Section 2 contains prelim-

inary definitions and results. The problem of testing upward planarity for planar
single-source digraphs with a prescribed embedding is investigated in section 3. A
combinatorial characterization of upward planarity for single-source digraphs
is given in sections 4, 5, and 6. The complete upward planarity testing algorithm
for single-source digraphs is presented in section 7. Also in section 7, two examples
of application of the algorithm are illustrated. In the first example the considered
digraph is not upward drawable; in the second example an upward drawable digraph
is considered.

2. Preliminaries. In this section we recall some terminology and basic results
on upward planarity. We also review the SPQR-tree, introduced in [10, 11], and the
combinatorial characterization of upward planarity for embedded planar digraphs,
shown in [3, 4]. We assume the reader’s familiarity with planar graphs.

2.1. Drawings and embeddings. A drawing of a graph maps each vertex to
a distinct point of the plane and each edge (u, v) to a simple Jordan curve with
endpoints u and v. A polyline drawing maps each edge into a polygonal chain. A
straight-line drawing maps each edge into a straight-line segment.

A drawing is planar if no two edges intersect except, possibly, at common end-
points. A graph is planar if it has a planar drawing. Two planar drawings of a planar
graph G are equivalent if, for each vertex v, they have the same circular clockwise
sequence of edges incident on v. Hence, the planar drawings of G are partitioned into
equivalence classes. Each such class is called an embedding of G. An embedded planar
graph is a planar graph with a prescribed embedding. A triconnected planar graph
has a unique embedding up to a reflection. A planar drawing divides the plane into
topologically connected regions delimited by circuits, called faces. The external face
is the boundary of the unbounded region. Two drawings with the same embedding
have the same faces. Hence, one can speak of the faces of an embedding.

Let G be a digraph, i.e., a directed graph. A source of G is a vertex without
incoming edges. A sink of G is a vertex without outgoing edges. An internal vertex
of G has both incoming and outgoing edges. An sT -digraph is an acyclic digraph with
exactly one source.
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Let f be a face of planar drawing (or embedding) of a digraph. A source-switch
(sink-switch) of f is a source (sink) of f . Note that a source-switch (sink-switch) is
not necessarily a source (sink) of G.

An upward drawing of a digraph is such that all the edges are represented by
directed curves increasing monotonically in the vertical direction. A digraph has an
upward drawing if and only if it is acyclic. A digraph is upward planar if it admits
a planar upward drawing. Note that a planar acyclic digraph does not necessarily
have a planar upward drawing, as shown in Fig. 1b. An upward planar digraph also
admits a planar upward straight-line drawing [21, 9]. A planar st-digraph is a planar
digraph with exactly one source s and one sink t, connected by edge (s, t). A digraph
is upward planar if and only if it is a subgraph of a planar st-digraph [21, 9].

A planar embedding of a digraph is candidate if the incoming (outgoing) edges
around each vertex are consecutive. The planar embedding underlying an upward
drawing is candidate.

An upward embedding of a digraph G is an embedding of G such that
• each source- and sink-switch of each face of G is labeled small or large;
• there exists a planar straight-line upward drawing of G where each switch

labeled small corresponds to an angle with measure < π, and each switch labeled
large has measure > π.

Finally, the following lemma is due to Hutton and Lubiw.
Lemma 1 (see [19]). If a digraph has a single source, then it is upward planar if

and only if its biconnected components are upward planar.
Due to this result, in the remainder of the paper we will consider only biconnected

digraphs.

2.2. SPQR-trees. In the following we summarize SPQR-trees. For more de-
tails see [10, 11]. SPQR-trees are closely related to the classical decomposition of
biconnected graphs into triconnected components [17].

Let G be a biconnected graph. A split pair of G is either a separation pair or a
pair of adjacent vertices. A split component of a split pair {u, v} is either an edge
(u, v) or a maximal subgraph C of G such that C contains u and v, and {u, v} is not
a split pair of C. Note that a vertex w distinct from u and v belongs to exactly one
split component of {u, v}.

Let {s, t} be a split pair of G. A maximal split pair {u, v} of G with respect to
{s, t} is a split pair of G distinct from {s, t} such that, for any other split pair {u′, v′}
of G, there exists a split component of {u′, v′} containing vertices u, v, s, and t.

Let e(s, t) be an edge of G, called reference edge. The SPQR-tree T of G with
respect to e describes a recursive decomposition of G induced by its split pairs. Tree
T is a rooted ordered tree whose nodes are of four types: S, P, Q, and R. Each node µ
of T has an associated biconnected multigraph, called the skeleton of µ, and denoted
by skeleton(µ). Also, it is associated with an edge of the skeleton of the parent ν of
µ, called the virtual edge of µ in skeleton(ν). Tree T is recursively defined as follows.

Trivial case. If G consists of exactly two parallel edges between s and t, then T
consists of a single Q-node whose skeleton is G itself.

Parallel case. If the split pair {s, t} has at least three split components G1, . . . ,
Gk (k ≥ 3), the root of T is a P-node µ. Graph skeleton(µ) consists of k parallel
edges between s and t, denoted e1, . . . , ek, with e1 = e.

Series case. Otherwise, the split pair {s, t} has exactly two split components,
one of them is the reference edge e, and we denote with G′ the other split com-
ponent. If G′ has cutvertices c1, . . . , ck−1 (k ≥ 2) that partition G into its blocks
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G1, . . . , Gk, in this order from s to t, the root of T is an S-node µ. Graph skeleton(µ)
is the cycle e0, e1, . . . , ek, where e0 = e, c0 = s, ck = t, and ei connects ci−1 with
ci (i = 1, . . . , k).

Rigid case. If none of the above cases applies, let {s1, t1}, . . . , {sk, tk} be the
maximal split pairs of G with respect to {s, t} (k ≥ 1), and for i = 1, . . . , k, let Gi

be the union of all the split components of {si, ti} except for the one containing the
reference edge e. The root of T is an R-node µ. Graph skeleton(µ) is obtained from
G by replacing each subgraph Gi with the edge ei between si and ti.

Except for the trivial case, µ has children µ1, . . . , µk in this order such that
µi is the root of the SPQR-tree of graph Gi ∪ ei with respect to reference edge
ei (i = 1, . . . , k). Edge ei is said to be the virtual edge of node µi in skeleton(µ) and
of node µ in skeleton(µi). Graph Gi is called the pertinent graph of node µi, and of
edge ei.

The tree T so obtained has a Q-node associated with each edge of G, except the
reference edge e. We complete the SPQR-tree by adding another Q-node, representing
the reference edge e, and making it the parent of µ so that it becomes the root.
Observe that we are defining SPQR-trees of graphs; however, the same definition can
be applied to digraphs. An example of SPQR-tree is shown in Figure 2.

Let µ be a node of T . We have the following:

• if µ is an R-node, then skeleton(µ) is a triconnected graph;

• if µ is an S-node, then skeleton(µ) is a cycle;

• if µ is a P-node, then skeleton(µ) is a triconnected multigraph consisting of a
bundle of multiple edges;

• if µ is a Q-node, then skeleton(µ) is a biconnected multigraph consisting of two
multiple edges.

The skeletons of the nodes of T are homeomorphic to subgraphs of G. The SPQR-
trees of G, with respect to different reference edges, are isomorphic and are obtained
one from the other by selecting a different Q-node as the root. Hence, we can define
the unrooted SPQR-tree of G without ambiguity.

The SPQR-tree T of a graph G with n vertices and m edges has m Q-nodes and
O(n) S-, P-, and R-nodes. Also, the total number of vertices of the skeletons stored
at the nodes of T is O(n).

A graph G is planar if and only if the skeletons of all the nodes of the SPQR-tree
T of G are planar. An SPQR-tree T rooted at a given Q-node represents all the
planar drawings of G having the reference edge (associated with the Q-node at the
root) on the external face (see Figure 2). Namely, such drawings can be constructed
by the following recursive procedure:

• construct a drawing of the skeleton of the root ρ with the reference edge of the
parent of ρ on the external face;

• for each child µ of ρ
– let e be the virtual edge of µ in skeleton(ρ), and let H be the pertinent

graph of µ plus edge e;
– recursively draw H with the reference edge e on the external face;
– in skeleton(ρ), replace virtual edge e with the above drawing of H minus

edge e.

2.3. Upward planarity testing of embedded digraphs. In the remainder
of this section we recall the combinatorial characterization of upward planarity for
planar digraphs with a fixed embedding, given in [3, 4], which will be used extensively
in this paper.
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Fig. 2. (a) A planar biconnected digraph G. (b) SPQR-tree T of G, where the Q-nodes are
represented by squares. (c) Skeletons of the R-nodes.

In [3, 4], the problem of testing whether an embedded planar digraph G admits a
planar upward drawing is formulated as a perfect c-matching problem on a bipartite
graph derived from G. To introduce this formulation we need some notation and
definitions.

Let Γ be a planar straight-line upward drawing of an embedded upward planar
digraph G. (As shown in [21, 9], every upward planar digraph admits a planar upward
straight-line drawing.) We say that a sink t (source s) of G is assigned to a face f
of Γ if the angle defined by the two edges of f incident on t (s) is greater than π.
Informally speaking, t (s) is assigned to f if it “penetrates” into face f . Clearly, each
sink (source) can be assigned only to one face, while an internal vertex is not assigned
to any face. In [3, 4], it is shown that the number of vertices assigned to a face f in
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any upward drawing is equal to the capacity c(f) of the face itself, which is defined as
follows. Let nf be the number of sink-switches of f (nf is also equal to the number of
source-switches of f). We set c(f) = nf − 1 if f is an internal face and c(f) = nf + 1
if f is the external face. In the following, we associate to each vertex x and each face
f the quantity Z(x, f), where Z(x, f) = 1 if x is a switch of f , Z(x, f) = 0 otherwise.
Clearly, we have that 2nf =

∑
x∈f Z(x, f).

