SIAM J. COMPUT. (© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 864-889

ROBUST PROXIMITY QUERIES: AN ILLUSTRATION OF
DEGREE-DRIVEN ALGORITHM DESIGN*

GIUSEPPE LIOTTAT, FRANCO P. PREPARATAY, AND ROBERTO TAMASSIA*

Abstract. In the context of methodologies intended to confer robustness to geometric algo-
rithms, we elaborate on the exact-computation paradigm and formalize the notion of degree of a
geometric algorithm as a worst-case quantification of the precision (number of bits) to which arith-
metic calculation have to be executed in order to guarantee topological correctness. We also propose
a formalism for the expeditious evaluation of algorithmic degree. As an application of this paradigm
and an illustration of our general approach where algorithm design is driven also by the degree,
we consider the important classical problem of proximity queries in two and three dimensions and
develop a new technique for the efficient and robust execution of such queries based on an implicit
representation of Voronoi diagrams. Our new technique offers both low degree and fast query time
and for 2D queries is optimal with respect to both cost measures of the paradigm, asymptotic number
of operations, and arithmetic degree.

Key words. geometric computing, robustness, arithmetic precision, proximity queries
AMS subject classifications. 68U05, 65Y25

PII. S0097539796305365

1. Introduction. The increasing demand for efficient and reliable geometric
software libraries in key applications such as computer graphics, geographic informa-
tion systems, and computer-aided manufacturing is stimulating a major renovation
in the field of computational geometry. The inadequacy of the traditional simplified
framework has become apparent, and it is being realized that, in order to achieve an
effective technology transfer, new frameworks and models are needed to design and
analyze geometric algorithms that are efficient in a practical realm.

The real-RAM model with its implicit infinite-precision requirement has proved
unrealistic and needs to be replaced with a realistic finite-precision model where ge-
ometric computations can be carried out either exactly or with a guaranteed error
bound. This has motivated a great deal of research on the subject of robust computa-
tional geometry (see, e.g., [4, 12, 11, 19, 27, 28, 31, 36, 34, 39, 48, 54, 58, 21, 30, 32]).
For an early survey of the different approaches to robust computational geometry the
reader is referred to [38].

To a first, rough approximation, robustness approaches are of two main types:
perturbing and nonperturbing. Perturbing approaches transform the given problem
into one that is intended not to suffer from well-identified shortcomings; nonperturbing
approaches are based on the notion of “exact” (rather than “approximate”) compu-
tations, with the assumption that (bounded-length) input data are error-free. In this
category falls the exact geometric computation paradigm independently advocated by

*Received by the editors June 19, 1996; accepted for publication (in revised form) January 17,
1997; published electronically September 22, 1998. This research was supported in part by U.S. Army
Research Office grant DAAH04-96-1-0013, National Science Foundation grant CCR-9423847, the
N.A.T.0.-C.N.R. Advanced Fellowships Programme, and EC ESPRIT Long Term Research Project
ALCOM-IT contract 20244.

http://www.siam.org/journals/sicomp/28-3/30536.html

TDipartimento di Informatica e Sistemistica, Université di Roma “La Sapienza”, Via Salaria 113,
Roma I-00198, Italy. The work of this author was performed in part while he was with the Center
for Geometric Computing at Brown University (liotta@dis.uniromal.it).

fCenter for Geometric Computing, Department of Computer Science, Brown University, 115
Waterman Street, Providence, RI 02912-1910 (franco@cs.brown.edu, rt@cs.brown.edu).

864

ROBUST PROXIMITY QUERIES 865

Yap [59] and by the Saarbriicken school [10], and so does our approach. Within this
paradigm, we introduce the notion of degree of an algorithm, which describes, up to
a small additive constant, the arithmetic precision (i.e., number of bits) needed by
the exact-computation paradigm. Namely, if the coordinates of the input points of a
degree-d geometric algorithm are b-bit integers, then, as we shall substantiate below,
the algorithm may be required in some instances to perform arithmetic computations
with bit precision d(b+ O(1)).

Theoretical analysis and experimental results show that multiprecision numerical
computations take up most of the CPU time of exact geometric algorithms (see, e.g.,
[41, 49]). Thus, we believe that, in defining the efficiency of a geometric algorithm,
the degree should be considered as important as the asymptotic time complexity and
should correspondingly play a major role in the design stage. In fact, the principal
thrust of this paper is to present algorithm degree as a major design criterion for
geometric computation. Research along these lines involves reexamining the entire
rich body of computational geometry as we know it today.

In this paper, we consider as a test case a problem area, geometric proximity,
which plays a major role in several applications and has recently attracted considerable
attention because, due to its demands of high precision for exact computation, it
is particularly appropriate in assessing effectiveness of robust approaches (see, e.g.,
[9, 11, 20, 29, 31, 27, 55, 32]). In particular we shall illustrate the role played by
the degree criterion if one wishes to comply with the standard exact-computation
paradigm.

To illustrate the approach, we recall that Voronoi diagrams are the search struc-
tures which permit answering a proximity query without evaluating all query/site
distances. Therefore, given the set of sites, their Voronoi diagram is computed and
supplied as a planar subdivision to a point location procedure. Assuming that the
coordinates of all input data (also called primitive points) are b-bit integers, the coor-
dinates of the points computed by the algorithm (referred to here as derived points,
e.g., the vertices of a Voronoi diagram of points and segments) must be stored with
a representation scheme that supports rational or algebraic numbers as data types
(through multiprecision integers). Specifically, the coordinates (z,y) of a Voronoi
vertex are rational numbers given by the ratio of two determinants (of respective
orders 3 and 2) whose entries are integers of well-defined maximum modulus. The
fundamental operation used by any point location algorithm is the point-line discrim-
ination, which consists of determining whether the query point ¢ is to the left or to
the right of an edge between vertices vy and vy. For the case of the Voronoi diagram
V(S), this is equivalent to evaluating the sign of a 3 x 3 determinant whose rows are
the homogeneous coordinates of ¢, vy, and vy, a computation that needs about 6b
bits of precision. This should be compared with the O(n)-time brute-force method
that computes the (squares of the) distances from ¢ to all the sites of S, and executes
arithmetic computations with only 2b bits of precision (which is optimal).

Guided by the low-degree criterion, in this paper we present a technique—com-
plying with the exact-computation paradigm—which uses a new point location data
structure for Voronoi diagrams, such that the test operations executed in the point
location procedure are distance comparisons, and are therefore executed with opti-
mal 2b bits of precision. Hence, our approach reconciles efficiency with robustness
and supports an object-oriented programming style where access to the geometry of
Voronoi diagrams in point location queries is encapsulated in a small set of geometric
test primitives. It must be pointed out that distance comparisons have already been
used nontrivially for proximity search (extremal-search method [26]). However, we
shall show that the latter method fails to achieve optimal degree because the search

866 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

TABLE 1
Comparison of the degree and time of algorithms for some fundamental proximity query prob-
lems. An * denotes optimality. The new technique introduced in this paper (point location in an
implicit Voronoi diagram) always outperforms previous methods and is optimal for 2D queries.

[Query [Method [Degree | Time I
brute-force distance comparison 2 * O(n)
Nearest neighbor point location in explicit Voronoi diagram 6 O(logn) *
extremal-search method 4 O(logn) *
point location in implicit Voronoi diagram 2 * O(logn) *
k-nearest neighbors brute-force distance comparison 2 ¥ O(n)
and point location in explicit order-k Voronoi diagram 6 O(logn + k) *
circular range search point location in implicit order-k Voronoti diagram 2°F O(logn + k) *
Nearest neighbor among brute-force distance comparison 6 O(n)
points and segments point location in explicit Voronoi diagram 64 O(logn) *
point location in implicit Voronoi diagram 6 O(logn) *
brute-force distance comparison 2 % O(n)
3D nearest neighbor point location in explicit 3D Voronoi diagram 8 O(log“n)
point location in tmplicit 3D Voronoi diagram 3 O(log® n)

is based on predicates requiring 4b bits of precision; moreover, the high overhead of
the search technique (which uses the hierarchical polytope representation [22]) casts
some doubts on the practicality of the method.

The main results of this work are summarized in Table 1. Considering, for the time
being, the degree as a measure of complexity, we show that previous methods exhibit
a sharp tradeoff between degree and query time. Namely, low degree is achieved by
the slow brute-force search method, while fast algorithms based on point location in
a preprocessed Voronoi diagram or on the extremal-search method have high degree.
Our new technique gives instead both low degree and fast query time and is optimal
with respect to both cost measures for queries in sets of 2D point sites.

The rest of this paper is organized as follows. In section 2, the concept of degree
of a geometric algorithm is defined and a simple formalism to compute such degree is
introduced. Such formalism is used in section 3 to analyze the performance of basic
proximity primitives. In section 4, we consider the following fundamental proxim-
ity queries for a set of point sites in the plane: nearest neighbor search, k-nearest
neighbors search, and circular range search. We show that the existing methods
for efficiently answering such queries have degree either 6 (point location in explicit
Voronoi diagram) or 4 (extremal-search method), and we present our new technique,
based on implicit Voronoi diagrams, which achieves optimal degree 2. In sections 56,
we extend our approach to nearest neighbor search queries in a set of 3D point sites
and in a set of point and segment sites in the plane, respectively. Practical improve-
ments are presented in section 7. Finally, further research directions are discussed in
section 8.

2. Degree of geometric algorithms and problems. The numerical compu-
tations of a geometric algorithm are basically of two types: tests (predicates) and
constructions. The two types of computations have clearly distinct roles. Tests are
associated with branching decisions in the algorithm that determine the flow of con-
trol, whereas constructions are needed to produce the output data of the algorithm.

