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a LRI, CNRS URA 410, Université Paris-Sud, F-91405 Orsay Cedex, France
E-mail: Claire.Kenyon@lri.fr

b LIP, CNRS URA 1398, ENS Lyon, 46 allée d’Italie, F-69364 Lyon Cedex 07, France
E-mail: Helene.Paugam-Moisy@ens-lyon.fr

We study the number of hidden layers required by a multilayer neural network with
threshold units to compute a dichotomy from Rd to {0, 1}, defined by a finite set of hyper-
planes. We show that this question is far more intricate than computing Boolean functions,
although this well-known problem is underlying our research. We present advanced results
on the characterization of dichotomies, from R2 to {0, 1}, which require two hidden layers
to be exactly realized.

1. Introduction

The number of hidden layers is a crucial parameter for the architecture of mul-
tilayer neural networks. Early research, in the 60’s, addressed the problem of exactly
realizing Boolean functions with binary networks or binary multilayer networks. On
the one hand, more recent work focused on approximately realizing real functions
with multilayer neural networks with one hidden layer [7,8,14] or with two hidden
layers [2]. On the other hand, some authors [1,15] were interested in finding bounds
on the architecture of multilayer networks for exact realization of a finite set of points.
Another approach is to search the minimal architecture of multilayer networks for ex-
actly realizing real functions, from Rd to {0, 1}. Our work, of the latter kind, is a
continuation of the effort of [5,6,9,10] towards characterizing the dichotomies which
can be exactly realized with a single hidden layer neural network composed of thresh-
old units. In this article, the research is focused on 2-cycles, in R2 and, extending [4],
we show how this subject is related to linear programming and combinatorial opti-
mization. We prove two results on local realizability of a polyhedral dichotomy in R2,
by applying Farkas’ lemma.

First we define the notion of polyhedral dichotomy and precise which neural
networks we consider. We emphasized the link with Boolean functions and we present
several points of view of the problem, our approach being geometric.

A finite set of hyperplanes {Hi}16i6h defines a partition of the d-dimensional
space into convex polyhedral open regions, the union of the Hi’s being neglected as
a subset of measure zero. A polyhedral dichotomy is a function f :Rd → {0, 1},
obtained by associating a class, equal to 0 or to 1, to each of those regions. Thus both
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f−1(0) and f−1(1) are unions of a finite number of convex polyhedral open regions.
The h hyperplanes whose removal would result in merging at least one pair of regions
in different classes are called the essential hyperplanes of f . A point P is an essential
point if it is the intersection of some set of essential hyperplanes.

All multilayer networks are supposed to be feedforward neural networks of thresh-
old units, fully interconnected from one layer to the next, without skipping intercon-
nections. A network is said to realize a function f :Rd → {0, 1} if, for an input
vector x, the network output is equal to f (x), almost everywhere in Rd. The functions
realized by our multilayer networks are the polyhedral dichotomies.

2. Polyhedral dichotomies and Boolean functions

By definition of threshold units, each unit of the first hidden layer computes a
binary function yj of the real inputs (x1, . . . ,xd). For all j, the jth unit of the first hid-
den layer can be seen as separating the space by the hyperplane Hj:

∑d
i=1 wijxi = θj .

Hence the first hidden layer necessarily contains at least one hidden unit for each
essential hyperplane of f . Thus each region can be labelled by a binary number
y = yh, . . . , y1 (see figure 1). Afterwards, subsequent layers compute a Boolean func-
tion of {0, 1}h and must associate the right class to each region. Since any Boolean
function can be written in DNF-form, two hidden layers are sufficient for a multi-
layer network to realize any polyhedral dichotomy. The network of figure 1 computes
y1y2 + y1y2.

Usually there are fewer than 2h regions and not all possible labels actually ex-
ist. More precisely, the number of convex regions defined by h hyperplanes in a
d-dimensional space is bounded by 2h only if h 6 d and by

∑d
i=0 Cih if h > d.

Definition 1. The Boolean family Bf of a polyhedral dichotomy f is defined to be the
set of all Boolean functions on h variables which are equal to f on all existing labels.