This intuitive idea of assignment of vertices to faces can be formally expressed as
a perfect c-matching problem [24]. Namely, given a planar digraph G with a candidate
planar embedding Ψ, we associate with G and Ψ the bipartite network N(L1, L2, EN )
with vertex set L1 ∪ L2 and edge-set EN , where (i) the vertices of L1 represent the
sources and sinks of G; (ii) the vertices of L2 represent the faces of Ψ; and (iii) EN

has an edge (v, f) if and only the vertex of G represented by v ∈ L1 lies on the face
of Ψ represented by f ∈ L2. The c-matching problem for G and Ψ is described by
the following equations:

∑

(v,f)∈EN
xvf = c(f), ∀f ∈ L2,

∑

(v,f)∈EN
xvf = 1, ∀v ∈ L1,

where xvf = 1 indicates that vertex v is assigned to face f and xvf = 0 indicates
otherwise. A solution of this c-matching problem is called an upward consistent as-
signment of the variables xvf and is denoted by A. The equations of the first set are
called capacity equations.

Lemma 2 (see [3, 4]). Let G be a digraph with a candidate planar embedding Ψ.
Then Ψ is an upward embedding of G if and only if the c-matching problem associated
with G and Ψ admits an upward consistent assignment.

If A is an upward consistent assignment for Ψ, and f is a face of Ψ, we denote
by A(f) the set of vertices of G assigned to f in A.

3. Embedded digraphs. In this section we give a new combinatorial charac-
terization of upward planarity for planar single-source digraphs with a prescribed
embedding. This characterization yields an optimal algorithm for testing whether an
embedded planar single-source digraph has an upward planar drawing that preserves
the embedding.

Given a planar single-source digraph G and an upward embedding Γ of G, from
the first condition on the capacity equations of the perfect matching problem and from
the fact that G has a unique source, the following properties can be easily derived
(see Figure 3).

Fact 1. The source of G is the bottommost vertex of Γ.
Fact 2. For the external face h of Γ, all the sink-switches are sinks of G and are

assigned to h. (See Figure 3a.)
Fact 3. For each internal face f , at most one sink-switch (the topmost vertex

of f in Γ) is not a sink of G and all but one sink switches are assigned to f . (See
Figure 3b.)

We shall also use the following result about cycles in planar single-source digraphs.
Lemma 3. Let G and G′ be planar single-source digraphs such that G′ is obtained

from G by means of one of the following operations:
• adding a new vertex v and a new edge (u, v) or (v, u), connecting v to a vertex

u of G;
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Fig. 3. Schematic illustration of (a) the external face; (b) an internal face of an upward planar
drawing of a planar single-source digraph.

Fig. 4. Illustration of the proof of Lemma 3.

• adding a directed edge between the source and a sink on the same face in some
embedding of G;

• adding a directed edge between two sink-switches on the same face in some em-
bedding of G.

Then G is acyclic if and only if G′ is acyclic.

Proof. The acyclicity is trivially preserved by the first two operations. Regarding
the third operation, consider an embedding of G with the source on the external face,
and assume, for a contradiction, that G is acyclic and that adding the edge (t′, t′′)
between sink-switches t′ and t′′ of face f causes the resulting graph G′ to have a cycle
γ (see Figure 4). Cycle γ must consist of edge (t′, t′′) and a directed path π′ in G
from t′′ to t′. Let v be the neighbor of t′′ in f inside γ, and let π′′ be a directed path
from the source of G to v. Since the source is external to cycle γ, path π′′ must have
at least a vertex in common with path π′. Let u be the last vertex of π′′ that is also
on π′. We have that G has a cycle consisting of edge (v, t′′), the subpath of π′ from
t′′ to u, and the subpath of π′′ from u to v, which is a contradiction.

Given an embedded planar single-source digraph G, the face-sink graph F of G
is the incidence graph of the faces and the sink-switches of G (see Figures 5a and 6).
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Fig. 5. (a) An embedded planar single-source digraph G and its face-sink graph. (b)–(c) Upward
drawings of G that preserve the embedding, with different external faces.

Namely,
• the vertices of F are the faces and the sink-switches of G;
• graph F has an edge (f, v) if v is a sink-switch on face f .
Theorem 1. Let G be an embedded planar single-source digraph and let h be a

face of G. Digraph G has an upward planar drawing that preserves the embedding
with external face h if and only if all of the following conditions are satisfied:

1. graph F is a forest;
2. there is exactly one tree T of F with no internal vertices of G, while the re-

maining trees have exactly one internal vertex;
3. h is in tree T; and
4. the source of G is in the boundary of h.
Also, if the above conditions are satisfied, then an embedded planar st-digraph G′

containing G as an embedded subgraph is obtained as follows:
1. root tree T at h and each remaining tree of F at its (unique) internal vertex;
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Fig. 6. An embedded planar single-source digraph that does not have an upward drawing that
preserves the embedding.

2. orient F by directing edges toward the roots;

3. prune the leaves from every tree of F; and

4. add the resulting forest F̂ and the edge (s, h) to G.

Proof. Only if. Let Γ be any planar upward drawing of G that preserves the
original planar embedding and has external face h. By Fact 1, condition 4 is verified.
Orient the face-sink graph F of G by directing edge (v, f) from v to f if v is a sink
assigned to face f , and from f to v otherwise. By Facts 2–3, each vertex of F has
at most one outgoing edge. Specifically, each internal face and each sink has exactly
one outgoing edge, while each internal vertex and the external face have no outgoing
edges. Now, label the vertices of F as follows: the label of a sink-switch is its y-
coordinate in Γ; the label of an internal face f is y(v)− ε, where v is the sink-switch
not assigned to f , and ε is a suitably small positive real value, and the label of the
external face h is +∞. Since Γ is an upward drawing, the edges of F are directed by
increasing labels. We conclude that F is a forest of sink-trees. One tree is rooted at
h, while the other trees are rooted at internal vertices. This shows conditions 1–2.
Condition 3 follows from Fact 1.

If. We show that, if F satisfies the conditions of the theorem, then G is a subgraph
of a planar st-digraph G′, which is obtained as the union of G and F̂ . This implies
that G is upward planar. Planarity is preserved since a star is inserted in each face.
Also, G′ has exactly one source (s) and one sink (h) connected by a directed edge.
It remains to be shown that G′ is acyclic. By the construction of G′ and Lemma 3,
we have that G′ is acyclic if and only if G is acyclic. Assume, for a contradiction,
that G is not acyclic. Let γ be a cycle of G that does not enclose any other cycle.
Note that the source s must be outside γ. If γ is a face of G, then F has an isolated
vertex associated with face γ, which is a contradiction. Otherwise (γ is not a face of
G), the subgraph F̂ ′ of F̂ enclosed by γ consists of a forest of trees, each with exactly
one internal vertex. Let H be the digraph obtained from the subgraph of G enclosed
by γ by removing the edges of γ, and adding a new vertex s′ together with edges
from s′ to all the vertices of γ. By our choice of cycle γ, H is a planar single-source
digraph. Adding F̂ ′ to H yields a planar single-source digraph without sinks, and
hence a digraph with cycles. By Lemma 3, H must also have cycles, which is again a
contradiction.

Theorem 1 is illustrated in Figures 5–6. The following algorithm tests whether
an embedded planar single-source digraph G is upward planar, and reports all the
faces of G that can be external in an upward planar drawing of G with the prescribed
embedding.

ALGORITHM. Embedded-Test.

1. Construct the face-sink graph F of G.

2. Check conditions 1 and 2 of Theorem 1. If these conditions are not verified,



142 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

then return “not-upward-planar” and stop.
3. Report the set of faces of G that contain vertex s in their boundaries and

are associated with nodes of tree T . If such a set of faces is empty, then return
“not-upward-planar”; else return “upward-planar.”

For the example of Figure 5, Algorithm Embedded-Test returns “upward-planar”
and reports two faces.

Theorem 2. Let G be an embedded planar single-source digraph with n ver-
tices. Algorithm embedded test determines whether G has an upward planar drawing
that preserves the embedding and reports all the admissible external faces. It runs in
O(n) sequential time and in O(logn) time on a CRCW PRAM with n · α(n)/ logn
processors, using O(n) space.

Proof. The correctness of the algorithm follows directly from Theorem 1. All the
steps can be performed sequentially in O(n) time with straightforward methods.

Regarding the parallel complexity, steps 1 and 3 take O(logn) time on a CREW
PRAM with n/ logn processors, using list-ranking [5]. Step 2 can be executed by
computing a spanning forest of the face-sink graph, which takes O(logn) time on a
CRCW PRAM with n · α(n)/ logn processors [5], and thus determines the parallel
time complexity.

4. Upward planarity and SPQR-trees. Let G be a biconnected single-source
digraph. In this section we give a combinatorial characterization of the upward pla-
narity of G using SPQR-trees.

4.1. Basic definitions and main result. A digraph is expanded if each internal
vertex has exactly one incoming edge or one outgoing edge. The expansion of a digraph
is obtained by replacing each internal vertex v with two new vertices v1 and v2, which
inherit the incoming and outgoing edges of v, respectively, and the edge (v1, v2).
Observe that a digraph is acyclic if and only if its expansion is acyclic. A planar
embedding of an expanded digraph is candidate. In the remainder of this section we
consider only expanded digraphs because of the following property.

Fact 4. A digraph is upward planar if and only if its expansion is upward planar.
Let G′ = (V ′, E′) and G′′ = (V ′′, E′′) be two digraphs. The union of G′ and G′′,

denoted by G′∪G′′, is a digraph G = (V,E) with V = V ′∪V ′′ and E = E′∪E′′, i.e.,
G is obtained from G′ and G′′ by identifying the vertices in V ′ and V ′′ with common
labels.

Let {u, v} be a separation pair of G that decomposes G into p split components
J1, . . . , Jp. We call a component separated by {u, v} or simply a component any
digraph obtained as the union of q of the split components in {J1, . . . , Jp}, with
0 < q < p.

We call peak a digraph consisting of three vertices a, b, and t, and two directed
edges (a, t) and (b, t). See Figure 7b.