Approximations in the execution of constructions are acceptable, since approx-
imate results are perfectly tolerable, provided that the error magnitude does not
exceed the resolution required by the application. On the other hand, approxima-
tions in the execution of tests may produce an incorrect branching of the algorithm.
Such event may have catastrophic consequences, giving rise to structurally incorrect
results. The exact-computation paradigm therefore requires that tests be executed
with total accuracy.

ROBUST PROXIMITY QUERIES 867

We shall therefore characterize geometric algorithms on the basis of the complex-
ity of their test computations. Any such computation consists of evaluating the sign
of an algebraic expression over the input variables, constructed using an adequate set
of operators such as {+, —, x, +, e .}. As we shall show below, the expressions
under consideration are equivalent to multivariate polynomials.

Here we make the reasonable assumption that input data be dimensionally consis-
tent, i.e., that if an entity with the physical dimension of a length is represented with
b bits, then one with the dimension of an area be represented with 2b bits, and so on.
Under the hypothesis of dimensional consistency (where point coordinates are b-bit
entries), a polynomial expressing a test is homogeneous because all of its monomials
must have the same physical dimension.

A primitive variable is an input variable of the algorithm and has conventional
arithmetic degree 1. The arithmetic degree of a polynomial expression F is the com-
mon arithmetic degree of its monomials. The arithmetic degree of a monomial is the
sum of the arithmetic degrees of its variables.

DEFINITION 1. An algorithm has degree d if its test computations involve the
evaluation of multivariate polynomials of arithmetic degree at most d. A problem I1
has degree d if any algorithm that solves I1 has degree at least d.

Remark 1. Recently, Burnikel [9] has independently defined the notion of precision
of an algorithm, which is equivalent to our notion of degree of an algorithm. Also, our
definition of degree is related to that of depth of derivation proposed by Yap [58, 59].
Given a set of numbers, any number x of the set has depth 0. A number has depth
at most d if it can be obtained by executing a rational operation on numbers with
depth d — 1 or it is the result of a root extraction from a degree-k polynomial whose
coeflicients have depth at most d — k. An algorithm has depth d if it performs only
rational operations such that all the intermediate computed numbers have depth of
derivation at most d with respect to the set of input numbers. Clearly, d is the
least possible integer such that all the intermediate computed values have depth of
derivation at most d. A problem has depth d if it can be solved by an algorithm with
rational bounded depth d. Despite the relatedness of the notions of depth and degree,
the latter seems more appropriate to our analysis, where we aim at minimizing the
number of bits needed for computing an exact value, independently of its (possibly
very high) depth.

Motivated by a standard feature of geometric algorithms, we also make the as-
sumption that every multivariate polynomial of degree d used in tests depends upon a
set of size s (a small constant) of primitive variables. Therefore, a multivariate poly-
nomial has O(s?) distinct monomials with bounded integer coefficients, so that the
maximum value of the multivariate polynomial is expressible with at most db+ dlog s
bits. A consequence of Definition 1 and of the above assumption is the following
fact, which justifies our use of the degree of an algorithm to characterize the precision
required in test computations.

LeMMA 1. If an algorithm has degree d and its input variables are b-bit integers,
then all the test computations can be carried out with d(b+ O(1)) bits.

Typically the support of a geometric test is not naturally expressed by a multi-
variate polynomial but, rather, by a pair (E7, F3) of expressions involving the four
arithmetic operations, powering, and the extraction of square roots, and the test con-
sists of comparing the magnitudes of F; and F3. Such expressions always have a
physical dimension (a length, an area, a volume, etc.), so that if they have the form
of ratios, the degree of the numerator exceeds that of the denominator.

Expressions such as F; and E3 can be viewed as a binary tree, whose leaves
represent input variables and whose internal nodes are of two types: binary nodes,

868 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

which are labeled with an operation from the set {+,—, x, =}, and unary nodes,
which are labeled either with a power or with a square root extraction (notice that we
restrict ourselves to this type of radical). If no radical appears in the trees of E; and
E5, then the test is trivially equivalent to the evaluation of the sign of a polynomial,
since F; is a rational function of the form % (i = 1,2, N;, D; are not both trivial
polynomials and D; # 0) and

E) > By < (—1)7P)+eD2) (N Dy — NyDy) >0,

where o(F) = 1if E < 0 and o(E) =0 if E > 0. (Note that the above predicate
implies the inductive assumption that the signs of lower-degree expressions Ni,Na,
D;, and Dy are known.) Suppose now that at least one of the trees of Fy and Es
contains radicals. We prune the tree so that the pruned tree contains no radicals
except at its leaves (notice that pruned subtrees may themselves contain radicals).
Then N; and D; (i = 1,2) can be viewed as polynomials whose variables are the
radicals and whose coefficients are (polynomial) functions of nonradicals. Given a
polynomial F in a set of radicals, for any radical R in this set, we can express F as
E = E'R + E’ where neither E” nor E’ contains R. Then

E>0«<= E'R>-F'.

The resulting expression (E” R2_F' 2) does not contain R. Therefore, by this device,
referred to as segregate and square, we can eliminate one radical. This shows that by
the four rational operations we can reduce the sign test to the computation of the
signs of a collection of multivariate polynomials.

We now present a very simple, but useful, formalism that enables us to rapidly
evaluate the degree of the multivariate polynomial which uniquely determines the sign
of the original algebraic expression.

The terms involved in the formal manipulations are of two types: generic and
specific. Generic terms have the form a® (for a formal variable o and an integer
s), representing an unspecified multivariate polynomial of degree s over primitive
variables. Specific terms have the form p;, for some integer index j, representing a
specified expression involving the operators {4, —, x, +, va }. The terms are members
of a free commutative semiring; i.e., addition and multiplication are associative and
commutative, addition distributes over multiplication, and specific terms can be fac-
tored out. Besides these conventional algebraic rules, we have a set of rewriting rules
of the form A — B, meaning that the sign of A is unambiguously determined by the
sign of B and by the signs of terms in A, which are inductively assumed to be known.
This induction is either on the degree of the terms or, in case of addition of (same
degree) terms, on the number of the latter.

We have seven rules, whose correctness can be proved with elementary algebra.
Rule 1 performs genericization, i.e., a specific term p;, which is known to be a poly-
nomial of degree s over primitive variables, can be rewritten as a®. Rules 2-4 involve
generic terms, which reflect the fact that the only relevant feature of a polynomial
is its degree. Finally, rules 5-7 concern specific terms. The role of specific terms is
that we wish to keep track of their structure (that is, their definition) in order to
exploit it when computing least common multiples or multiplying radicals together.
Again, the R.H.S. of a rule gives the highest degree of the polynomials whose signs
unambiguously determine the sign of the L.H.S. Recall that the stated hypothesis of
nonnegative dimensionality implies that the degree of a numerator is never smaller

ROBUST PROXIMITY QUERIES 869

than that of its denominator. The rules are

(2) OéSOéT N aerr

3) a*+a° — o

(4) —ab — ab

(5) % £ — piEm
(6) ZEE£E~ — pipeEpipn
() pitp; — P —p

A discussion on how to compute the sign of an algebraic expression of the type
considered by rule (7) can also be found in [57].

The preceding discussion establishes the following theorem.

THEOREM 1. Rules (1)—(7) are adequate to evaluate the degree of multivariate
polynomials whose sign, collectively, unambiguously determines the sign of an arbi-
trary algebraic expression involving square roots.

While the above rules represent an adequate formalism for obtaining an upper
bound to the degree of an algorithm, more subtle is the corresponding lower-bound
question. In other words, given a predicate P that is essential to the solution of
a given problem, what is the inherent degree of P? Suppose that predicate P is
expressed by a polynomial P of degree d, and we must decide whether the value of P
is positive, negative, or zero. Can we answer this question by computing a discrete
(ternary) function f of analogous evaluations of irreducible polynomials P, ..., Py
of maximum degree smaller than d? Clearly, f changes value only when some P;
changes sign (exactly, when the value of P; passes by 0). Thus, a 0 of P corresponds
to a 0 of some P;. Moreover, as the arguments of P; vary while P; remains 0, so does
f and hence P. Therefore, P vanishes at all points for which P; vanishes and, for a
well-known theorem of polynomial algebra (see, e.g., [8, pp. 212-216]), we conclude
that P; is a factor of P. This is summarized as follows.

THEOREM 2. The degree of the problem of evaluating a predicate expressed by a
polynomial P is the mazximum arithmetic degree of the factors of P that change sign
over their domain.

3. Basic proximity queries. In this section we use the formalism introduced
above to analyze the degree of some geometric tests that answer basic proximity
queries. We end the section by establishing a lower bound on the degree of the
nearest neighbor search problem. In the proofs, we assume that a line r is represented
by the coefficients of its equation. However, the results still hold if line r is represented
by two of its points.

We start with the point-to-lines distance test; i.e., given two lines r; and r5 on the
plane and a query point ¢, determine whether ¢ is closer to r; than to rs.

LEMMA 2. The point-to-lines distance test can be solved with degree 6.

Proof. Let the equation of r; be a;xz + by +¢; =0 (i = 1,2) and let ¢ = (24, yq)-
Then the test is to study the sign of ‘a”\“/t%fzgcll - Iasz\q/t%zfggrwl. By using the
proposed notation, and with obvious meaning for p; and ps, this test becomes (each
arrow being superscripted with the rules used)

e SO a2, —a’p —Matpd —atp —O

ata? —ata? —13) b, O
The following lemmas describe the degree of other proximity primitives that will
be useful in the rest of the paper. We omit the proofs of such lemmas, since they

870 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

are either straightforward or have been already proved in [9]. However, it is worth
mentioning that the proofs in [9] can be substantially simplified by using the proposed
notation.

Let p be a point and r a line in the plane. The point-to-point-line distance test
determines whether a query point ¢ is closer to p or to 7.

LEMMA 3. The point-to-point-line distance test can be solved with degree 4.