A one-hidden-layer network realizes the dichotomy iff a linear system of inequal-
ities is solvable, the unknown variables being the weights wi and the threshold θ of

Figure 1. The “four-quadrant” dichotomy, which generalizes the XOR function, in dimension d = 3, and
a two-hidden-layer network realizing this dichotomy. The connections are labelled by their weights and

the thresholds are bracketed inside the units.
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Figure 2. No one-hidden-layer network can realize the “four-quadrant” dichotomy (here d = 2). Adding
redundant hyperplanes (whatever their number k) does not help solving the system.

the output unit. For instance, the system corresponding to the example of figure 1 is
as follows and cannot be solved:

0 < θ, region 00, in class 0,
w1 > θ, region 10, in class 1,
w2 > θ, region 01, in class 1,
w1 + w2 < θ, region 11, in class 0.

(1)

Adding k hidden units on the first hidden layer corresponds to adding k redundant
hyperplanes and could allow to find a solution to the system of inequalities since the
dimension of the internal representation (number of input variables of the Boolean
function) is increased from h to h + k. However, for realizing the “four-quadrant”
dichotomy, it can be proved that two hidden layers are necessary (see [5]). Figure 2
shows that, whatever the number and the position of redundant hyperplanes we add,
there still exist four regions near the essential point P which create an inconsistency.

Coming back to the notion of Boolean families, it is straightforward that all
polyhedral dichotomies which have at least one linearly separable function in their
Boolean family can be realized by a one-hidden-layer network. However, the converse
is false. A counter-example was produced in [6]: adding redundant hyperplanes (i.e.,
extra units on the first hidden layer) can eliminate the need for a second hidden layer
(see figure 3).

Example 2. The linear system (S) associated to the dichotomy f defined by figure 3
is composed of 16 inequalities as follows:

(S)



0 > θ (1)
w1 < θ

w1 + w2 < θ (3)
w1 + w2 + w3 < θ

w4 < θ
w1 + w4 < θ

w1 + w2 + w4 < θ
w1 + w2 + w3 + w4 < θ



w4 + w5 < θ (4)
w1 + w4 + w5 < θ

w1 + w2 + w4 + w5 > θ (2)
w1 +w2 + w3 + w4 + w5 < θ

w4 + w5 + w6 < θ
w1 + w4 + w5 + w6 < θ

w1 +w2 + w4 + w5 + w6 < θ
w1 + w2 +w3 + w4 + w5 + w6 < θ
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Figure 3. A one-hidden-layer network, with 6 hidden units on the first layer (corresponding to the
essential hyperplanes), cannot realize the dichotomy, but a network with a 7th extra unit (associated to

the redundant hyperplane H7, in dotted line) can.

System (S) cannot be solved because it contains an inconsistency created by the
four grey regions (figure 3). Adding the four numbered inequalities by pairs implies
that w1 + w2 +w4 + w5 should be both greater and less than 2θ.

Adding the redundant hyperplane H7 corresponds to adding a 7th Boolean vari-
able, as written in italic on the left of each region label (figure 3). Each of the four
regions along H7 are split into two regions, one with a 0 digit, on the negative side
of H7, and one with a 1 digit, on the positive side. A new linear system (S ′) can be
defined for these 7 variables. It contains 20 inequalities, each of them including w7

or not, according to the side of H7 the region stands. The inconsistency appears no
longer, since w7 is added to only one of the four numbered inequalities. Moreover,
the system can be solved using Maple. The simplex method for minimizing gives the
following solution:

w1 =−4, w2 = 2, w3 = −4, w4 = −4, w5 = 2, w6 = −4, w7 = 4,

θ=−1.

Hence the problem of finding a minimal architecture for realizing dichotomies
is not equivalent to the neural computation of Boolean functions. Finding a char-
acterization of all the polyhedral dichotomies which can be realized exactly by a
one-hidden-layer network is a challenging problem.