Let K be a component of G with respect to the separation pair {u, v}. In the
following, we denote with G−K the digraph obtained from G by deleting every vertex
belonging to K, except for the vertices u and v, and by K◦ the digraph obtained from
K by deleting vertices u and v. Also, for simplicity we write G−K1−K2− · · ·−Km

instead of (· · · ((G−K1)−K2) · · · −Km).
Finally, we associate with a component K of G either a directed edge or a peak

(see Figures 7a–b) according to the following rules.
Rule 1. u and v are sources of K: a peak with a ≡ u and b ≡ v.
Rule 2. u is a source of K and v is a sink of K.

(a) s 6∈ K◦: a directed edge (u, v).
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Fig. 7. (a) Directed edge; (b) peak; (c) valley; (d) zig-zag.

(b) s ∈ K◦: a peak with a ≡ u and b ≡ v.

Rule 3. u is a source of K and v is an internal vertex of K.

(a) v is a source of G−K and s 6∈ K◦: a directed edge (u, v).

(b) v is not a source of G−K or s ∈ K◦: a peak with a ≡ u and b ≡ v.

Rule 4. u and v are not sources of K.

(a) u is a source of G−K: a directed edge (u, v).

(b) u is not a source of G−K: a directed edge (v, u).

The digraph associated to K by the above rules is called directed-virtual-edge and
will be denoted by d(K,G−K). Observe that the choice of the directed-virtual-edge
depends, in general, both on K and on G−K.

We call minor of G either G itself or the digraph

G−K1 − · · · −Km ∪ d(K1, G−K1) ∪ · · · ∪ d(Km, G−Km),

where K1, . . . ,Km,m ≥ 1, are components of G with the property that no two com-
ponents share a common edge. In other words, the digraph G − K1 − · · · − Km ∪
d(K1, G−K1)∪· · ·∪d(Km, G−Km) is obtained from G by replacing K1, . . . ,Km with
the corresponding directed-virtual-edges (see Figure 8). Observe that, in general, a
minor of a minor of G is not a minor of G.

Let G be a planar single-source digraph, and let T be its SPQR-unrooted tree.
The sT -skeleton of a node µ of T , denoted by sT -skeleton(µ), is the minor of G
obtained from the skeleton of µ by replacing each virtual edge with the directed-
virtual-edge associated to its pertinent digraph. The reference directed-virtual-edge is
the directed-virtual-edge associated with the pertinent digraph of the reference edge
of µ. Examples of sT -skeletons are shown in Figure 9.

The main result of this section is summarized in the following theorem.

Theorem 3. A biconnected acyclic single-source digraph G is upward planar if
and only if there exists a rooting of the SPQR-tree T of the expansion of G at a ref-
erence edge containing the source, such that the sT-skeleton of each node µ of T has
a planar upward drawing with the reference directed-virtual-edge on the external face.

The proof of Theorem 3 is given in the next two sections. Section 5 shows the
only-if part, while section 6 shows the if part. Here we give some preliminary lemmas
that will be used in the next sections.

4.2. Preliminary lemmas. In the following, SG, TG, and IG will denote the
set of sources, sinks, and internal vertices of G, respectively. If G has exactly one
source, we denote such source by s(G) (or simply by s, when no confusion arises).
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Fig. 8. Construction of a minor.

Fig. 9. The sT-skeletons of the R-nodes of the digraph of Figure 2.

We will make use of the following operations defined on an edge e = (x, y) of a
digraph G:

• Contraction (denoted by G/e) transforms G into a digraph G′ obtained from
G by removing edge e and by identifying vertices x and y.

• Direct subdivision transforms G into a digraph G′ obtained from G by removing
edge e and by adding a vertex z and edges (x, z) and (z, y).

We say that digraphs G1 and G2 are homeomorphic if both can be obtained by
performing a finite number of direct subdivisions of a digraph G. Observe that we
can have G1 = G or G2 = G.

We call valley a digraph consisting of three vertices s′, a, and b, and two directed
edges (s′, a) and (s′, b) (see Figure 7c). Also, we call zig-zag a digraph consisting
of four vertices s′, t, a, and b, and three directed edges (s′, t), (s′, b), and (a, t) (see
Figure 7d).

We denote by x → y a path from vertex x to vertex y. A vertex u is said to be
dominated by vertex v if there is a path v → u. We say that vertices x and y are
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incomparable in G, denoted by x ‖ y, if there exists in G neither a path x → y nor a
path x→ y.

Fact 5. Let G be an sT -digraph. Then every vertex of G is dominated by s.

Fact 6. Let G be an acyclic digraph. G contains a source.

Lemma 4 (see [19]). If G is an sT-digraph with u ‖ v in G, then there exists in
G a subgraph homeomorphic to a valley, with a ≡ u and b ≡ v.

Lemma 5 (see [19]). Let G be a connected acyclic digraph with exactly two sources
u and v. Then there exists in G a subgraph homeomorphic to a peak, with a ≡ u and
b ≡ v.

Fact 7. Let G be a biconnected digraph and let {u, v} be a separation pair of G.
Neither u nor v is a cut-vertex of any component of G with respect to {u, v}.

Lemma 6. Let G be an sT-digraph and let {u, v} be a separation pair of G. Let
K be a component with respect to {u, v} such that v ∈ IK and K has exactly one
source u. Then digraph K contains a subgraph homeomorphic to a peak, with a ≡ u
and b ≡ v.

Proof. Let w be a vertex of K such that there exist two vertex disjoint directed
paths u → w and v → w contained in K. The subgraph of K consisting of all edges
and vertices belonging to the two paths is homeomorphic to a peak. Suppose w does
not exist. Let Vv be the set of all vertices dominated by v in K (except v).

Let V̄v be the set of all vertices not dominated by v in K. Observe that both Vv
and V̄v are nonempty and disjoint. Also, Vv ∪ V̄v ∪ {v} is the set of vertices of K.
Since v is not a cut-vertex of K, there is an edge connecting a vertex x of Vv with a
vertex y of V̄v. If such an edge is (x, y), then y belongs to Vv, which is a contradiction.
If such an edge is (y, x), then x is dominated by both v and u, and x = w, which is a
contradiction.

Finally, the following fact and lemmas concerning the embeddings of G will be
used in the proof of the main theorem.

Fact 8. Let G be a digraph and let G′ be a digraph homeomorphic to a subgraph
G′′ of G. We have that

(i) if G is acyclic, then G′ is acyclic.
(ii) if G is expanded, then G′ is expanded.
(iii) if G is upward planar, then G′ is upward planar.
(iv) if G′′ is an sT-digraph, then G′ is an sT-digraph.

Lemma 7 (see [19]). Let G be a digraph, let (u, v) be an edge of G, and let vertex
u(v) have out-degree (in-degree) 1 in G. Let G′ = G/(u, v). We have that

(i) if G is acyclic then G′ is acyclic.
(ii) if G is upward planar, then G′ is upward planar.

Lemma 8. Let G be an upward planar sT-digraph, and let ΨG be an upward
embedding of G. Let e = (s, u) be an edge of G embedded on the external face α of
ΨG. Let G′ = G − e ∪ P where P is a valley, i.e., P is the path {(s′, s), (s′, u)}.
Then G′ is an sT-digraph and has an upward embedding ΨG′ , with P embedded on the
external face.

Proof. From ΨG we simply derive a candidate planar embedding ΨG′ of G′ by
replacing the edge (s, u) of G with the path P (see Figure 10).

We now show that ΨG′ is an upward embedding. This is done by deriving an
upward consistent assignment A′ associated to ΨG′ from the upward consistent as-
signment A associated to ΨG.

Let β be the internal face of ΨG containing the edge (s, u). We denote by γ1, . . . , γp
the faces of ΨG different from α and β.
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Fig. 10. Construction of ΨG′ .

Clearly, there is a one-to-one correspondence between the faces of ΨG and the
faces of ΨG′ . We denote by α′, β′, γ′1, . . . , γ

′
p the faces of ΨG′ corresponding to

α, β, γ1, . . . , γp.

Also, it is γ′i = γi, for i = 1, . . . , p, and thus c(γ′i) = c(γi), for i = 1, . . . , p. We
show that c(α′) = c(α) and c(β′) = c(β).

Following the notation introduced in section 2.3, we have that 2nα′ = 2nα −
Z(s, α) +Z(s, α′)−Z(u, α) +Z(u, α′) +Z(s′, α′). Since the edge (s, u) of α has been
replaced by the edge (s′, u) of α′, it is Z(u, α′) = Z(u, α). It is easy to see that
Z(s, α) = 1, Z(s, α′) = 0, and Z(s′, α′) = 1. Thus, 2nα′ = 2nα and then c(α′) = c(α).
In the same fashion, we can prove that c(β′) = c(β).

Let S (S′) and T (T ′) be the set of sources and sinks of G (G′), respectively.
Clearly S′ = S − {s} ∪ {s′}, and T ′ = T . Observe that, by Theorem 1, s ∈ A(α). A′

is derived from A in the following way:

• A′(γ′i) = A(γi) for i = 1, . . . , p;

• A′(α′) = A(α)− {s} ∪ {s′}; and

• A′(β′) = A(β).

It is straightforward to prove that |A′(f)| = c(f) for each face f ∈ ΨG′ . Since
ΨG′ is a candidate embedding and A′ is upward consistent, by Lemma 2, G′ is upward
planar.

5. Proof of necessity for Theorem 3.

Lemma 9. Let G be a planar expanded sT-digraph G, {u, v} a separation pair of
G, and K a component with respect to {u, v}. Let H = G−K and let dK = d(K,H)
be the directed-virtual-edge associated to K with respect to G. Finally, let H ′ be the
minor H ∪ dk. We have that

(i) H ′ is an expanded, acyclic sT-digraph.
(ii) if G is upward planar, then H ′ is upward planar.
(iii) if G is upward planar and s(G) ∈ K◦, then H ′ has an upward embedding with

dk on the external face.

Proof. The following cases are possible, each corresponding to one of Rules 1–4
(in each case, the proof of (iii) is trivial and thus omitted).