Let p; and ps be two distinct points of the plane and let ¢ be a query point. The
point-to-points distance test determines whether ¢ is closer to p; or to ps.

LEMMA 4. The point-to-points distance test can be solved with degree 2.

The above lemma can be easily extended to any space of dimension d.

Another fundamental proximity primitive is the incircle test, that is, testing
whether the circle determined by three distinct sites (points and/or segments) of
the plane contains a given query site. The incircle test is a basic operation for many
algorithms that construct the Voronoi diagram of the sites (see, e.g., [37, 41, 33, 3]).
The degree of the incircle test has been extensively studied by Burnikel [9] and by
Burnikel, Mehlhorn, and Schirra [11]. Following the notation of Burnikel [9], an incir-
cle test is conveniently expressed as a quadruple (a1, az, as; aq), where each a; € {p,{}
(i =1,...,4) is either a point or a line on the plane (a segment is seen by Burnikel
as given by the pair of its endpoints and by the underlying line) and we test whether
a4 intersects the circle determined by ai,a2, and as.

The following lemma is proved observing that the incircle test (p1, p2, p3; ps) can
be answered by determining the sign of a 4 x 4 determinant that is an arithmetic
degree-4 multivariate polynomial.

LEMMA 5 (see [9]). The incircle test (p1,p2,p3;pa) can be solved with degree 4.

Lemma 5 can be easily extended to any dimension d > 2. We describe such a test

as (p1,...,Pd+1;Pd+2), where points p1,...,pq+1 determine a d-dimensional sphere
and pgyo is the query point.
LEMMA 6. The insphere test (p1,...,Pd+1;Pdr2) in any fived dimension d > 2

can be solved with degree d + 2.

For the construction of the Voronoi diagram of a set of points and segments in the
plane Burnikel shows that the most demanding test in terms of degree is the incircle
test (ll, lo,l3; l4) [9]

LEMMA 7 (see [9]). The incircle test (I1,12,13;14) can be solved with degree 40.

While the above lemmas provide an upper bound on the degree of a proximity
problem, the next theorem gives a lower bound.

THEOREM 3. The nearest neighbor search problem for a point set has degree 2 in
any fized dimension d > 2.

Proof. We show the proof for the case d = 2. The proof for any other values
of d is analogous. Let p1 = (z1,41), p2 = (22,¥2), and ¢ = (x4, y,) be three points
in the plane. In order to determine which of p; and p, is the point nearest to ¢, a
point-to-points distance test must be performed.

This is equivalent to the evaluation of the sign of the difference d(p1, q) — d(p2, q),
which, in turn, is equivalent to the evaluation of the sign of the polynomial d?(p, q) —
d?(p2,q). This shows that this computation has degree at most 2. On the basis of
Theorem 2, for the degree to be less than 2, polynomial d?(p1,q) — d?(pa2,q) should
be factorable as the product of two degree-1 polynomials. We show below that this
is not possible.

Suppose, for a contradiction, that there exist constants a’,a”,b’,b”,c',c",d',d" e,
e, ', f" such that

d*(p1,q) — d*(p2,q) = @3 + Y7 — @3 — Y3 — 2x124 + 22224 — 2Y1Yq + 242Yq
— (a/l‘l +b/y1 +C/x2 +d/y2 +e/xq _|_f/yq) . (al/x]_ +b//y1 -‘1-01/.’172 +d//y2 +€//xq +fl/yq)-

ROBUST PROXIMITY QUERIES 871
The above equality implies €’e” = 0, since there cannot be a term e’e”z2. How-
ever, ¢ and e” are not simultaneously 0, because there are nonzero terms having x,
as a factor. Assume w.l.o.g. that ¢’ # 0. Observe that d’¢” = 0 because there is no
term d’e”yoy,; this implies d’ = 0. However, we must also have d'd” = —1 because of
the term —y2, a contradiction. 0
Observe that an optimal degree algorithm for the nearest neighbor search prob-
lem in a planar point set can be easily obtained with the brute-force approach, where
one computes all the distances between the query point and all other points and
reports the point at minimum distance. However, such algorithm is both computa-
tionally inefficient (it requires quadratic time) and does not support repetitive-mode
queries. In section 4 we present an optimal degree algorithm, complying with the
exact-computation paradigm, whose query time and space are optimal.

4. Proximity queries for point sites in the plane. In this section, under
our standard assumption that all input parameters — such as coordinates of sites and
query points — are represented by b-bit integers, we consider the following proximity
queries on a set S of point sites in the plane:

nearest neighbor search: given query point ¢, find a site of S whose Euclidean

distance from ¢ is less than or equal to that of any other site;

k-nearest neighbors search: given query point ¢, find k sites of S whose Euclidean

distances from ¢ are less than or equal to that of any other site;

circular range search: given query points ¢ and r, find the sites of S that are

inside the circle with center g passing through r.

It is well known that such queries are efficiently solved by performing point lo-
cation in the Voronoi diagram (possibly of higher order) V(S) of the sites [51]. For
nearest neighbor search, the alternative extremal-search method [26] also exists.

We begin by examining in section 4.1 the geometric test primitives used by the the-
oretically optimal and practically efficient point location methods. We identify three
fundamental geometric test primitives for accessing the geometry of a planar map,
and we introduce the concepts of “native” and “ordinary” point location methods.
In section 4.2, we show that the “conventional” approach of accessing the explicitly
computed Voronoi diagram V' (.S) of the sites causes point location queries, and hence
proximity queries, to have degree at least 6. We also analyze the extremal-search
method and show that it has degree 4. In sections 4.3-4.4, we describe our new im-
plicit representation of Voronoi diagrams for point sites in the plane, which allows us
to perform proximity queries with optimal degree 2.

4.1. Test primitives and methods for planar point location. The chain
method [44], the bridged-chain method [25], the trapezoid method [50], the subdivi-
sion refinement method [42], and the persistent search tree method [53] are popular
deterministic techniques for point location in a planar map that combine theoretical
efficiency with good performance in practice (see, e.g., [24, 51]). Namely, denoting
with n the size of the map, all the above point location methods require O(nlogn)
preprocessing time. The query time is O(log? n) for the chain method and O(log n) for
the other methods. The space used is O(nlogn) for the trapezoid method and O(n)
for the other methods. For monotone maps, the preprocessing time is O(n) for the
chain method and the bridged-chain method, and O(nlogn) for the other methods.
The randomized-incremental method [35] also exists. Such a method is specialized
for point location in Voronoi diagrams, uses expected space O(n), and has expected
query time O(log® n).

By a careful examination of the query algorithms used in the point location meth-
ods presented in the literature, it is possible to clearly separate the primitive opera-

872 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

tions that access the geometry of the map from those that access only the topology.
We say that a point location method is native for a class of maps if it performs point
location queries in a map M of the class by accessing the geometry of M exclusively
through the following three geometric test primitives that discriminate the query point
with respect to the vertices and edges of M:

above-below(q, v) determine whether query point ¢ is vertically above or below

vertex v.

left-right(g, v) determine whether query point ¢ is horizontally to the left or to the

right of vertex v.

left-right(g,) determine whether query point ¢ is to the left or to the right of

edge e; this operation assumes that edge e is not horizontal and its vertical span

includes gq.

Test primitive left-right(q,v) is typically used only in degenerate cases (e.g., in
the presence of horizontal edges).

Some point location methods work on modified versions of the original subdivi-
sion by means of auxiliary geometric objects introduced in the preprocessing (e.g.,
triangulation or regularization edges). We say that a point location method is ordi-
nary for a class of maps if it performs point location queries in a map M of the class
by accessing the geometry of M through the three geometric test primitives described
above for the native methods and through left-right(g, e) tests such that e is a fictitious
edge connecting two vertices of M.

Now, we analyze the chain method [44] for point location in a monotone map M.
A binary tree represents a balanced recursive decomposition of map M by means of
vertically monotone polygonal chains covering the edges of M, called separators. A
point location query consists of traversing a root-to-leaf path in this tree, where at
each node we determine whether the query point ¢ is to the left or to right of the
separator associated with the node. The discrimination of point ¢ with respect to a
separator ¢ is performed in two steps:

1. we find the edge e of o whose vertical span includes point ¢ by means of binary
search on the y coordinates of the vertices of o, which consists of performing
a sequence of a logarithmic number of above-below(q, v) tests;

2. we discriminate g with respect to o by performing test left-right(g, e).

In the special case that separator ¢ has horizontal edges, the discrimination of
point ¢ with respect to o uses also test primitive left-right(q,v). Hence, the chain
method is native for monotone maps. For a map M that is not monotone, fictitious
“regularization” edges are added to M and the point location in M is reduced to point
location in the resulting refinement M’ of M. Hence, the chain method is ordinary
for general maps.

In the bridged-chain method [25], the technique of fractional cascading [17, 18] is
applied to the sets of y-coordinates of the separators. Fractional cascading establishes
“bridges” between the separator of a node and the separators of its children such that
there are O(1) vertices between any two consecutive bridges. Hence, except for the
separator of the root, step 1 can be executed with O(1) above-below(q, v) tests for the
vertices between two consecutive bridges. The bridged-chain method is ordinary for
general maps and native for monotone maps.

A similar analysis shows that all efficient point-location methods described in
the literature are ordinary for general maps. More specifically, we have the following
lemma.

LEMMA 8. The trapezoid method and the persistent search tree method are native
for general maps. The chain method and the bridged-chain method are ordinary for
general maps and native for monotone maps. The subdivision refinement method

ROBUST PROXIMITY QUERIES 873

Fic. 1. Illustration for Lemma 9.

is ordinary for general maps. The randomized-incremental method is ordinary for
Voronoi diagrams.

Hence, all the known planar point location methods described in the literature
are ordinary for Voronoi diagrams.