3. Geometrical approach

3.1. Three geometric configurations of XOR

Our approach consists in finding geometric configurations which imply that a
function is not realizable with a single hidden layer. There are three known such
geometric configurations which involve two pairs of regions: the XOR-situation, the
XOR-bow-tie and the XOR-at-infinity, as summarized in figure 4. We propose below
to give precise and unified definitions for all these geometric situations.
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Figure 4. Geometrical representation of XOR-situation, XOR-bow-tie and XOR-at-infinity in the plane
(dark regions are in class 0, light regions are in class 1).

Definition 3. A polyhedral dichotomy is in XOR-situation if one of its essential hy-
perplanes Hi is inconsistent, i.e., there exist four distinct regions such that:

• B1 and B2 are in class 0, whereas W1 and W2 are in class 1,

• B1 and W1 are adjacent along Hi, somewhere, and B2 and W2 are adjacent
along Hi, elsewhere, but B1 and W2 are on the same side of Hi.

The two next definitions require the notion of opposite regions, with regard to a
mask, defined as follows:

Definition 4. Let f be a dichotomy defined by h essential hyperplanes. Let Mk be a
mask, i.e., a partition of the h digits into k “visible" digits and h− k “hidden" digits.
Two regions are said to be Mk-opposite iff their labels are opposite on the visible
digits of Mk and are identical on the digits hidden by Mk.

Example 5. If h = 5, k = 3 and M3 is the multiplicative mask 01101 (first and fourth
digits hidden, second, third and fifth digits visible), two regions labelled by 10001 and
11100 are M3-opposite, since their visible parts �00�1 and �11�0 are opposite and
their hidden parts 1��0� and 1��0� are identical.

Definition 6. If there exist a non-empty mask Mk and four distinct regions B1, B2,
W1 and W2, with a common point P in their closure and such that:

• B1 and B2 are in class 0, whereas W1 and W2 are in class 1,
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• B1 and B2 are Mk-opposite, and W1 and W2 are Mk-opposite,

then the polyhedral dichotomy is in XOR-bow-tie around the essential point P .

In this case, Mk can be considered as masking all the hyperplanes which do not
contain point P . The two regions in class 0 create a bow-tie. The two regions in
class 1 create another bow-tie which crosses the previous one at point P .

Definition 7. A polyhedral dichotomy is in XOR-at-infinity if there exist a non-empty
mask Mk and four distinct regions B1, B2, W1 and W2, which are unbounded and
such that:

• B1 and B2 are in class 0, whereas W1 and W2 are in class 1,

• B1 and B2 are Mk-opposite, and W1 and W2 are Mk-opposite.

There are several slightly different possible outlines of this geometrical situation,
as represented on cases (a), (b) and (c) of figure 4. In the case of unbounded regions,
the mask is transparent, i.e., Mh = 111 . . . 11, except if some of their border are
parallel essential hyperplanes. Even in this case, when considering the compacted
space Rd ∪ {∞}, a XOR-at-infinity is no more than a XOR-bow-tie with the point ∞
as common point P .

Theorem 8. If a polyhedral dichotomy f , from Rd to {0, 1}, is in XOR-situation, or in
XOR-bow-tie, or in XOR-at-infinity, then f cannot be realized by a one-hidden-layer
network.

The proof can be found in [6,11] for the XOR-situation, in [18] for the XOR-
bow-tie, and in [6] for the XOR-at-infinity. The sketch of these proofs is always the
same: the four regions (two in each class) and their respective labellings induce an
inconsistency in the system of inequalities associated to a one-hidden-layer solution
(see equation (1)) which cannot be solved by adding redundant hyperplanes, whatever
their number and position.

3.2. Critical cycle

Figure 5 shows an example of another geometric configuration which prevents
a dichotomy from being realizable by a one-hidden-layer network, the critical cycle
which has been exhibited first in [4]. We give below a detailed definition.

We first need some preliminary definitions of critical pairs of regions.

Definition 9. Two regions whose closures both contain a point P are called opposite
with respect to P iff they are Mk-opposite, where Mk is the mask which hides exactly
the digits of the hyperplanes not containing P .
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Figure 5. Geometrical configuration of a critical cycle, in the plane. N.B. One can augment the figure in
such a way that there is no XOR-situation, no XOR-bow-tie, and no XOR-at-infinity.