1. u and v are sources of K.
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Fig. 11. Various cases in the proof of Lemma 9.

By Lemma 5, there is in K a path PK homeomorphic to a peak, with a ≡ u
and b ≡ v (see Figure 11). Thus, H ′ = H ∪ dK is homeomorphic to a subgraph
of G.

(i) By Fact 8, H ′ is an expanded acyclic digraph. We show now that
it contains only one source. Vertices u and v are not both sources in H; other-
wise G would contain two sources. Suppose one of u, v (say, u) is a source of H.
Then u ≡ s(G) and u ≡ s(H ′); thus u is the only source of H ′. Suppose neither
u nor v is a source in H; then s(G) ∈ H◦ and s is the only source of H ′.

(ii) By Fact 8, H ′ is upward planar.
2(a) u is a source of K and v is a sink of K and s 6∈ K◦.

Since s 6∈ K◦, u is the only source of K and there exists in K a path u → v. Thus
there is in K a path PK homeomorphic to the directed edge (u, v), and then there is
in G a subgraph homeomorphic to H ′ = H ∪ dK (see Figure 11).

(i) By Fact 8, H ′ is an acyclic expanded digraph. Because of the existence
of edge (u, v), v is not a source of H ′. If u ∈ SH , then s(G) ≡ u; thus u is the
only source of H ′. If u 6∈ SH , s(G) ∈ H◦, and s(G) ≡ s(H ′).

(ii) By Fact 8, H ′ is upward planar.
2(b) u is a source of K and v is a sink of K and s ∈ K◦.

Since s ∈ K◦, s 6= u and, by Lemma 5, there is a vertex t distinct from s and u,
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and two vertex disjoint paths s → t and u → t. Note that u is not a source of H;
otherwise u is a source of G, which is a contradiction. So v is the only source of H
and since there is in G a path s → v, we have that there is a path s → v in K.
Moreover, since v is the only source of H, there is a path v → u in H and thus there
is a path v → u in G. This implies that the path s → v and the path u → t are
node-disjoint; otherwise there would be a path u → v and G would contain a cycle,
which is a contradiction.

Let P1 and P2 be a path s→ v and a path s→ t, respectively. Let z be the last
vertex common to paths P1 and P2. Note that z 6= t, since P1 and any path u→ t are
disjoint. Thus there exists in K a path PK homeomorphic to a zig-zag, and then there
is in G a subgraph homeomorphic to H ′′ ≡ H ∪ (z, v) ∪ (z, t) ∪ (u, t) (see Figure 11).

Observe that in H ′′, vertex v has in-degree 1. If we contract the edge (z, v) we
obtain H ′′/(z, v) ≡ H ∪ dK = H ′.

(i) By Fact 8 H ′′ is acyclic and expanded; thus, by Lemma 7 H ′ is acyclic.
Note that every vertex except v has the same in- and out-degrees in H ′′ and H ′.
Since H ′′ is expanded and v is a source of H ′, H ′ is an expanded digraph. More-
over, since v is the only source of H, v is the only source of H ′.

(ii) By Fact 8 H ′′ is upward planar; thus, by Lemma 7 H ′ is upward planar.

3(a) u is a source of K and v is an internal vertex of K; v is a source of G −K
and s 6∈ K◦.
Since u is the only source of K, there is a path u → v in K and the proof is

analogous to that of case 2(a).

3(b) u is a source of K and v is an internal vertex of K; v is not a source of G−K
or s ∈ K◦.

1. If s ∈ K◦, then s 6= u and K contains two sources; the proof is as in
case 2(b).

2. If s 6∈ K◦, then u is the only source of K and, by Lemma 6, K contains
a path PK homeomorphic to a peak, with u ≡ a and v ≡ b. Then H ′ = H ∪ dK
is homeomorphic to a subgraph of G.

(i) By Fact 8 H ′ is an expanded, acyclic digraph. If u = s(G), then vertex
u is the only source of H ′. If u 6= s(G), then u is not a source of H (otherwise
G contains two sources, which is a contradiction), and s(G) is the only source
of H ′. Thus, H ′ is an sT -digraph.

(ii) By Fact 8 H ′ is upward planar.

4. u and v are not sources of K.

Since u and v are not sources of K, we have that s(G) ∈ K◦. Then either u or
v (or both) is a source of H. We discuss only the case where u is a source of H and
Rule 4(a) is applied. In fact, if u is not a source of H, then v is a source of H and
Rule 4(b) is applied; that is, the roles of u and v are interchanged. Three cases are
possible.

1. If there exists a path u→ v in K, then there is in K a path PK homeomorphic
to the directed edge (u, v) (see Figure 11).

(i) By Fact 8 H ′ is an expanded, acyclic digraph. Because of the existence of the
edge (u, v), u is the only source of H ′.

(ii) By Fact 8 H ′ is upward planar.

2. If u and v are incomparable in K, by Lemma 4 there exists in K a path
PK homeomorphic to a valley with a ≡ u and b ≡ v (see Figure 11). Thus, H ′′ ≡
H ∪ (s, v)∪ (s, u) is homeomorphic to a subgraph of G. Observe that in H ′′, vertex u
has in-degree 1. If we contract the edge (s, u) we obtain H ′′/(s, u) ≡ H ∪ dK = H ′.
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(i) By Fact 8 H ′′ is acyclic and expanded; thus by Lemma 7 H ′ is acyclic. Note
that all vertices except u have the same in- and out-degrees in H ′′ and H ′. Since H ′′

is expanded and u is a source of H ′, then H ′ is an expanded digraph. Moreover, since
s(G) ∈ K◦, u is the only source of H ′.

(ii) By Fact 8 H ′′ is upward planar; thus, by Lemma 7 H ′ is upward planar.

3. If there exists a path PK from v to u in K, then v is also a source of H (see
Figure 11). Otherwise u would be the only source of H, so there would be a path
u → v in H and thus a path u → v in G, which is a contradiction. So both u and v
are sources of H.

(i) Since H is an expanded, acyclic digraph, and since both vertices u and v are
sources of H, H ′ = H ∪ (u, v) is expanded and acyclic. Furthermore, it contains only
one source u.

(ii) Let H ′′ be the digraph H∪(v, u). Digraph H ′′ is homeomorphic to a subgraph
of G and thus, by Fact 8, there exists an upward embedding ΨH′′ of H ′′, with (v, u)
on the external face. Furthermore, v is the only source of H ′′, and H ′′ is an expanded
sT -digraph.

H ′ can be obtained from H ′′ by the means of the following operations:

1. Construct H̄ from H ′′ by adding a vertex s′ and replacing the edge (v, u) with
the valley {(s′, v), (s′, u)}.

2. Construct H ′ from H̄ by contracting the edge (s′, u).

By Lemma 8, H̄ has an upward embedding with the valley {(s′, v), (s′, u)} on the
external face. By Lemma 7, H ′ has an upward embedding with the edge (u, v) on the
external face.

Following the developments of the previous proof, for each case a particular path
PK is detected in the component K. These paths and the corresponding cases will
play a central role in the next section.

The previous lemma refers to a particular minor of G obtained by replacing
exactly one component, but it can be easily extended to any minor of G. Before
proving the next lemma, we must observe a property of sources in minors. Suppose
u is a source of G. Then u is a source in every component of G that contains u. By
a simple inspection of Rules 1–4 we have the following.

Fact 9. Let G be a digraph and K be a component of G with respect to the
separation pair {u, v}. Let G′ be a minor of G such that K ⊂ G′. If u is a source of
G−K, then u is a source in G′ −K.

Lemma 10. Let G be an expanded sT-digraph and let H̃ ′ = G−K1− · · · −Km ∪
dK1

· · · ∪ dKm
be a minor of G, where dKi

= d(Ki, G−Ki). Then

(i) H̃ ′ is an expanded sT-digraph.
(ii) if G is upward planar, then H̃ ′ is upward planar.
(iii) if G is upward planar and s(G) ∈ K◦

i , 1 ≤ i ≤ m, then H ′ has an upward

embedding with dKi
on the external face.

Proof. The proof is by induction. When m = 1, the minor is H̃ ′ = G − K1 ∪
d(K1, G−K1), and by Lemma 9 the basis of the induction holds. Now, suppose that
the minor G̃ = G−K1−· · ·−Kl−1∪dK1

∪· · ·∪dKl−1
is an expanded sT -digraph and

is upward planar. We show that the minor J̃ ′ = G−K1 − · · · −Kl ∪ dK1
∪ · · · ∪ dKl

is an expanded sT -digraph and is upward planar.

Note first that J̃ ′ = G̃ −Kl ∪ dKl
. If we can prove that dKl

= d(Kl, G −Kl) is
equal to d(Kl, G̃−Kl), then the thesis follows by Lemma 9. In other words, we have
to prove that the directed-virtual-edge which substitutes Kl remains the same when
Rules 1–4 are applied to the pair (Kl, G̃−Kl) rather than to the pair (Kl, G−Kl).
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When Rules 1 and 2 are applied, the directed-virtual-edge depends only on the
component Kl, and dK = d(Kl, G−Kl) = d(Kl, G̃−Kl). Hence we have to consider
only Rules 3 and 4.

3(a) u is a source of Kl and v is an internal vertex of Kl, v is a source of G−Kl

and s(G) 6∈ K◦
l .

By Fact 9, v is a source in G̃ − Kl. Moreover, since s(G) 6∈ K◦
l we have that

s(G̃) 6∈ K◦
l , and Rule 3(a) must be applied to the pair (Kl, G̃−Kl).

3(b) u is a source of Kl and v is an internal vertex of Kl; v is not a source of
G−Kl or s(G) ∈ K◦

l .

If s ∈ K◦
l , Rule 3(b) must be applied to the pair (Kl, G̃−Kl).