4.2. Explicit Voronoi diagrams. Let S be a set of n point sites in the plane,
where each site is a primitive point with b-bit integer coordinates. The Voronoi
diagram V' (S) of S is said to be explicit if the coordinates of the vertices of V(S)
are computed and stored with exact arithmetic, i.e., as rational numbers (pairs of
integers).

LEMMA 9. The left-right(q,e) test primitive in an explicit Voronoi diagram of
point sites in the plane has degree 6.

Proof. Let e = (v1,v2) be a Voronoi edge such that v; = (z1,y1) is equidistant
from three sites a = (24, %a4), b = (Tb, Yp), ¢ = (2, ye) and vy = (x2, y2) is equidistant
from three sites b = (zp,y), ¢ = (¢, Ye), and d = (z4,yq). See Figure 1. In an
explicit Voronoi diagram, test primitive left-right(g, ¢) that determines whether query
point ¢ = (x4, yq) is to the left or to the right of edge e = (v1,v2) is equivalent to
evaluating the sign of the following determinant:

g Yq 1 f(q ?}J,‘Z 1 . Tqg Yq 1 A
A=lz oy 1= 59 a9 = | X1 Y1 2= g,
vy oy 1 DS T Xy Y, 2Wh
where
xﬁ + yg Yo 1 Tq xi + yg 1 Ty Yo 1
Xi=|ai+y w 1 ., Yi=|ax zityd 1 , Wi=]ap, w1
2+ ye ye 1 e wptyr 1 Te ye 1

and Xs, Y, and W5 have similar expressions obtained replacing in the above determi-
nants x. with z4 and y. with y4. Evaluating the sign of A is equivalent to evaluating
the signs of Wy, Wy and of A'.

By using the notation introduced in section 2, we can rewrite X; and Y; as a?,
and W; as o? (i = 1,2). Hence, A’ is a degree-6 multivariate polynomial since it can
be rewritten as

alata? — a?a?) — a(ada® — ada?) + ada® — ada® (234) (6 4 o6 (3) b,

874 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

Although the explicit representation approach leads to Lemma 9, it should be noted
that determinant A is a reducible polynomial,’ one factor being the (always positive)
incircle test polynomial of degree 4 for the four sites.]

An algorithm for proximity queries on a set .S of point sites in the plane is said
to be conventional if it computes the explicit Voronoi diagram V(S) of S and then
performs point location queries on V' (S) with an ordinary method. Note that the class
of conventional proximity query algorithms includes all the efficient algorithms pre-
sented in the literature. A conventional proximity query algorithm needs to perform
test primitive left-right(g,). Thus, by Lemma 9 we have the following theorem.

THEOREM 4. Conventional algorithms for the following proximity query problems
on a set of point sites in the plane have degree at least 6:

e nearest neighbor query,
e k-nearest neighbor query,
e circular range query.

We observe that a degree-6 algorithm implies that a k-bit arithmetic unit can
handle with native precision queries for points in a grid of size at most 2¥/6 x 2k/6
For example, if £ = 32, the points that can be treated with single-precision arithmetic
belong to a grid of size at most 64 x 64.

The extremal-search method [26], also designed for proximity queries, reduces the
nearest neighbor search problem for a set S of 2D point sites to the following extremal-
search problem. Let P be the paraboloid with equation z = 22 + 32, and let S’ be
the set of 3D points obtained by lifting S to P. Given a query point ¢ in the plane,
let 7 be the unit vector orthogonal to the plane tangent to P at the lifted query point
q = (zq,Yqs :rg + yg) The extremal-search problem for S’ and query vector 7 consists
of determining the first site s’ of S’ hit by a plane orthogonal to 7 translating from
infinity toward S’. Projecting s’ down onto the zy-plane gives the nearest neighbor s
of gin §.

The extremal-search method makes use of 3D geometric primitives that guide
the search through a data structure embodying the Dobkin—Kirkpatrick hierarchical
representation [22] of the convex hull of S’. Such 3D geometric primitives in turn can
be reduced to the following 2D geometric primitives:

e point-to-points distance test for g and a site of S, which has degree 2;
e the identification of suitably defined “extremal edges” of the Delaunay trian-
gulation of a subset of S with respect to gq.

The second primitive evaluates the sign of determinants of the type

Ta Ya l‘i +yg

A= Ty Yb xl2; + 3/13)
Tq Yg TytUs

where a = (z4,y,) and b = (zp,ys) are sites of S. By using the methodology intro-
duced in section 2, we can show that A is a degree-4 multivariate polynomial. Thus,
we have Theorem 5.

THEOREM 5. The extremal-search method for the nearest neighbor query problem
on a set of point sites in the plane has degree at least 4.

4.3. Implicit Voronoi diagrams. Let S be a set of n point sites in the plane,
and recall our assumption that each site or query point is a primitive point with b-bit
integer coordinates. We say that a number s is a semi-integer if it is a rational number
of the type s = m/2 for some integer m. The implicit Voronoi diagram V*(S) of S
is a representation of the Voronoi diagram V' (S) of S that consists of a topological

1K. Mehlhorn suggested that A was likely to be reducible.

ROBUST PROXIMITY QUERIES 875

component and of a geometric component. The topological component of V*(S) is
the planar embedding of V(.5), represented by a suitable data structure (e.g., doubly
connected edge lists [51] or the data structure of [37]). The geometric component
of V*(S) stores the following geometric information for each vertex and edge of the
embedding:
e For each vertex v of V(S), V*(S) stores semi-integers z*(v) and y*(v) that
approximate the z- and y-coordinates y(v) of v. We provide the definition of
y*(v) below. The definition of z*(v) is analogous.

y(v), 0 <y(v) <2°—1, y(v) integer,

)|+ 31 0< U§2b—1, v) not integer,
20 — 2, y(v) > 20 — 1,
0, y(v) < 0.

Note that semi-integers z*(v) and y*(v) can be stored with (b4 1)-bits.

e For each nonhorizontal edge e of V' (S), V*(S) stores the pair of sites £(e) and
r(e) such that e is a portion of the perpendicular bisector of ¢(e) and r(e),
and ¢(e) is to the left of r(e).

Equipped with the above information, the three test primitives for point location
can be performed in the implicit Voronoi diagram V*(S) as follows:

above-below(q, v) compare the y-coordinate of g with y*(v);

left-right(g, v) compare the z-coordinate of ¢ with z*(v);

left-right(g, €) compare the Euclidean distances of point ¢ from sites £(e) and r(e).

Since the query point ¢ is by assumption a primitive point whose coordinates are
b-bit integers, we have that y(¢) < y(v) if and only if y(q) < y*(v), where testing
the latter inequality has degree 1. Similar considerations apply to testing xz(q) <
x(v). This proves the correctness of our implementation of above-below(q,v) and
left-right (g, v).

The correctness of the above implementation of test left-right(g, e) follows directly
from the definition of Voronoi edges. Thus, in an implicit Voronoi diagram, test
left-right(g, €) can be implemented with a point-to-points distance test that has degree 2
(Lemma 4).

Hence, we obtain the following lemmas.

LEMMA 10. Test primitives above-below(g,v) and left-right(q,v) in an implicit
Voronoi diagram of point sites in the plane can be performed in O(1) time and with
degree 1.

LEMMA 11. Test primitive left-right(q, e) in an implicit Voronoi diagram of point
sites in the plane can be performed in O(1) time and with degree 2.

In order to execute a native point location algorithm in an implicit Voronoi dia-
gram, we only need to redefine the implementation of the three test primitives. By
having encapsulated the geometry in the test primitives, no further modifications are
needed. Hence, by Lemmas 10-11 we obtain Lemma 12.

LEMMA 12. For any native method on a class of maps that includes Voronoi dia-
grams, a point location query in an implicit Voronoi diagram has optimal degree 2 and
has the same asymptotic time complexity as a point location query in the corresponding
explicit Voronoi diagram.

In order to compute the implicit Voronoi diagram V*(S), we begin by constructing
the Delaunay triangulation of S, denoted DT(S), by means of the O(nlogn)-time
algorithm of [37], which has degree 4 because its most expensive operation in terms of
the degree is the incircle test (see Lemma 5). The topological structure of V(S) and
the sites £(e) and r(e) for each edge e of V(S) are immediately derived from DT(S)

876 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

by duality. Next, we compute the approximations z*(v) and y*(v) for each vertex v of
V(S) by means of integer division. For effective procedures that perform the integer
division, see, e.g., LEDA [46]. Let a, b, and ¢ be the three sites of S that define vertex
v. Adopting the same notation as in the proof of Lemma 9, the y-coordinate y(v) of
v is given by the ratio y(v) = 21‘//‘1,1 , where Y7 is a polynomial of degree 3 and Wj is a
polynomial of degree 2, and similarly for x(v). Hence, the computation of z*(v) and
y*(v) involves an integer represented by at most 3(b+ O(1)) bits. We summarize the
above analysis as follows.

LEMMA 13. The implicit Voronoi diagram of n point sites in the plane can be
computed in O(nlogn) time, O(n) space, and with degree 4.

THEOREM 6. Let S be a set of n point sites in the plane. There exists an O(n)-
space data structure for S, based on the implicit Voronoi diagram V*(S), that can be
computed in O(nlogn) time with degree 5, and supports nearest neighbor queries in
O(logn) time with optimal degree 2.

Proof. We perform point location in the implicit Voronoi V*(S) diagram of S
using a native method for monotone maps with optimal space and query time such as
the bridged-chain method or the persistent search tree method. The space requirement
and the query degree and time follow from the performance of these methods and from
Lemma 12.