Figure 6. A critical pair of regions, with respect to a hyperplane H and a point P .

Definition 10. Let {R1,R2} be a pair of regions, in the same class, and whose clo-
sures both contain an essential point P . If there is an essential hyperplane H going
through P , such that R2 is adjacent along H to the region opposite to R1, with respect
to P (see figure 6), then {R1,R2} is called a critical pair with respect to P and H .
Note that R1 and R2 are both on the same side of H .

We define a graph G whose nodes correspond to the critical pairs of essential
regions of f and whose edges are colored green or red. There is a red edge between
{B1,B2} and {W1,W2} if the pairs, in different classes, are both critical with respect
to the same point but to different hyperplanes (see figure 7). Note that this strongly
resembles a XOR-bow-tie, except that B1 and B2 are not quite Mk-opposite, and W1

and W2 are not quite Mk-opposite. If two pairs are both critical with respect to the
same hyperplane H but with respect to different points, there are linked by a green
edge either if the two pairs {B1,B2} and {W1,W2} are in different classes and on the
same side of H , or if the two pairs {B1,B2} and {B3,B4} are in the same class but
on different sides of H (see figure 8).

Definition 11. A critical cycle is a geometric configuration associated to a graph G
which contains a cycle, with alternating colors, as depicted in figures 5 and 9.

Theorem 12. If a polyhedral dichotomy f , from Rd to {0, 1}, has a critical cycle,
then f cannot be realized by a one-hidden-layer network.
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Figure 7. Two critical pairs linked
by a red edge in graph G.

Figure 8. Two different cases of critical pairs linked by a green
edge in graph G.

Figure 9. Graph associated to the critical cycle proposed as example in figure 5.

Note that all the figures are in R2, but the definition is general, in Rd. The
proof of the theorem relies on the bicolor graph G and can be found in [4]. The
underlying idea is always the same: no set of redundant hyperplanes can help solving
the inconsistency.

4. Different points of view

4.1. Network approach

In contrast with our geometrical definitions, Takahashi et al. [17] have presented
a notion of cyclicity, in the same context of research, but with a different point of view.
They start from the notion of summability of Boolean functions [16], and “n-cyclicity”
can be viewed as a reinterpretation of n-summability. Given the hyperplanes associated
to the hidden units of a fixed network (essential hyperplanes, plus redundant hyper-
planes), finding the weights which realize the dichotomy amounts to solving a system
of linear inequalities. The authors of [17] claim that this system has a solution iff
there is no cyclicity, but their notion of cyclicity is only defined with respect to a fixed
network.

On the one hand, if a dichotomy f is in any of the three cases of XOR, then
“cyclicity” occurs and remains, no matter what hidden units are added on the first
hidden layer. On the other hand, for the example of figure 3, “cyclicity” occurs with



C. Kenyon, H. Paugam-Moisy / Polyhedral dichotomies 123

six hidden units but not with seven hidden units. Hence, some cyclicities, under the
definition of [17], can be realized and others cannot. Our approach is different since
we want a characterization of the polyhedral dichotomies f which can be realized by
a one-hidden-layer network, independently of the network realizing f . The problem
can be addressed in a different way, even less geometric than [17], as presented below.

4.2. Topological approach

Another research direction, implying a function is realizable by a single hid-
den layer network, is based on a topological approach. The proof uses the universal
approximator property of one-hidden-layer networks [7,8,14] applied to intermediate
functions obtained constructively by adding extra hyperplanes to the essential hyper-
planes of f . This direction was explored by Gibson [10], for a two dimensional input
space. Gibson’s result can be reformulated as follows:

Theorem 13. If a polyhedral dichotomy f is defined on a compact subset of R2, if
f is not in XOR-situation, and if no three essential hyperplanes (lines) intersect, then
f is realizable with a single hidden layer network.