Suppose that v is not a source of G −Kl and s 6∈ K◦
l . Note that v is a sink in

G−Kl (v cannot be internal in G−Kl since v is internal in Kl and G is expanded).
If v is not a source of G̃ − Kl then Rule 3(b) must be applied to the pair

(Kl, G̃−Kl).
Suppose v is a source of G̃−Kl; then there exists a component Kq of G−Kl, with

0 < q < l, with Kq 6∈ G̃ −Kl, having v and uq as poles, whose directed-virtual-edge
is either a peak or the edge (v, uq). Observe that v is a sink of Kq. If s 6∈ K◦

q then
uq is the only source of Kq. Hence Rule 2(a) is applied to the pair (Kq, G−Kq) and
d(Kq, G−Kq) is the edge (uq, v), which is a contradiction.

If s ∈ K◦
q then uq is a source of G − Kq (since v is internal in Kl ∈ G − Kq).

Thus uq is not a source of Kq; otherwise G contains two sources. Then Rule 4(a) is
applied to the pair (Kq, G − Kq) and d(Kq, G − Kq) is the edge (uq, v), which is a
contradiction.

4(a) u and v are not sources of Kl; u is a source of G − Kl. By Fact 9, u is a
source of G̃−Kl and Rule 4(a) can be applied to the pair (Kl, G̃−Kl).

4(b) u and v are not sources of Kl; u is a not a source of G − Kl. Since u is
not a source in G − Kl and s(G) ∈ Kl, then v is a source in G − Kl and v is a
source in G̃−Kl. So Rule 4(a) can be applied to the pair (Kl, G̃−Kl), with v and u
interchanged.

The proof of the necessity of Theorem 3 is now a simple corollary of Lemma 10.
In fact, for each node µ of tree T , the sT -skeleton of µ is a minor of G.

6. Proof of sufficiency for Theorem 3.
Lemma 11. Let G be a planar expanded sT-digraph, {u, v} a separation pair of

G, and K a component with respect to {u, v} such that s(G) ∈ K. Let H = G −K
and let dK = d(K,H) and dH = d(H,K) be the directed-virtual-edges associated to K
and H (with respect to G), respectively. Finally, let H ′ be the minor H ∪ dK and K ′

be the minor K ∪ dH . If K ′ is upward planar and H ′ has an upward embedding with
dK on the external face, then G is upward planar.

Before proving the above lemma, we need some preliminary results, namely, the
following Lemmas 12–16.

We remind the reader that in the proof of Lemma 9, in correspondence with each
case of the proof, a path PK is detected in the component K. Such a path PK will
be used in the following lemma (see Figure 12).

Lemma 12. Let G be a planar expanded sT-digraph G, {u, v} a separation pair of
G, and K a component with respect to {u, v}. Let H = G−K and let dK = d(K,H) be
the directed-virtual-edge associated to K with respect to G. Let H ′ be the minor H ∪ dK
and let H̄ = H ∪ PK . Suppose H ′ has an upward embedding ΨH′ , with dK embedded
on the external face if s(G) ∈ K◦. Denote by ΨH ⊂ ΨH′ the upward embedding of H
contained in ΨH′ and let αH be the face of ΨH in which dK is embedded. We have that
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Fig. 12. Illustration of the statement of Lemma 12.

(i) H̄ = H ∪ PK is an expanded, acyclic digraph.
(ii) H̄ is an sT-digraph and has an upward embedding ΨH̄ , with ΨH ⊂ ΨH̄ and

PK embedded in face αH of ΨH .
Proof. Since H̄ is a subgraph of G then it is expanded and acyclic and (i) holds.
We now prove (ii). Since both dK and PK depend on the component K, we

distinguish the following four cases, each corresponding to the cases of the proof of
Lemma 9.

1. PK is homeomorphic to dK ; hence H̄ is homeomorphic to H ′. By Fact 8, the
lemma holds.

2.(a) PK is homeomorphic to dK ; hence H̄ is homeomorphic to H ′. By Fact 8,
the lemma holds.

(b) Since s ∈ K◦, dK is embedded on the external face of ΨH′ . Observe that H̄
can be obtained from H ′ substituting the edge (v, t) with a path homeomorphic to a
valley. Thus, by Lemma 8 and by Fact 8, the lemma holds.
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3.(a) PK is homeomorphic to dK ; hence H̄ is homeomorphic to H ′. By Fact 8,
the lemma holds.

(b) If s ∈ K◦ then the proof is as in case 2(b). If s 6∈ K◦ then PK is homeomorphic
to dK ; hence H̄ is homeomorphic to H ′. By Fact 8, the lemma holds.

4. (1) PK is homeomorphic to dK ; hence H̄ is homeomorphic to H ′. By Fact 8,
the lemma holds.

(2) Since s ∈ K◦, dK is embedded on the external face of ΨH′ . Observe that H̄
can be obtained from H ′ substituting the edge (u, v) with a path homeomorphic to a
valley. Thus, by Lemma 8 and by Fact 8, the lemma holds.

(3) Observe that H̄ can be obtained from H ′ by reversing edge (u, v) and by
direct subdivision. Thus, following the proof of case 4.3 of Lemma 9, and by Fact 8,
the lemma holds.

Suppose K, H, K ′, and H ′ satisfy the conditions of Lemma 11. Let PK and PH
be the paths associated with dK and dH , respectively (see Figures 13(a), (b)). Except
for the common endpoints u and v, PK and PH are disjoint paths of G, since they lie
in different components. Thus, C = PK ∪ PH is a simple (undirected) cycle of G.

Let K̄ = K ∪PH and H̄ = H ∪PK (see Figures 13(c), (d)). Since K ′ and H ′ are
upward planar, by the previous lemma, K̄ and H̄ are upward planar. Let ΨK̄ and
ΨH̄ be two upward embeddings of K̄ and H̄, respectively, and let αK̄ and αH̄ be the
corresponding external faces. Now, let K∗(H∗) be the subgraph of K̄(H̄) embedded
inside C in ΨK̄(ΨH̄) (see Figures 13(e), (f)). We have the following lemma.

Lemma 13. Let s∗ be a source of K∗ (H∗). Then s∗ ∈ C.

Proof. Suppose s∗ 6∈ C. Then s∗ is a source of K̄ embedded inside C in ΨK̄ .
Since K̄ is an sT -digraph, s∗ is the only source of K̄ and is embedded on the external
face of every upward embedding of K̄, and thus cannot be embedded inside C in ΨK̄ ,
which is a contradiction.

Lemma 14. The digraph K∗ (H∗) is an expanded sT-digraph.

Proof. Since K∗ is a subgraph of G, then it is acyclic and expanded. By
Lemma 13, all of the sources of K∗ belong to C = PK ∪ PH . In order to prove
the existence of a single source, we have to consider the “shapes” of PK and PH . Ob-
serve that PK (PH) can be homeomorphic to an edge, a peak, a valley, or a zig-zag.
If both PK and PH are homeomorphic to the edge (u, v) ((v, u)), then s(K∗) is either
u or v. Suppose now that PK is not homeomorphic to an edge. We consider the
following cases.

1. PK is homeomorphic to a peak. Clearly, if PH is homeomorphic to (u, v)
or (v, u) or a valley, then C has only one source. We now show that PH is not
homeomorphic to a peak or to a zig-zag. Since PK is a peak, then K is in case 1 or
in case 3b.2 of the proof of Lemma 9.

Suppose PH is a peak. Then H is in case 1 or in case 3b.2.

(a) PK as in case 1. If H is in case 1, then G contains two sources, which is a
contradiction. If H is in case 3b.2, then v is not a source of K, which is a contradiction.

(b) PK as in case 3b.2. If H is in case 1, then the proof is as above. If H is in
case 3b.2, then v is internal both in H and in K, which is a contradiction.

Suppose PH is homeomorphic to a zig-zag. Then H is in case 2.b or in case 3b.1.

(a) PK as in case 1. If H is in case 2.b or in case 3b.1, then s(G) ∈ H◦. Since u
is source both in K and in H then G contains two sources, which is a contradiction.

(b) PK as in case 3b.2. The proof is as above.

2. PK homeomorphic to a zig-zag (w.l.o.g., we can suppose a ≡ u and b ≡ v).
Clearly, if PH is homeomorphic to (v, u), then C has only one source. If PH is
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Fig. 13. Construction of ΨG.

homeomorphic to a peak, the proof is as for the case PH homeomorphic to a zig-zag
and PK homeomorphic to a peak. We now show that PH is not homeomorphic to the
edge (u, v), to a valley, or to a zig-zag. Since PK is a zig-zag, then K is in case 2(b)
or case 3b.1; thus s(G) ∈ K◦ and u is a source of K.

Suppose PH is homeomorphic to the edge (u, v). Then H is in case 2(a) or case
3(a) or case 4.1. If H is in case 2(a) or case 3(a), then u is a source of G and G
contains two sources, which is a contradiction. If H is in case 4.1, then s(G) ∈ H◦,
which is a contradiction.

Suppose PH is homeomorphic to a valley. Then H is in case 4.2 and s(G) ∈ H◦,
which is a contradiction.

Suppose PH is homeomorphic to a zig-zag. Then H is in cases 2(b) and 3b.1 and
s(G) ∈ H◦, which is a contradiction.

3. PK is homeomorphic to a valley. Clearly, if PH is homeomorphic to the edge
(u, v), to the edge (v, u), or to the peak, then C has only one source. If PH is
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homeomorphic to a zig-zag, the proof is as for the case where PH is homeomorphic
to a valley and PK is homeomorphic to a zig-zag. We now show that PH is not
homeomorphic to a valley.

Since both PK and PH are homeomorphic to a valley, then both K and H are in
case 4.2; thus s(G) ∈ K◦ and s(G) ∈ H◦, which is a contradiction.

The proof of the next lemma can be found in [3, 4].

Lemma 15. Let G be digraph, let ΨG be a candidate planar embedding of G,
and let face δ ∈ ΨG. Finally, let A be an assignment of the sinks and the sources
of G to the faces of ΨG. If |A(f)| = c(f) for each face f ∈ ΨG, with f 6= δ, then
|A(δ| = c(δ).