Regarding the preprocessing time, by Lemma 13, the construction of the implicit
Voronoi V*(S) takes O(nlogn) time with degree 4. In order to construct the point
location data structure, we also need an additional test primitive that consists of
comparing the y-coordinates of two Voronoi vertices. For example, this primitive is
used to establish bridges in the bridged-chain method (see section 4.1) and to sort the
vertices by y-coordinate in the persistent location method. By using the same notation
as in Lemma 9, comparing the y-coordinates of the Voronoi vertices is equivalent to

evaluating the sign of multivariate polynomials of the form 2};{,1 — 2LV[2-7 where 231//12 and

211//{/ represent the y-coordinates of two different Voronoi vertices. Such multivariate
J
polynomials have degree 5, since they can be rewritten as

Lo —tn O pipp—pup; — W ala? —afa? —l

2,3,4) 5
pi Pk . 0

@

Remark 2. It must be pointed that for the problem under consideration similar
results could be obtained by carrying out tests with limited accuracy, and therefore
risking to mistakenly select a Voronoi site adjacent to the correct one in critical situa-
tions (when the query point is very close to the separating edge): such indeterminacy
could be remedied by an additional test comparing the distances of the query point
from the two competing sites. Although effective, such ad hoc solution would not fit
the exact-computation paradigm, whereas our method fully complies with it. 0

4.4. Implicit higher-order Voronoi diagrams. In this section, we introduce
implicit higher-order Voronoi diagrams for point sites in the plane, and we extend the
results of section 4.3 to k-nearest neighbors and circular range search queries.

The definition of the implicit order-k Voronoi diagram V;*(S) of set S of point
sites in the plane is analogous to that given in section 4.3 for Voronoi diagrams. A
vertex v of Vj(5) is represented by its approximate coordinates z*(v) and y*(v), and
a nonhorizontal edge e of V(S) stores the pair of sites ¢(e) and r(e) such that e is a
portion of the perpendicular bisector of £(e) and r(e), and £(e) is to the left of r(e).

Lemmas 10-11 immediately hold also for V4 (S), and we obtain Lemma 14.

LEMMA 14. For any native method for monotone maps, a point-location query in
an implicit order-k Voronoi diagram has optimal degree 2 and has the same asymptotic
time complexity as a point location query in an explicit order-k Voronoi diagram.

ROBUST PROXIMITY QUERIES 877

The order-k Voronoi diagram V4 (.S) for a set S of n point sites has O(k(n — k))
vertices, edges, and faces and can be obtained from the order £ — 1 implicit Voronoi
diagram V;_;(S) by intersecting each face of Vj,_1(S) with the (order-1) Voronoi
diagram of a suitable subset of the vertices of S [43]. As shown in [43, 16], V4 (S5)
can be computed in O(k(n — k)y/nlogn) time. Since the construction is based on
iteratively computing Voronoi diagrams by using the incircle test, which is the most
expensive operation in terms of degree, the overall degree of the preprocessing is 4
(Lemma 5). Hence, we obtain Lemma 15.

LEMMA 15. The implicit order-k Voronoi diagram of n point sites in the plane
can be computed in O(k(n —k)y/nlogn) time, O(k(n—k)) space, and with degree 4.

Point location in the order-k Voronoi diagram solves k-nearest neighbors queries.
Hence, by Theorem 3 and Lemmas 14-15, we obtain Theorem 7.

THEOREM 7. Let S be a set of n point sites in the plane and k an integer with
1 <k <n-—1. There exists an O(k(n — k))-space data structure for S, based on the
implicit order-k Voronoi diagram Vi (S), that can be computed in O(k(n—k)/nlogn)
time with degree 5 and supports k-nearest neighbors queries in O(logn + k) time with
optimal degree 2.

Circular range search queries in a set S of n point sites can be reduced to a se-
quence of 2i-nearest neighbors queries in V5:(S), i = 0,...,logn [7]. This approach
yields a data structure with O(n?) space and preprocessing time, and O(log n log log n+
k) query time, where k is the size of the output. Hence, with analogous reasoning as
above, we obtain the following theorem.

THEOREM 8. Let S be a set of n point sites in the plane. There exists an O(n?)-
space data structure for S, based on implicit order-k Voronoi diagrams, that can be
computed in O(n®) time with degree 5 and supports circular range search queries in
O(log nloglogn + k) time with optimal degree 2.

The space and preprocessing time of Theorems 7-8 and the query time of Theo-
rem 8 can be improved while preserving the same degree bounds by more complicated
procedures along the lines suggested in [1, 2, 15].

5. Proximity queries for point sites in 3D space. In this section, we con-
sider the following proximity query on a set S of point sites in 3D space:

nearest neighbor search: given query point ¢, find a site of S whose Euclidean

distance from ¢ is less than or equal to that of any other site.

We recall our assumption that the sites and query points are primitive points
represented by b-bit integers.

As for the 2D case, such a query is efficiently answered by performing point
location in the 3D Voronoi diagram of S. Test primitives and methods for spatial
point location are described in section 5.1. Section 5.2 shows that “conventional”
algorithms require degree 8. A degree-3 algorithm based on “implicit” 3D Voronoi
diagrams is then given in section 5.3.

5.1. Test primitives and methods for spatial point location. There are
only two known efficient spatial point location methods for cell-complexes that are
applicable to 3D Voronoi diagrams: the separating surfaces method [14, 56], which
extends the chain method [44], and the persistent planar location method [52], which
extends the persistent search tree method [53]. Let N be the number of facets of a
cell-complex C'. The query time is O(log2 N) for both methods. The space used is
O(N) for the separating surfaces method and O(N log® N) for the persistent planar
location method. Both methods are restricted to convex cell-complexes. The separat-
ing surfaces method is further restricted to acyclic convex cell-complexes, where the
dominance relation among cells in the z-direction is acyclic.

878 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

As in section 4.1, we can separate the primitive operations that access the ge-
ometry of the cell-complex from those that access only the topology. We say that a
point location method is native for a class of 3D cell-complexes if it performs point
locations queries in a cell-complex C' of the class by accessing the geometry of C ex-
clusively through the following three geometric test primitives that discriminate the
query point with respect to the vertices and edges of C:

above-below(q, v) compares the z-coordinate of the query point ¢ with the z-

coordinate of vertex v.

left-right(g, v) compares the x-coordinate of the query point ¢ with the z-coordinate

of vertex v.

front-rear(q, v) compares the y-coordinate of the query point ¢ with the y-coordinate

of vertex v.

left-right(gzy, €2y) compares the zy-projection ¢, of the query point ¢ with the

xy-projection of edge es,. This operation assumes that e, is not parallel to the

z-axis and its y-span includes gy .

above-below(q, f) determines whether query point ¢ is above or below a facet f;

this operation assumes that facet f is not parallel to the z-axis and that the

zy-projection of f contains the xy-projection of ¢.

Test primitives above-below(g,v) and left-right(g, v) are used only in degenerate
cases (e.g., in the presence of facets parallel to the z-axis and in cases where e, is
horizontal).

Now, we analyze the separating surfaces method for spatial point location [14, 56]
in acyclic cell-complexes. Separating surfaces are the 3D analogue of separators of
monotone maps. Their existence is guaranteed by the acyclicity of the cell-complex.
Thus, a point location query consists of traversing a root-to-leaf path in the separating
surface tree, where at each node we determine whether the query point ¢ is to above
or below the separating surface associated with the node. The discrimination of point
q with respect to a separating o is performed in two steps:

1. By means of a planar point location query for the xy-projection g., of ¢ in
the xy projection of o, we find the facet f of o whose zy projection contains
¢zy- If an ordinary point location method is used, this step uses primitives
front-rear(gq, v), left-right(g, v), and left-right(qsy, €sy)-

2. We discriminate ¢ with respect to o by performing test above-below(q, f).

In the special cases that cell-complex C' has facets parallel to the z-axis, the
discrimination of point ¢ with respect to o uses also test primitives above-below(g, v).
Thus, the separating surfaces method is native for acyclic convex cell-complexes.

A similar analysis shows that also the persistent planar location method is native
for convex cell-complexes. More specifically, we have Lemma 16.

LEMMA 16. The separating surfaces method is native for acyclic convex cell-
complexes. The persistent planar location method is native for convex cell-complexes.

Hence, all the known spatial point location methods described in the literature
are native for 3D Voronoi diagrams.

5.2. Explicit Voronoi diagrams. Let S be a set of n point sites in 3D, where
each site is a primitive point with b-bit integer coordinates. The 3D Voronoi diagram
V(S) of S is said to be explicit if the coordinates of the vertices of V(.5) are computed
and stored with exact arithmetic, i.e., as rational numbers (pairs of integers).

LEMMA 17. The left-right(gyy, €5y) test primitive in an explicit Voronoi diagram
of point sites in 3D space has degree 8.

Proof. The reasoning is the same as in the proof of Lemma 9. Let e, , = (v1,v2),
where v1 and vy are the xy-projections of two adjacent vertices u and v of V(5); let u
be equidistant from the four primitive sites a = (24, Y4), b = (T, Ys), ¢ = (e, Ye), and

ROBUST PROXIMITY QUERIES 879

d = (24,ya), and v from a = (Ta,¥a), b = (v, 4), ¢ = (Te,ye), and b = (zp,yp). In
an explicit Voronoi diagram, test primitive left-right(gyy, €4y) that determines whether
query point ¢ = (x4, %q) is to the left or to the right of edge e = (v1,v2) is equivalent
to evaluating the sign of the following determinant:

Tq Yq 1 f(‘f 3{{1 1) Tq Yq 1 K
A=looy Li=law w1 =mmm| X0 1 200 = gy,
T2 y2 1 sws g L Xy, Yy, 2W,
where
2+ Y242 Ya Za 1 Tq 22412422 2z, 1
X, — Ayt owo w1 v, — | T wityi4zl w1
VI 2 oy oz 1|0 VT e at4yi4a oz 1)
Tty tzg ya w1 T4 24yl oza 1
Tog Yo Za 1
o v oz 1
Wi = Te Yo Ze 1|7
Td Ya Za 1

and Xs, Yo, and W5 have similar expressions obtained replacing in the above deter-
minants x4 with xp, yq with y;,, and z4 with zj,.