Unfortunately Gibson’s proof is not constructive, and extending it to remove
some of the assumptions seems challenging. Both XOR-bow-tie and XOR-at-infinity
are excluded by his assumptions of compactness and of no multiple intersections.
In the next sections, we explore the cases, in R2, which are excluded by Gibson’s
assumptions. Recent research by Hassell Sweatman et al. [13] is turned towards
extending the definitions and proofs to go to higher dimensions, where new cases of
inconsistency emerge in subspaces of intermediate dimension.

5. Advanced results, for 2-cycles, in R2

From now on, the research is focused on the 2-cycles, i.e., the sets of four regions,
two of each class, which induce an inconsistency in the system of inequalities. Our
aim is to extend Gibson’s theorem and to state converse results to theorem 8, at least
in R2. We need to introduce a notion of local realizability. The two theorems of
this section prove that, in R2, the XOR-bow-tie and the XOR-at-infinity are the only
configurations barring local realizability. Their proofs, based on the use of Farkas’
lemma, are detailed below.

Definition 14. A polyhedral dichotomy f is locally realizable around a point P ∈
R2 ∪ {∞} if there exists a neighborhood V of P such that the restriction of f to V is
realizable by a one-hidden-layer network.

5.1. Local realization and XOR-bow-tie

Theorem 15. A polyhedral dichotomy f on R2 is locally realizable around a point P
in R2 iff f is not in XOR-bow-tie at P .
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Figure 10. A bundle of essential hyperplanes intersecting at P , and the labels of local regions, after
having renumbered and reoriented the hyperplanes.

This result is specially interesting if P is a point of multiple intersection, i.e.,
where more than two essential hyperplanes intersect.

Proof. Consider as neighborhood of P any open ball CP which includes P and which
does not intersect any essential hyperplane other than those going through P . The proof
is in three steps. First, we reorder the hyperplanes in the neighborhood CP of P , so
as to get an appropriate labelling of all the regions whose closure contains P (see
figure 10). This is possible because we are in two dimensions, and so the hyperplanes
going through P are just lines and can be ordered by slope. Second, we apply Farkas’
lemma to the “nice” looking system of inequalities resulting from the appropriate
labelling. Third, we show how an XOR-bow-tie can be deduced.

The problem of finding a one-hidden-layer network with no redundant hyper-
planes and which locally realizes f can be rewritten as a system (S) of inequalities
obtained from the 2k regions which have the point P in their closure.

(S)


1 6 i 6 k

[∑i
m=1 wm < θ if region i of class 0,∑i
m=1 wm > θ if region i of class 1,

k + 1 6 i 6 2k

[∑k
m=i−k+1wm < θ if region i of class 0,∑k
m=i−k+1wm > θ if region i of class 1.

(2)
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The system (S) can be rewritten in matrix form Ax 6 b, where

xT = [w1,w2, . . . ,wk, θ]

is the unknown vector of weights and threshold, for the output unit, and

bT = [b1, b2, . . . , bk, bk+1, . . . , b2k]

is defined by bi = −η, for all i, where η is an arbitrarily small positive number.
The matrix A has the following expression:

A =



ε1 0 . . . . . . 0 −ε1

ε2 ε2 0 . . . 0 −ε2
...

. . . . . .
...

...
... εk−1 0

...
εk . . . . . . εk εk −εk
0 εk+1 . . . . . . εk+1 −εk+1

0 0 εk+2
... −εk+2

...
. . . . . .

...
...

...
. . . ε2k−1 −ε2k−1

0 . . . . . . . . . 0 −ε2k



,

where εj = +1 if the region j is in class 0 or εj = −1 if this region is in class 1.

The next step is to apply Farkas’ lemma, or an equivalent version [12], which
gives a necessary and sufficient condition for finding a solution of Ax 6 b.

Proposition 16 (Farkas’ lemma, equivalent version). There does not exist a vector
x ∈ Rn such that Ax 6 b iff there exists a vector y ∈ Rm such that yTA = 0, y > 0
and yTb < 0.