Suppose G, K, H, K ′, and H ′ satisfy the conditions of Lemma 11. In the following
we give a constructive procedure to derive an embedding ΨG of G from two upward
embeddings ΨH′ and ΨK′ of H ′ and K ′, respectively. We then show ΨG to be
upward.

Let K̄, H̄, K∗, H∗, ΨK∗ , ΨH∗ be as defined for Lemmas 13 and 14 and let ΨK∗ ⊆
ΨK̄(ΨH∗ ⊆ ΨH̄) be the upward embedding of K∗ (H∗) contained in ΨK̄ (ΨH̄). Denote
by αK∗ and αH∗ the external faces of ΨK∗ and ΨH∗ , respectively (see Figures 13(e),
(f)). Recall that αK∗ = αH∗ = C.

Let G∗ = K∗ ∪ H∗ (see Figure 13(g)). ΨG∗ is a planar embedding of G∗ such
that ΨK∗ ⊂ ΨG∗ , ΨH∗ ⊂ ΨG∗ , and PK and PH lie on the external face αG∗ of ΨG∗

(i.e., αG∗ = C).

We denote by γG∗ the other face of ΨG∗ (besides αG∗) containing both edges of
K∗ and edges of H∗.

Lemma 16. Let G∗ and ΨG∗ be defined as above. Then

(i) G∗ is an expanded sT-digraph.
(ii) ΨG∗ is an upward embedding.

Proof. (i) Since G∗ is a subgraph of G, then G∗ is expanded and acyclic. Since
G∗ is acyclic, it contains at least one source. Suppose G∗ contains two sources s1 and
s2. Since K∗ (H∗) is an sT -digraph, both s1 and s2 cannot belong to K∗ (H∗). Thus,
w.l.o.g., s1 ∈ K∗ and s2 ∈ H∗. Furthermore, by Lemma 13, s1 and s2 lie on cycle C,
so they are both contained in K∗ and H∗, which is a contradiction. In the following,
we denote by s∗ the source of G∗.

(ii) We derive an upward consistent assignment AG∗ from the upward consistent
assignments AK∗ and AH∗ associated with ΨK∗ and ΨH∗ .

First note that AK∗(αK∗) = AH∗(αH∗). In fact, let T ∗ be the set of sink-switches
of C = αK∗ = αH∗ . Since ΨK∗ and ΨH∗ are upward embeddings of sT -digraphs, by
Fact 2, each sink-switch on αK∗ and αH∗ is a sink of K∗ and H∗, respectively, and they
are all assigned to αH∗ and αK∗ . We have that AK∗(αK∗) = AH∗(αH∗) = T ∗ ∪ {s∗}.

For each face f ∈ ΨG∗ , with f 6= γG∗ and f 6= αG∗ , we have that f belongs to ΨK∗

or f belongs to ΨH∗ , but not both. It is trivial to see that the following assignment
to the faces of ΨG∗ − {γG∗} is feasible (i.e., the number of vertices assigned to each
face equals the capacity of the face):

• AG∗(αG∗) = AK∗(αK∗) = AH∗(αH∗);
• AG∗(f) = AK∗(f), for f 6= αG∗ and f ∈ ΨK∗ ;
• AG∗(f) = AH∗(f), for f 6= αG∗ and f ∈ ΨH∗ .

Observe that all the sinks of ΨG∗ not assigned by the above assignment lie on face
γG∗ , and so they can be assigned to it in A∗

G. Since ΨG∗ is a candidate embedding
and, for each face f ∈ ΨG∗ − {γG∗}, it is |AG∗(f)| = c(f), by Lemma 15 we have
that AG∗(γG∗) = c(γG∗). Thus, AG∗ is an upward consistent assignment and G∗ is
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upward planar.

We are now able to give the proof of Lemma 11.

Proof of Lemma 11. A planar embedding ΨG of G can be obtained from the
upward embeddings ΨK̄ and ΨH̄ in such a way that ΨG∗ ⊆ ΨG. Each face of ΨG

belongs either to ΨK̄ or to ΨH̄ , except for two faces which share edges both of K̄
and H̄. One of these two faces coincides with face γG∗ of ΨG∗ , and thus it is internal
in ΨG∗ ; we denote it by γG and denote the other face by βG (see Figure 13(h)).
Conversely, all the faces of ΨK̄ (ΨH̄), except for the two faces sharing PH (PK),
belong to ΨG.

We now derive an assignment AG from the upward consistent assignments AK̄ ,
AH̄ , and AG∗ in the following way:

• AG(γG) = AG∗(γG∗);

• AG(f) = AK̄(f), for f ∈ ΨK̄ ;

• AG(f) = AH̄(f), for f ∈ ΨH̄ ;

• it is easy to see that all remaining sinks and (eventually) the source of G stay
on face βG and so they are assigned to βG in AG.

In order to prove that AG is upward consistent we have to show that

(i) every sink and the source of G is assigned to exactly one face of ΨG;
(ii) every internal vertex of G is not assigned to any face of ΨG;
(iii) the number of vertices assigned to each face equals the capacity of the face.

Observe first that since PK is embedded in the external face αH̄ of ΨH̄ , αH̄ is not
a face of ΨG. Moreover, since γG∗ is not the external face of ΨG∗ , u and v are not
assigned to it in AG∗ (they both lie on the external face) and, in turn, in AG.

We first prove (i). It is easy to see that each sink (source) of G is assigned to at
least one face. We have to prove that each sink (source) of G is assigned to at most
one face. Let x be a vertex assigned to two faces f1 and f2 in AG (f1 6= f2). From
the definition of AG, f1 ∈ ΨK̄ and f2 ∈ ΨH̄ . This is not possible if x 6= u or x 6= v. If
x = u (x = v) then it is assigned to the external face αH̄ = f2 of ΨH̄ in AH̄ and thus
f2 6∈ ΨG, which is a contradiction.

(ii) Let x be an internal vertex of G and suppose it is assigned to a face f of ΨG.
Again x = u or x = v. Assume, w.l.o.g., x = v. Observe that f is not a face of ΨH̄ (v
is eventually assigned to its external face, which is not a face of ΨG). Furthermore,
f 6= γG, since neither u nor v is assigned to it in AG. So f is a face of ΨK̄ .

Let us denote by βK̄ the face of ΨK̄ sharing the path PK and not embedded inside
cycle C (see Figure 13(c)). Face βK̄ is not a face of ΨG, and thus f 6= βK̄ . Since v
is not assigned to βK̄ in AK̄ , βK̄ is internal in ΨK̄ . So, both βK̄ and γK̄ are internal
faces of ΨK̄ and hence ΨH is embedded in a face of ΨK in ΨG. This implies that
s(K̄) = s(G) ∈ K̄.

Suppose now that x = v is a sink in K̄ and v is not a sink in G.

Since v is a sink of K̄, then PH has an incoming edge into v, and PH is homeo-
morphic to the edge (u, v) or to a zig-zag or to a valley. If PH is homeomorphic to
edge (u, v), then H is in case 2(a), 3(a), or 4.1 of the proof of Lemma 9. In case 2(a),
v is a sink of H and thus u is a sink of G, which is a contradiction. In case 3(a), v
is a source of K and thus it is not a sink in K̄, which is a contradiction. If H is in
case 4.1 then s ∈ H◦, which is a contradiction.

If PH is homeomorphic to a valley, then H is in case 4.2 and s(G) ∈ H◦, which
is a contradiction.

If PH is homeomorphic to a zig-zag, then H is in case 2(b) or 3b.2. In both cases,
s(G) ∈ H◦, which is a contradiction.
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(iii) Since G is an expanded digraph, every planar embedding is candidate. By
Lemma 15, the capacity equation for face βG is satisfied, and AG is upward
consistent.

Lemma 11 refers to digraph G. We extend the result to a minor G̃ of G. This
is done by showing that, under certain restrictions, the directed-virtual-edges substi-
tuting components can be chosen independently one from another. In particular, this
is true if the source s of G belongs to its minor. Note that in this case a minor of a
minor of G is a minor of G.

Lemma 17. Let G̃ be a minor of G such that s(G̃) = s(G). Let {u, v} be a split
pair of G̃ such that {u, v} is also a split pair of G. Let K̃ be a component of G̃ w.r.t.
{u, v} and let K be the corresponding component of G, i.e., K is obtained from K̃ by
replacing each directed-virtual-edge of K̃ with its associated component of G. Then it
is d(K̃, G̃− K̃) = d(K,G−K).

Proof. In the following we denote by H the digraph G−K and by H̃ the digraph
G̃−K̃. Observe that, for each component J of G such that J 6∈ G̃ (i.e., J is substituted
by its directed-virtual-edge), since s(G) ∈ G̃, then s(G) 6∈ J◦.

We examine the following four cases corresponding to the substitution Rules 1–4
applied to components K and K̃.

1. Since u and v are sources of K, by Fact 9, u and v are sources of K̃. Then
d(K̃, H̃) is a peak and the lemma holds.

2(a) u is a source of K, v is a sink of K, and s(G) 6∈ K◦. By Fact 9, u is a source of
K̃. Since s(G̃) = s(G) then s(G) 6∈ K◦. We now show that v is a sink of K̃. In fact, v
is a sink of all the components having v as a pole. By the substitution rules, whenever
a component J ∈ K has v as a sink then the associated directed-virtual-edge has an
edge incoming into v except for Rules 2(b) and 4(b). But, in both cases, s(G) ∈ J◦,
contradicting that s 6∈ K◦. Then Rule 2(a) is applied to K̃ and d(K̃, H̃) is the edge
(u, v).

2(b) u is a source of K, v is a sink of K, and s(G) ∈ K◦. By Fact 9, u is a source
of K̃. Furthermore, s(G̃) ∈ K̃◦.

If v is a sink of K̃, then Rule 2(b) is applied to K̃ and d(K̃, H̃) is a peak.

If v is internal of K̃, then Rule 3(b) is applied to K̃ and d(K̃, H̃) is a peak.

If v is a source of K̃, then K̃ has three sources and the minor G̃ is not an sT -
digraph (it contains at least two sources), which is a contradiction.