Evaluating the sign of A is equivalent to evaluating the signs of Wy, W5 and of
A

By using the notation introduced in section 2, we can rewrite X; and Y; as «
and W; as o® (i = 1,2). Hence, A’ is a degree-8 multivariate polynomial since it can
be rewritten as

4

)

a(ate®—ata®)—a(ataP—ata?)+ataP—atat — 3D o8paf 0) o8 0

An algorithm for nearest neighbor queries on a set S of point sites in 3D space
is said to be conventional if it computes the explicit 3D Voronoi diagram V(S) of S
and then performs point location queries on V' (S) with a native method. Recall that
the class of conventional nearest neighbor query algorithms includes the two efficient
algorithms presented in the literature. A conventional proximity query algorithm
needs to perform test primitive left-right(gsy, €zy). Thus, by Lemma 17, we have
Theorem 9.

THEOREM 9. Conventional algorithms for the nearest neighbor query problem on
a set of point sites in 3D space have degree at least 8.

5.3. Implicit Voronoi diagrams. The definition of the implicit 3D Voronoi
diagram V*(S) of a set of S of point sites in 3D space is a straightforward extension
of the definition for 2D Voronoi diagrams given in section 4.3. Namely, V*(S) stores
the topological structure of the 3D Voronoi diagram V' (S) of S (e.g., the data structure
of [23]) and the following geometric information for each vertex and facet:

e For each vertex v of V(S), V*(S) stores the semi-integer (b + 1)-bit approxi-
mations z*(v), y*(v), and z*(v) of the x-, y-, and z-coordinates of v.

e For each facet f of V(S) that is not parallel to any of three Cartesian planes,
V*(S) stores the pair of sites £(f) and 7(f) such that f is a portion of the
perpendicular bisector of £(f) and r(f), and £(f) is below r(f).

The tests above-below(q, v), left-right(q,v), front-rear(¢q,v) can be implemented
comparing the a-, y-, and z-coordinate of query point ¢ with z(v)*, y(v)*, and z(v)*,
respectively. With the same reasoning as for the 2D case (see section 4.3), it is easy
to see that such implementations are correct.

880 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

LEMMA 18. Test primitives above-below(q,v), left-right(q,v), front-rear(q,v) in
an implicit Voronoi diagram of 3D point sites can be performed in O(1) time and with
degree 1.

Test primitive above-below(g, f) is implemented by comparing the Euclidean dis-
tances of point ¢ from the two sites £(e) and r(e) of which f is the perpendicular
bisector with a point-to-points distance test. The implementation is correct by the
definition of Voronoi facet. Thus, by Lemma 4, we have Lemma 19.

LEMMA 19. Test primitive above-below(q, f) in an implicit Voronoi diagram of
3D point sites can be performed in O(1) time and with degree 2.

Finally, test left-right(quy, €sy) is implemented by determining the sign of the
equation of the line that contains edge e;, when computed at point g,,,.

LEMMA 20. Test primitive left-right(gzy, €5y) in an implicit Voronoi diagram of
3D point sites can be performed in O(1) time and with degree 3.

Proof. The line containing the oriented edge e, is the projection on the zy-plane
of the intersection of two planes containing two facets of the 3D Voronoi diagram. Let
a;x + by + ¢;z + d; = 0 be the equation of one such plane (i = 1,2). The projection
of their intersection on the zy-plane is

di
dy ¢

by
by ¢

ay ¢
az C2

=0.

a:—|—‘

vt

Test left-right(gsy, ezy) consists of determining the sign of

di

bl C1
Ya T ’ d2 (&)

ay C1
Tg+
by 2

az C2 ’

which is a multivariate polynomial having arithmetic degree 3, since it can be rewritten
as

ac? + aa® + o® —23) o3, |

In order to execute a native point location algorithm in an implicit 3D Voronoi
diagram, we only need to redefine the implementation of the five test primitives. By
having encapsulated the geometry in the test primitives, no further modifications are
needed. Hence, by Lemmas 18-20 we obtain Lemma 21.

LEMMA 21. For any native method on a class of cell-complexes that includes
3D Voronoi diagrams, a point location query in an implicit 3D Voronoi diagram has
degree 3 and has the same asymptotic time complezity as a point location query in an
explicit 3D Voronoi diagram.

The Voronoi diagram of n point sites in 3D space is an acyclic convex cell-complex
with N = O(n?) facets. Hence, using the separating surfaces method on the implicit
3D Voronoi diagram yields the following result.

The implicit Voronoi diagram V*(S) of a set S of n points in 3D space can
be constructed by computing the 3D Delaunay triangulation with the incremental
algorithm by Joe [40], whose time complexity and storage is O(n?) (see also [49]).
Since the most demanding operation of the algorithm in terms of degree is the 3D
insphere test, from Lemma 6 we have that the degree of the algorithm that computes
V(S) is 5. As in the planar case, the topological structure of V(.S) and the sites ¢(f)
and r(f) for each edge e of V(S) are immediately derived from DT (S) by duality. We
then compute the approximations z*(v), y*(v), and 2z*(v) for each vertex v of V(.5)
by means of integer division. Let a, b, ¢, and d be the four sites of S that define vertex
v. Adopting the same notation as in the proof of Lemma 17, the az-coordinate z(v)

Y

of v is given by the ratio z(v) = T where X, is a variable of arithmetic degree 4

ROBUST PROXIMITY QUERIES 881

and W7 is a variable of arithmetic degree 3; this is similar for y(v) and z(v). We
summarize the above analysis as follows.

LEMMA 22. The implicit Voronoi diagram of a set of n point sites in 3D space
can be computed in O(n?) time and space and with degree 5.

Lemmas 21 and 22 lead to the following theorem.

THEOREM 10. Let S be a set of n point sites in 3D space. There exists an
O(n?)-space data structure for S that can be computed in O(n?) time with degree T
and supports nearest neighbor queries in O(log2 n) time with degree 3.

Proof. We perform point location in the implicit Voronoi V*(S) diagram of S
using the separating surfaces method. The space requirement and the query degree
and time follow from the performance of these methods and from Lemma 21.

Regarding the preprocessing time, by Lemma 22, the construction of the implicit
Voronoi V*(S) takes O(n?) time with degree 5. In order to construct the point-
location data structure, we also need an additional test primitive that consists of
comparing the y-coordinates of two Voronoi vertices. For example, this primitive is
used to establish bridges between the vertices of the different separating chains if
the bridged-chain method (see section 4.1) is applied to locate the xy-projection of
the query point into the zy-projection of a separating surface. Comparing the y-
coordinates of the Voronoi vertices is equivalent to evaluating the sign of multivariate
polynomials of the form % — QLV{,j, where % and QYWJ] represent, the y-coordinates
of two different Voronoi vertices (see also the proof of Lemma 17). Such multivariate
polynomials have degree 7, since they can be rewritten as

3 4.3

Pi _ Pn 3 _altad —

Pj Pk

6) 2,3,4) 7 0

_ . (al.

PiPr = PhpPj — W ata

Although the algorithm for nearest neighbor queries proposed in this section has
nonoptimal degree 3, it is a practical approach for the important application scenario
where the primitive points are pixels on a computer screen. On a typical screen with
about 210 x 210 pixels, our nearest neighbor query can be executed with the standard
integer arithmetic of a 32-bit processor.

6. Proximity queries for point and segment sites in the plane. In this
section, we consider the following proximity query on a set S of point and segment
sites in the plane:

nearest neighbor search: given query point ¢, find a site of S whose Euclidean

distance from q is less than or equal to that of any other site.

As for the other queries studied in the previous sections, such a query is efficiently
solved by performing point location in the Voronoi diagram of the set of point and
segment sites [51].

The test primitives needed by such an approach are described in section 6.1.
Section 6.2 shows that the “conventional” approach requires degree 64. A degree-6
algorithm based on “implicit” Voronoi diagrams is then given in section 6.3.

6.1. Test primitives and methods. The Voronoi diagram V(S) of a set S
of point and segment sites is a map whose edges are either straight-line segments
or arcs of parabolas. Hence, in general V(S) is neither convex nor monotone. In
order to perform point location in V(.S), we refine V(S) into a map with monotone
edges as follows. If edge e of V() is an arc of parabola whose point p of maximum
(or minimum) y-coordinate is not a vertex, we split e into two edges by inserting a
fictitious vertex at point p. We call the resulting map the extended Voronoi diagram
V'(S) of S.

The persistent search tree method and the trapezoid method can be used as native
methods on the extended Voronoi diagram, where the test primitives are the same as

882 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

- S

S1 -
’ \
|
q. \//2 /
X S2
VAN
o
\ Vi /
\\
Ss

F1a. 2. Illlustration for Lemma 24.

those defined in section 4.1 for point sites. If we want to use the chain method or the
bridged-chain method, we need to do a further refinement that transforms the map
into a monotone map by adding vertical fictitious edges emanating from the fictitious
vertices previously inserted along the parabolic edges.

LeEmMMA 23. The trapezoid method and the persistent search tree method are
native, and the chain method and the bridged-chain method are ordinary for extended
Voronoi diagrams of point and segment sites.

6.2. Explicit Voronoi diagrams. Let S be a set of n points and segment sites.
The extended Voronoi diagram V’(S) of S is said to be explicit if the coordinates of
the vertices of V'(S) are computed and stored with exact arithmetic, i.e., as algebraic
numbers [10, 59].

In the following lemma, we analyze the degree of test primitive left-right(g, e) for
a straight-line edge e of an explicit extended Voronoi diagram.