Assume that Ax 6 b is not solvable and apply Farkas’ lemma with n = k + 1
and m = 2k. The equations corresponding to yTA = 0 are

(E)

{
1 6 i 6 k

∑i+k−1
m=i εmym = 0,∑2k
m=1−εmym = 0.

Substracting the ith equation from the (i+ 1)th equation, we get

(1 6 i 6 k − 1) εiyi = εi+kyi+k.

Adding the first and kth equations and substracting them to the last one, we get

εkyk = ε2ky2k.



126 C. Kenyon, H. Paugam-Moisy / Polyhedral dichotomies

Since y > 0, we see that whenever yi 6= 0, the two regions i and i+k are in the same
class.

Now, since yTb < 0, vector y is not uniformly 0. Moreover, the last equation
of (E) can be rewritten as ∑

i|region i in class 0

yi =
∑

i|region i in class 1

yi.

Hence there exist j1 and j2 such that yj1 6= 0, yj2 6= 0, and regions j1 and j2 are in
different classes.

Hence, we have proved that, if the system (S) Ax 6 b is not solvable, then there
exist two opposite regions in class 0 and two opposite regions in class 1, “opposite”
with respect to their labels around the point P , which is exactly the definition of a
XOR-bow-tie configuration at P (cf. figure 4). �

5.2. Local realization and XOR-at-infinity

If no two essential hyperplanes are parallel, the case of unbounded regions is
exactly the same as a multiple intersection, the point P being replaced by ∞. The
case of parallel hyperplanes (see an example in figure 11) is more intricate.

Example 17. For the example of figure 11, matrix A takes the expression

A =



ε1 0 0 0 0 0 0 −ε1

ε2 ε2 0 0 0 0 0 −ε2

ε3 ε3 ε3 0 0 0 0 −ε3

ε4 ε4 ε4 ε4 0 0 0 −ε4

ε5 ε5 ε5 ε5 ε5 0 0 −ε5

ε6 ε6 ε6 ε6 ε6 ε6 0 −ε6

ε7 ε7 ε7 ε7 ε7 ε7 ε7 −ε7

0 ε8 ε8 ε8 ε8 ε8 ε8 −ε8

0 ε9 ε9 ε9 0 ε9 ε9 −ε9

0 ε10 ε10 0 0 ε10 ε10 −ε10

0 ε11 0 0 0 ε11 ε11 −ε11
0 0 0 0 0 ε12 ε12 −ε12

0 0 0 0 0 0 ε13 −ε13

0 0 0 0 0 0 0 −ε14



,

where εj = +1 if the region j is in class 0 or εj = −1 if this region is in class 1.

Theorem 18. Let f be a polyhedral dichotomy on R2. Let C∞ be the complementary
region of the convex hull of the essential points of f . The restriction of f to C∞ is
realizable by a one-hidden-layer network iff f is not in XOR-at-infinity.
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Figure 11. A bundle of parallel essential hyperplanes, and the labels of unbounded regions, after having
correctly renumbered and re-oriented the hyperplanes.

The proof is based on a similar reasoning, but it requires a heavy case-by-case
analysis (see [3] for details). From theorems 15 and 18 we deduce that a polyhedral
dichotomy is locally realizable in R2 by a one-hidden-layer network iff f has no XOR-
bow-tie and no XOR-at-infinity. Unfortunately this result cannot be extended to the
global realization of f in R2.

6. Conclusion

In this article, after setting the basic definitions, we have summarized several
approaches aiming to determine which polyhedral dichotomies can be realized by a
one-hidden-layer network and which cannot. Four geometric configurations are defined
in Rd: the XOR-situation, the XOR-bow-tie, the XOR-at-infinity and the critical cycle.
The first three configurations belong to the family of 2-cycles, since they involve four
regions, two in each class. The last one is at least a 6-cycle. All these configurations
prevent a dichotomy to be realized with a single hidden layer. We conjecture that,
in R2, they are the only ones, but converse results are much more challenging. Partial
results about local realizability are developed. Their proof is based on using Farkas’
lemma. Our further research will be re-oriented towards another point of view, giving
a greater importance to the internal representation of the dichotomy.
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