3(a) u is a source of K, v is internal of K, s(G) ∈ H, and v is a source of H. By
Fact 9, u is a source of K̃ and v is a source of H̃.

If v is internal in K̃, then Rule 3(a) is applied to K̃ and d(K̃, H̃) is the edge (u, v).

If v is a sink of K̃, then Rule 2(a) is applied to K̃ and d(K̃, H̃) is the edge (u, v).

If v is a source of K̃, then v is a source of G̃. Since s(G̃) = s(G) 6= v, then G̃ has
two sources, which is a contradiction.

3(b) u is a source of K and v is internal in K, s(G) ∈ K◦ or v is not a source
of H.

By Fact 9, u is a source of K̃. Two cases are possible.

(i) s(G) ∈ K◦. Then v is the only source of H. In fact, if u is a source of
H, then u is a source of G, which is a contradiction. By Fact 9, v is a source
of H̃.

If v is internal in K̃, then Rule 3(b) is applied to K̃ and d(K̃, H̃) is a peak.

If v is a sink of K̃, then Rule 2(b) is applied to K̃ and d(K̃, H̃) is a peak.

If v is a source of K̃, then v is a source of G̃. Since s(G̃) = s(G) 6= v, then G̃ has
two sources, which is a contradiction.
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(ii) v is not a source of H and s(G) ∈ H. Since G is expanded, v is a sink of H.

If v is a source of K̃, then Rule 1 is applied to K̃ and d(K̃, H̃) is a peak.

If v is internal in K̃ and v is not a source of H̃, then Rule 3(b) is applied to K̃
and d(K̃, H̃) is a peak. If v is a source of H̃, there exists a component J of H, with
J 6∈ H̃, having v and uJ as poles, whose directed-virtual-edge is either a peak or the
edge (v, uJ). Observe that v is a sink of J and uJ is the source of J (since s(G) 6∈ J◦).
But in this case, Rule 2(a) is applied to J and d(J,G− J) is the edge (uJ , v), which
is a contradiction.

If v is a sink of K̃, since v is internal in K, there exists a component J , with
J ∈ K and J 6∈ K̃, having v and uJ as poles, whose directed-virtual-edge is the edge
(uJ , v). Furthermore, v is an internal vertex or a source of J . If v is a source of J
then d(J,G− J) is not the edge (uJ , v). If v is internal in J , then Rules 3(a) or 4(b)
must be applied in order to have d(J,G− J) = (uJ , v). Rule 3(a) implies that v is a
source of G− J ; hence v is a source of K, which is a contradiction. Rule 4(a) implies
that s(G) ∈ J◦, which is a contradiction.

4. u and v are not sources of K. s ∈ K◦. Either u or v (or both) is a source of
H. Suppose, w.l.o.g., that u is a source of H. u is not a source of K̃; otherwise the
minor G̃ has two sources. By Fact 9, u is a source of H̃.

If v is not a source of K̃, Rule 4(a) can be applied and d(K̃, H̃) is the edge (u, v).

If v is a source of K̃, there exists a component J of K, with J 6∈ K̃, having v and
uJ as poles, such that v is a nonsource of J , and its directed-virtual-edge is either a
peak or the edge (v, uJ). Observe that, since s(G) 6∈ J◦, uJ is the source of J . If v is
a sink of J , Rule 2(a) is applied to J and d(J,G − J) is the edge (uJ , v), which is a
contradiction. If v is internal in J , Rule 3(b) is applied and, since s(G) 6∈ J◦, v is a
sink of G− J and hence it is a sink in all components of K − J . Now, v is a source in
the digraph K̃−d(J,G−J). Then there exists a component Z of K, with Z 6= J and
Z 6∈ K̃, having v and uZ as poles, such that v is a source in d(Z,G−Z). Since v is a
sink of Z and s(G) 6∈ Z◦ (since s(G) ∈ K̃), uZ is a source of Z and then Rule 2(a) is
applied. But then d(Z,G− Z) is the edge (uZ , v), which is a contradiction.

We are now able to prove the sufficiency part of Theorem 3.

Proof of sufficiency of Theorem 3. Let T be the rooted SPQR-tree associated
with the graph G, and let µ1, . . . , µm be the sequence of nodes of T deriving from a
depth-first-search (DFS) visit of T , starting at its root. Let Skel(µi), i = 1, . . . ,m be
the sT -skeleton associated with µ, . . . , µm.

For each node µi, let dci be the directed virtual edge of µi in the skeleton associated
with the parent of µi, and let dpi be the directed-virtual-edge of the parent of µi in
Skel(µi). Clearly, if µi = µ1 is the root, then dpi = dp1 = {∅}. Finally, let G̃i =
Skel(µ1)− dc2 ∪ (Skel(µk)− dp2)− dc3 ∪ (Skel(µ3)− dp3)− · · · − dci ∪ (Skel(µi)− dpi ).

We show that G̃i is a minor of G, with s(G) ∈ G̃i, and that G̃i is upward planar.

For i = 1 we have that G̃1 = Skel(µ1) and the claim trivially holds. Suppose that
G̃l−1 is a minor of G with s(G) ∈ G̃l−1, and that G̃l−1 is upward planar. We show
that G̃l is a minor of G, with s(G) ∈ G̃l, and that G̃l is upward planar.

Let H be the pertinent graph of dcl and K be the pertinent graph of dpl . Recall
that K∪H = G and that K and H share exactly two vertices. Moreover dpl = d(K,H)
and dcl = d(H,K).

Let J1, . . . , Jq be components of G contained in K, such that

G̃l−1 = G−H − J1 − · · · − Jq ∪ d(H,K) ∪ d(J1, G− J1) ∪ · · · ∪ d(Jq, G− Jq)

= K − J1 − · · · − Jq ∪ d(H,K) ∪ d(J1, G− J1) ∪ · · · ∪ d(Jq, G− Jq),
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and let Z1, . . . , Zr be split components of G contained in H, such that

Skel(µl) = G−K − Z1 − · · · − Zr ∪ d(K,H) ∪ d(Z1, G− Z1) ∪ · · · ∪ d(Zr, G− Zr)

= H − Z1 − · · · − Zq ∪ d(K,H) ∪ d(Z1, G− Z1) ∪ · · · ∪ d(Zr, G− Zr).

The digraph G̃l = K ∪H − J1 − · · · − Jq − Z1 − · · · − Zq ∪ d(J1, G− J1) ∪ · · · ∪
d(Jq, G − Jq) ∪ d(Z1, G − Z1) ∪ · · · ∪ d(Zr, G − Zr) is a minor of G. In fact, since
Ji ∈ K, i = 1, . . . , q, and Zt ∈ H, t = 1, . . . , r, it follows that Ji and Zt do not share
any edge, for i = 1, . . . , q and t = 1, . . . , r.

Since s(G) ∈ G̃l−1, then s(G) ∈ G̃l.
Let K̃ = G̃l−1 − dcl and H̃ = Skel(µl)− dpl . Clearly G̃l = K̃ ∪ H̃. By Lemma 17,

d(K̃, H̃) = d(K,H) = dpl and d(H̃, K̃) = d(H,K) = dcl . Since K̃ ∪ d(H̃, K̃) = G̃l−1

is upward planar and H̃ ∪ d(K̃, H̃) = Skel(µl) is upward planar with d(K̃, H̃) = dpl
embedded on the external face, then by Lemma 11, G̃l is upward planar.

We now show that G̃m = G. By induction G̃m is a minor of G. Suppose G̃m 6= G;
then there exists a component J of G such that J 6∈ G̃m and d(J,G− J) ∈ G̃m. Let
µj be the node of T such that d(J,G− J) ∈ Skel(µj). d(J,G− J) is associated with
either the parent of µj or one of the children of µj . Since the tree T has been entirely

visited then d(J,G− J) has been substituted, and thus d(J,G− J) 6∈ G̃m, which is a
contradiction.

7. Algorithm for general single-source digraphs. Let G be a biconnected
single-source digraph. In this section we present an algorithm for testing whether G
is upward planar.

ALGORITHM. Test.
1. Construct the expansion G′ of G.
2. Test whether G′ is planar. If G′ is not planar, then return “not-upward-planar”

and stop; else, construct an embedding for G′.
3. Test whether G′ is acyclic. If G′ is not acyclic, then return “not-upward-

planar” and stop.
4. Construct the SPQR-tree T of G′ and the skeletons of its nodes.
5. For each virtual edge e of a skeleton, classify each endpoint of e as a source,

sink, or internal vertex in the pertinent digraph of e. Also, determine if the pertinent
digraph of e contains the source.

6. For each node µ of T , compute the sT -skeleton of µ.
7. For each R-node µ of T
(a) test whether the sT -skeleton of µ is upward planar by means of algorithm

Embedded-Test. If Embedded-Test returns “not-upward-planar,” then return “not-
upward-planar” and stop.

(b) mark the virtual edges of the skeleton of µ whose endpoints are on the external
face in some upward drawing of the sT -skeleton of µ.

(c) for each unmarked virtual edge e of the skeleton of µ, constrain the tree edge
of T associated with e to be directed towards µ.

(d) if the source is not in skeleton(µ), let ν be the node neighbor of µ whose
pertinent digraph contains the source, and constrain the tree edge (µ, ν) to be directed
towards ν.

8. Determine whether T can be rooted at a Q-node in such a way that orienting
edges from children to parents satisfies the constraints of steps 7(c)–(d). If such a
rooting exists then return “upward-planar”; else return “not-upward-planar.”
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For single-source digraphs that are not biconnected we apply the above algorithm
to each biconnected component.

Theorem 4. Upward planarity testing of a single-source digraph with n vertices
can be done in O(n) time using O(n) space.