LEMMA 24. The left-right(q, e) test primitive for a straight-line edge e in an ex-
plicit extended Voronoi diagram of point and segment sites in the plane has degree 64.

Proof. Let e = (v1,v2), such that v; = (1, y1) is equidistant from three segments
S1, S2, and s3 and vy is from three segments s1, so, and s4. See Figure 2.

We show that the test left-right(g,e) for determining whether the query point
q = (z4,Y4) is to the left or to the right of (v1,v2) has degree 64. Namely, let
a;ix+by+c; =0 (i =1,2,3,4) be the equation of the line containing segment s;. In
an explicit Voronoi diagram, test primitive left-right(g,), determines whether query
point ¢ = (z4,y,) is to the left or to the right of edge e = (v1,v2), is equivalent to
evaluating the sign of the following determinant:

Ty yg 1 Tq Yq 1 Ty Yy, 1 /
A=|z y 1= % @ ll=whe | X1 Vi W | = 485,
To Y2 1 oW 1 Xo Yo Wh
where

by a% + b% a; €1 CL% + b%
Xi1=1|by ¢ a3+b |, Yi=|a c a3 +b3 |,

bs c3 a3 + b3 as C3 aj + b3

by a1 ai+b3

W1 = b2 ag CL% + b% 5
bs a3 a3 + b3

ROBUST PROXIMITY QUERIES 883

and X, Y3, and W5 have similar expressions obtained by substituting in the above
determinants az with a4, bg with by, and c3 with ¢4. Evaluating the sign of A is
equivalent to evaluating the signs of Wy, Wy and of A’. In the rest of this proof
we show that evaluating the sign of A’ is a computation with degree 64. By using
the same technique, one can easily see that evaluating the signs of W7 and W5 is a
computation with degree 12.

We have

(1) AI = :cq(Y2W1 — Y1W2) — yq(X1W2 — XQWl) + (X2Y1 — X1Y2).

By using the notation introduced in section 2, we can rewrite X3, and Y7 as
a3p1 + aSpQ + a3p3, Wi as a2p1 + a2p2 + a2p3, Xs and Y, as a3p1 + a3p2 + a3p4,
and Wy as a?p1 + a?ps + a?py, where p; = \/a? +b? (i = 1,...,4). Considering that
x4 and y, are expressions of type « and applying repeatedly Rules (1) and (2), we
obtain the expression

o® + a®pips + a®prps + aCp1ps + a®paps + a®paps + Cpsps.

By means of the rewriting rules of section 2 we have

a® +a®pips + a®pips + a®pips + aCpaps + aCpaps + aCpsps —®

(a® + afpaps + aSpaps + apsps)? — (aCpips + abpips + alprps)? — 125
a0 + 0 paps + atdpaps + attpspa _ ™

(@26 4 aMpop3)? — (0 paps + atpsps)? _.(1,2,3,4)
a®® +a®papy —D

bt _ b4 _.(34) 0
(164.

An algorithm for proximity queries on a set S of point and segment sites in
the plane is said to be conventional if it computes the explicit extended Voronoi
diagram V’(S) of S and then performs point location queries on V'(S) with a native
method. Note that the class of conventional proximity query algorithms includes all
the efficient algorithms presented in the literature. A conventional proximity query
algorithm needs to perform test primitive left-right(q,e). Thus, by Lemma 24 we
conclude Theorem 11.

THEOREM 11. Conventional algorithms for the nearest neighbor query problem
on a set of point and segment sites in the plane have degree at least 64.

Our analysis shows that performing point location in an explicit Voronoi diagram
of points and segments is not practically feasible due to the high degree.

6.3. Implicit Voronoi diagrams. The definition of the implicit Voronoi dia-
gram V*(S) of a set of S of point and segment sites is a straightforward extension of
the definition for Voronoi diagrams of point sites given in section 4.3. Namely, V*(.59)
stores the topological structure of the extended Voronoi diagram V’(S) of S (e.g., the
data structure of [23]) and the following geometric information for each vertex and
edge:

e For each vertex v of V/(S), V*(S) stores the semi-integer (b+ 1)-bit approx-
imations z*(v) and y*(v) of the z- and y-coordinates of v.

e For each nonhorizontal edge e of V'(S), V*(S) stores the pair of sites ¢(e)
and r(e) such that e is a portion of the bisector of £(e) and r(e), and £(e) is
to the left of r(e).

In the implicit Voronoi diagram V*(S) of S, test left-right(q, e) is implemented
by comparing the distances of query point ¢ from sites ¢(e) and r(e) with one of the

884 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

following tests, depending on the type (point or line) of sites £(e) and r(e): point-
to-lines distance test, point-to-point-line distance test, or point-to-points distance test.
Thus, by Lemmas 2—4, we have Lemma 25.

LEMMA 25. For any native method on a class of maps that includes extended
Voronoi diagrams of point and segment sites in the plane, a point location query in an
implicit Voronoi diagram has degree 6 and has the same asymptotic time complexity
as a point location query in an explicit Voronoi diagram.

The implicit Voronoi diagram can be constructed in O(nlogn) expected running
time by using the randomized incremental algorithm of [11]. The most demanding
operation is incircle test for three segments, which has degree 40 by Lemma 7 (see
also [9]). By a similar analysis as the one shown in sections 4 and 5, it is not hard to
show that both the y-ordering of the vertices of V(S) and the semi-integer approxima-
tion of the vertex coordinates can be performed without affecting the computational
cost and the degree of the computation of V(.5).

LEMMA 26. The implicit Voronoi diagram of a set of n point and segment sites
in the plane can be computed in O(nlogn) expected time, O(n) space, and degree 40.

Lemmas 25 and 26 lead to the following theorem.

THEOREM 12. Let S be a set of n point and segment sites in the plane. There
exists an O(n)-space data structure for S that can be computed in O(nlogn) expected
time with degree 40 and supports nearest neighbor queries in O(logn) time with de-
gree 6.

7. Simplified implicit Voronoi diagrams. In this section, we describe a mod-
ification of implicit Voronoi diagrams of point sites that allows us to reduce the degree
of the preprocessing task from 5 to 4 when the sites are in the plane (see Theorems 6—
8), and from 7 to 5 when the sites are in 3D space (see Theorem 10). This modification
also has a positive impact on the space requirement of the data structure and on the
running time of point location queries.

Let V(S) be the Voronoi diagram of a set S of point sites in the plane. We recall
our standard assumption that all input parameters — such as coordinates of sites and
query points — are represented as b-bit integers.

An island of V(S) is a connected component of the map obtained from V(.5)
by removing all the vertices with integer y-coordinate and all the edges containing
a point with integer y-coordinate. Note that for any two vertices v; and vy of an
island, y*(v1) = y*(v2) = m + % for some integer m, where y*(v) is the semi-integer
approximation defined in section 4.3.

The simplified implicit Voronoi diagram V°(S) of S is a representation of the
Voronoi diagram V' (S) of S that consists of a topological component and a geometric
component. The topological component of V°(S) is the planar embedding obtained
from V(S) by contracting each island of V(S) into an alias verter. The geometric
component of V°(S) stores the following geometric information for each vertex and
edge of the embedding:

e For each vertex v that is also a vertex of V(S), V°(S) stores the (b4 1)-bit
semi-integers approximations z*(v) and y*(v).

e For each alias vertex a, which is associated with an island of V(S), V°(S)
stores semi-integer y*(a) such that y*(a) = y*(v) for each vertex v of the
island.

e For each nonhorizontal edge e that is also an edge of V(.S), V°(S) stores the
pair of sites £(e) and r(e) such that e is a portion of the perpendicular bisector
of £(e) and r(e), and £(e) is to the left of r(e).

The space requirement of the simplified implicit Voronoi diagram is less than
or equal to that of the implicit Voronoi diagram, since each island is represented

ROBUST PROXIMITY QUERIES 885

by a single alias vertex storing only its semi-integer y-approximation. We can show
examples where the simplified implicit Voronoi diagram of n point sites has O(n)
fewer vertices and edges than the corresponding implicit Voronoi diagram.

The following lemmas extend Lemmas 12-13 and can be proved with similar
techniques.

LEMMA 27. For any native method on a class of maps that includes monotone
maps, a point location query in a simplified implicit Voronoi diagram has optimal
degree 2 and executes a mumber of operations less than or equal to a point location
query in the corresponding explicit Voronot diagram.

LEMMA 28. The simplified implicit Voronoi diagram of n point sites in the plane
can be computed in O(nlogn) time, O(n) space, and with degree 4.

The main advantage of the simplified implicit Voronoi diagram with respect to the
degree cost measure is that the additional test primitive needed in the preprocessing
that consists of comparing the y-coordinates of two Voronoi vertices (see the proof of
Theorem 6) is now reduced to the comparison of two (b 4 1)-bit semi-integers, and
thus has degree 1. Hence, the preprocessing for point location using a native method
for monotone maps has degree 1.

By the above discussion and Lemmas 27-28, we obtain the following theorem that
improves upon Theorem 6.

THEOREM 13. Let S be a set of n point sites in the plane. There exists an O(n)-
space data structure for S, based on the simplified implicit Voronoi diagram V°(S),
that can be computed in O(nlogn) time with degree 4 and supports nearest neighbor
queries in O(logn) time with optimal degree 2.

Using a similar approach, we can define simplified implicit order-k Voronoi dia-
grams for point sites in the plane and simplified implicit Voronoi diagrams for point
sites in 3D space. This reduces the degree of the preprocessing from 5 to 4 in Theo-
rems 7-8 and from 7 to 5 in Theorem 10.

8. Further research directions. Within the proposed approach, this paper
only addresses the issue of the degree of test computations and illustrates its impact
on algorithmic design in relation to a central problem in computational geometry.
However, several important related problems need further investigation and will be
reported on in the near future.