Proof. Steps 1 and 3 can be trivially performed in O(n) time. Planarity testing
in step 2 can also be done in O(n) time [18]. The construction of the SPQR-tree and

the skeletons of its nodes (step 4) takes time O(n) using a variation of the algorithm
of [17]. The preprocessing of step 5 consists essentially of a visit of T and can be done
in O(n) time. Let nµ be the number of vertices of the skeleton of µ. The information
collected in step 5 allows us to perform step 6 in O(n) time and step 7(d) in O(nµ)
time. By Theorem 2, step 7(a) takes O(nµ) time. The output of step 7(a) allows us
to perform steps 7(b)–(c) in O(nµ) time. Since

∑
µ nµ = O(n), the total complexity

of step 7 is O(n). Finally, step 8 consists of a visit of T and takes O(n) time.

To parallelize Algorithm Test, we need an efficient way of testing in parallel
whether a planar single-source digraph with n vertices is acyclic. For this purpose,
we can use the algorithm of [20], which runs in O(log3 n) time on a CRCW PRAM
with n processors. However, the particular structure of planar single-source digraphs
allows us to perform this test optimally. The following characterization is inspired by
some ideas in [20].

Let G be an embedded, expanded, planar single-source digraph. The clockwise
subgraph of G is obtained by taking the first incoming edge of each internal vertex,
in clockwise order. The counterclockwise subgraph of G is similarly obtained by tak-
ing the first incoming edge of each internal vertex, in counterclockwise order. Such
subgraphs of G have all vertices with in-degree 1 or 0.

Theorem 5. An embedded, expanded single-source digraph G is acyclic if and
only if both the clockwise and counterclockwise subgraphs of G are acyclic.

Proof. The only-if part is trivial. For the if part, assume for contradiction that G
is not acyclic, and consider an arbitrary drawing of G with the prescribed embedding
and with the source on the external face. We will show the existence of a cycle in
either the clockwise or counterclockwise subgraph. Let γ be a cycle of G that does
not enclose any other cycle. Since the source of G must be outside γ, all the edges
incident on vertices of γ and inside γ must be outgoing edges. Hence, γ is contained
in the clockwise or counterclockwise subgraph depending on whether it is a clockwise
or counterclockwise cycle.

The structure of each connected component of the clockwise and counterclockwise
subgraphs is either a source tree, or a collection of source trees with their roots
connected in a directed cycle. Hence, one can test whether such subgraphs are acyclic
using standard parallel techniques. Since expansion preserves acyclicity, we have the
following theorem.

Theorem 6. Given an embedded planar single-source digraph G with n vertices,
one can test if G is acyclic in O(logn) time with n/ logn processors on an EREW
PRAM.

By applying the result of Theorem 6 and various parallel techniques (in particular
[14, 28, 27]) we can efficiently parallelize algorithm Test.

Theorem 7. Upward planarity testing of a single-source digraph with n vertices
can be done in O(logn) time on a CRCW PRAM with n log logn/ logn processors
using O(n) space.

As a consequence of Theorems 1 and 3, algorithm Test can be easily extended
such that if the n-vertex digraph G is found to be upward planar, a planar st-digraph
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G′ with O(n) vertices is constructed that contains G as a subdigraph. Hence, by
applying the planar polyline upward drawing algorithm of Di Battista, Tamassia, and
Tollis [12] to G′ and then removing the vertices and edges of G′ that are not in G, we
obtain a planar polyline upward drawing of G.

Theorem 8. Algorithm Test can be extended so that it constructs a planar
polyline upward drawing if the digraph is upward planar. The complexity bounds stay
unchanged.

7.1. Examples of application of algorithm Test . In this subsection we use
two examples to illustrate the behavior of algorithm Test in performing the upward
planarity testing. In the first example, the algorithm is applied to a graph which is
not upward drawable; in the second example, the algorithm is applied to an upward
drawable graph.

Example 1. In this example we consider the graph G of Figure 2a. We apply
algorithm Test step by step.

1. The expansion graph G′ of G is shown in Figure 14.
2. By a simple inspection it is possible to verify that G′ is planar.
3. Again, by a simple inspection, it is possible to verify that G′ is acyclic.
4. The SPQR-tree T of G′ is shown in Figure 15. The skeletons of the nodes of

T are shown in Figure 16 (the skeletons of the Q nodes are omitted).
5. Consider, for example, the virtual edge (2, 15) in skeleton µ1 of Figure 16,

which is the virtual edge of µ4. The pertinent graph of µ4 is subgraph G′
4 of G′

induced by the node set V (G′)− {13, 14, 24, 25}. By simple inspection, it is possible
to verify that node 2 is internal in G′

4, while node 15 is a sink in G′
4. In addition,

the source 1 of G′ is contained in G′
4. In the same way, all other endnodes of virtual

edges can be classified.
6. The sT -skeletons corresponding to the skeletons of Figure 16 are shown in

Figure 17. Consider, for example, the sT -skeleton of µ2. The pertinent graph G′
1

associated with the virtual edge (2, 13) of the skeleton of µ2 (Figure 16) is the subgraph
of G′ induced by the node set V (G′)−{24}. Using the classification performed in the
preceding step, it is easy to verify that: (i) 2 is internal in G′

1 and 13 is a source in
G′

1. In addition, the source 1 of G′ belongs to G′◦
1 , hence, by Rule 3b the directed-

virtual-edge associated with G′
1 is a peak. The pertinent graph associated with the

virtual edge (2, 24) of µ2 is the directed edge (2, 24). If is easy to see that the
directed-virtual-edge associated with an edge u, v, is the edge (u, v) (Rule 3a). Thus,
the directed-virtual-edge associated with the directed edge 2, 24 is again (2, 24). The
same holds for edge (24, 13).

7. Now we perform Steps 7(a)–7(d) on all the R-nodes of T .
(a) In Figure 18 we show the face-sink graphs associated with the sT -skeletons

of the R-nodes µ1, µ5, and µ12 (the vertices associated with the faces are represented
by squares). It is easy to verify that they all satisfy the conditions of Theorem 1;
thus the algorithm Embedded Test will return “upward-planar” for every R-node. It
also returns, for each R-node, the set of faces that can be external faces in an upward
drawing of the associated sT -skeleton. In the figure, the nodes associated with these
faces are indicated by black squares.

(b) By inspection of Figure 18, the unmarked edges are the following:
• µ1: {(13, 14)}.
• µ5: {(2, 5), (5, 8), (5, 11), (6, 8), (7, 8), (9, 11), (10, 11)}.
• µ12: {(1, 3), (2, 3), (3, 4)}.
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Fig. 14. Expansion graph of graph G of Figure 2a.

Fig. 15. The SPQR-tree T of G′.
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FIG. 16. The skeletons of the nodes of T . FIG. 17. The sT-skeletons of the nodes of T .

(c) In Figure 19, the edges of the SPQR-tree T associated with unmarked vir-
tual edges are oriented. For example, the tree-edge associated with the directed
virtual edge (13, 14) of the sT -skeleton of µ1 is oriented toward µ1. Analogously, the
tree-edge (µ5, µ10) associated with the directed-virtual-edge (2, 5) of sT -skeleton of
µ5 is directed toward µ5.

Fig. 18. The face-sink graphs of the sT-skeletons of the R-nodes of T .
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Fig. 19. Partial orientation of T .

(d) Since the skeleton of µ1 does not contain the source 1 of G′, and the pertinent
graph G′

4 associated with µ4 contains the source 1, then the tree-edge µ1, µ4 is oriented
toward µ4. Analogously, the tree-edge µ5, µ10 is oriented towards µ10.

8. Since the tree-edge (µ5, µ10) is constrained to be oriented in both directions,
it follows that it is not possible to find a rooting of T at a Q-node containing the
source. Hence algorithm Test returns “not-upward-planar.”

Example 2. In this example, we consider a graph H obtained from graph G of
Figure 2a by contracting edge (12, 15).

1. In Figure 20 we show the expansion graph H ′ of H.
2. By a simple inspection it is possible to verify that H ′ is planar.
3. By a simple inspection it is possible to verify that H ′ is acyclic.
4. In Figure 21 we show the SPQR-tree TH of H ′ and in Figure 22 the skeletons

of the nodes of TH (the skeletons of the Q-nodes are omitted).
5. In the same way as in step 5 of the previous example, all the endnodes of the

virtual edges can be classified.
6. The sT -skeletons corresponding to the skeletons of Figure 22 are shown in

Figure 23.
7. (a) In Figure 24 we show the face-sink graphs associated with the sT -skeletons

of the R-nodes µ1, µ4, and µ11 (the vertices associated with the faces are represented
by squares). It is easy to verify that they all satisfy the conditions of Theorem 1;
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Fig. 20. Expansion graph of graph H.

Fig. 21. The SPQR-tree TH of H′.
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Fig. 22. The skeletons of the nodes of TH .

Fig. 23. The sT-skeletons of the nodes of TH .
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Fig. 24. The face-sink graphs of the sT-skeletons of the R-nodes of TH .

Fig. 25. Orientation of TH .
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Fig. 26. Upward drawing of H′.

thus the algorithm Embedded Test will return “upward-planar” for every R-node. It
also returns, for each R-node, the set of faces that can be external faces in an upward
drawing of the associated sT -skeleton. In the figure, the nodes associated with these
faces are indicated by black squares.

(b) By inspection of Figure 24, the unmarked edges are the following:
• µ1: {(13, 14)}.
• µ4: {(7, 8), (10, 11)}.
• µ11: {(1, 3), (2, 3), (3, 4)}.

(c) In Figure 25, the edges of the SPQR-tree TH associated with unmarked virtual
edges are oriented; their orientations are represented by bold arrows.

(d) Since the skeleton of µ1 does not contain the source 1 of H ′, and the pertinent
graph H ′

4 associated with µ4 contains the source 1, then the tree-edge (µ1, µ4) is
oriented toward µ4. Analogously, the tree-edge (µ4, µ9) is oriented toward µ9. Again,
in Figure 25 these fixed orientations are represented by bold arrows.

8. By simple inspection, it is possible to find a rooting of TH at the Q-node
associated with the edge (1, 4) (see Figure 25). Hence algorithm Test returns “upward-
planar.”

An upward drawing of the expansion H ′ of graph H is shown in Figure 26.
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