First, the methodological framework described in section 2 should be extended
to the computation of the degree of other classes of geometric primitives. Recently,
motivated in part by a preliminary version of this paper [45], Burnikel et al. [13] have
presented a new separation bound for arithmetic expressions involving square roots.

Also, since the degree of an algorithm expresses worst-case computational require-
ment occurring in degenerate or near-degenerate instances, special attention must be
devoted to the development of a methodology that reliably computes the sign of an
expression with the least expenditure of computational resources. This involves the
use of “arithmetic filters,” possibly families of filters, of progressively increasing power
that, depending upon the values of primitive variables, carefully adjust the computa-
tional effort (see, e.g., [4, 11, 29, 41]).

Next, one should carefully analyze the precision adopted in executing construc-
tions, so that the outputs are within the precision bounds required by the application.
In addition, each construction algorithm should be accompanied by a verification algo-
rithm, which not only checks for topological compliance of the output with the generic
member of its class (as, e.g., a Voronoi diagram must have the topology of a convex
map) as illustrated in [54] but more specifically verifies its topological agreement with
the structure emerging from the tests executed by the algorithm [47].

886 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

@ (b)

1

(c) (d)

F1G. 3. Different cases for test (p1,p2,l1;p3).

Beyond these general methodological issues, the investigation reported in these
pages leaves some interesting open problems such as answering nearest neighbor
queries in subquadratic time and optimal degree for a set of points in 3D space or
improving the efficiency of the preprocessing stage in computing the implicit Voronoi
diagram of a set of sites.

We mention, in this respect, how the degree can impact the design of geometric
primitives adopted in existing algorithms for Voronoi diagrams of point and segment
sites. Let (aj,as,as;aq), with a; either a point or a segment, denote the incircle
test, where a4 is tested for intersection with circle(as, as, az). Specifically, consider
(p1,p2,l1;p3), which can be answered with degree 12 [9]. We show that it can be
more efficiently executed as follows. First perform the test (p1,p2,ps;l1). Let ¢ and
¢’ be the centers of circle(py, ps,l1) and circle(py, p2, p3), respectively. Two cases are
possible: either circle(py, pa, p3) intersects I3 or it does not. In the first case, p3
is inside circle(py,p2,{1) if and only if ¢’ and ps lie on opposite sides of line pips
through p; and py (see Figures 3(a) and 3(b)). In the second case the answer to test
(p1,p2,l1;p3) depends on which side of pyps point ps lies (see Figures 3(c) and 3(d)).
Thus, test (p1,p2,l1;p3) is reduced to test (p1,p2,ps;l1) that can be executed with
degree 8 (see [9]) and at most two other left-right tests of lower degree.

Finally, an important issue for future research deals with the experimental com-
parison between point location algorithms in implicit Voronoi diagrams and traditional
point location algorithms in explicit Voronoi diagrams. We are currently implement-
ing GeomLib, an object-oriented library for robust geometric computing that will

ROBUST PROXIMITY QUERIES 887

be accessible through the world wide web by using the architectural framework of
Mocha [6, 5].

Acknowledgment. The authors wish to thank the referees for several useful

suggestions.

REFERENCES

[1] A. AGGARWAL, L. J. GuiBAS, J. SAXE, AND P. W. SHOR, A linear-time algorithm for computing
the Voronoi diagram of a convex polygon, Discrete Comput. Geom., 4 (1989), pp. 591-604.

[2] A. AGGARWAL, M. HANSEN, AND T. LEIGHTON, Solving query-retrieval problems by compacting
Voronoi diagrams, in Proc. 22nd Annu. ACM Sympos. Theory Comput., 1990, Association
for Computing Machinery, New York, pp. 331-340.

[3] F. AURENHAMMER, Voronoi diagrams: A survey of a fundamental geometric data structure,
ACM Comput. Surv., 23 (1991), pp. 345-405.

[4] F. AvNaIM, J.-D. BoOIsSONNAT, O. DEVILLERS, F. PREPARATA, AND M. YVINEC, Ewaluating
Signs of Determinants Using Single-Precision Arithmetic, Research Report 2306, INRIA,
BP93, 06902 Sophia-Antipolis, France, 1994.

[5] J. E. BAKER, I. F. Cruz, G. LioTTA, AND R. TAMASSIA, The Mocha algorithm animation
system, ACM Comput. Surv., 27 (1995), pp. 568-572.

[6] J. E. BAKER, I. F. CrUz, G. L1IOTTA, AND R. TAMASSIA, Animating geometric algorithms over
the Web, in Proc. 12th Annu. ACM Sympos. Comput. Geom., Association for Computing
Machinery, New York, 1996, pp. C3—C4.

[7] J. L. BENTLEY AND H. A. MAURER, A note on Euclidean near neighbor searching in the plane,
Inform. Process. Lett., 8 (1979), pp. 133-136.

[8] M. BOCHER, Introduction to Higher Algebra, Macmillan, New York, 1907.

[9] C. BURNIKEL, Ezact Computation of Voronoi Diagrams and Line Segment Intersections. Ph.D
thesis, Universitat des Saarlandes, Mar. 1996.

[10] C. BURNIKEL, J. KONNEMANN, K. MEHLHORN, S. NAHER, S. SCHIRRA, AND C. UHRIG, Ezact
geometric computation in LEDA, in Proc. 11th Annu. ACM Sympos. Comput. Geom.,
Association for Computing Machinery, New York, 1995, pp. C18-C19.

[11] C. BURNIKEL, K. MEHLHORN, AND S. SCHIRRA, How to compute the Voronoi diagram of line
segments: Theoretical and experimental results, in 2nd Annual European Symp. on Algo-
rithms, Lecture Notes Comput. Sci. 855, Springer-Verlag, Berlin, 1994, pp. 227-239.

[12] C. BURNIKEL, K. MEHLHORN, AND S. SCHIRRA, On degeneracy in geometric computations, in
Proc. 5th ACM-SIAM Sympos. Discrete Algorithms, 1994, pp. 16-23.

[13] C. BURNIKEL, R. FLEISCHER, K. MEHLHORN, AND S. SCHIRRA, A strong and easily computable
separation bound for arithmetic expressions involving square roots, in Proc. ACM-SIAM
Symposium on Discrete Algorithms, 1997.

[14] B. CHAZELLE, How to search in history, Inform. Control, 64 (1985), pp. 77-99.

[15] B. CHAZELLE, R. CoLE, F. P. PREPARATA, AND C. K. YAP, New upper bounds for neighbor
searching, Inform. Control, 68 (1986), pp. 105-124.

(16] B. CHAZELLE AND H. EDELSBRUNNER, An improved algorithm for constructing kth-order
Voronoi diagrams, IEEE Trans. Comput., C-36 (1987), pp. 1349-1354.

[17] B. CHAZELLE AND L. J. GuiBAs, Fractional cascading: 1. A data structuring technique, Algo-
rithmica, 1 (1986), pp. 133-162.

[18] B. CHAZELLE AND L. J. GUIBAS, Fractional cascading: I1. Applications, Algorithmica, 1 (1986),
pp. 163-191.

[19] K. L. CLARKSON, Safe and effective determinant evaluation, in Proc. 33rd Ann. IEEE Sympos.
Found. Comput. Sci., IEEE Press, Piscataway, NJ, 1992, pp. 387-395.

[20] T. K. DEY, K. SUGIHARA, AND C. L. BAJAJ, Delaunay triangulations in three dimensions with
finite precision arithmetic, Comput. Aided Geom. Design, 9 (1992), pp. 457-470.

[21] D. P. DoBKIN, Computational geometry and computer graphics, in Proc. IEEE, 80 (1992),
pp. 1400-1411.

[22] D. P. DOBKIN AND D. G. KIRKPATRICK, Fast detection of polyhedral intersection, Theoret.
Comput. Sci., 27 (1982), pp. 241-253.

(23] D. P. DOBKIN AND M. J. LASZLO, Primitives for the manipulation of three-dimensional subdi-
visions, Algorithmica, 4 (1989), pp. 3-32.

[24] M. EpaHIRO, I. KOKUBO, AND T. ASANO, A new point-location algorithm and its practical
efficiency: Comparison with existing algorithms, ACM Trans. Graph., 3 (1984), pp. 6-109.

[25] H. EDELSBRUNNER, L. J. GUIBAS, AND J. STOLFI, Optimal point location in a monotone sub-

division, SIAM J. Comput., 15 (1986), pp. 317-340.

W oo a

Q © U o©

G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

. EDELSBRUNNER AND H. A. MAURER, Finding extreme points in three dimensions and solving

the post-office problem in the plane, Inform. Process. Lett., 21 (1985), pp. 39-47.

. EDELSBRUNNER AND E. P. MUCKE, Simulation of simplicity: A technique to cope with

degenerate cases in geometric algorithms, ACM Trans. Graph., 9 (1990), pp. 66—104.

. FORTUNE, Stable maintenance of point set triangulations in two dimensions, in Proc. 30th

Ann. IEEE Sympos. Found. Comput. Sci., IEEE Press, Piscataway, NJ, 1989, pp. 494-505.

. FORTUNE, Numerical stability of algorithms for 2-d Delaunay triangulations, Internat. J.

Comput. Geom. Appl., 5 (1995), pp. 193-213.

. FORTUNE, Polyhedral modeling with multiprecision integer arithmetic, Comput. Aided De-

sign, to appear.

. FOorTUNE AND C. J. VAN WYK, Efficient exact arithmetic for computational geometry, in

Proc. 9th Annu. ACM Sympos. Comput. Geom., Association for Computing Machinery,
New York, 1993, pp. 163-172.

. FORTUNE AND C. V. WYK, Static analysis yields efficient exact integer arithmetic for com-

putational geometry, ACM Trans. Graphics, 15 (1996), pp. 223-248.

. J. FORTUNE, A sweepline algorithm for Voronoi diagrams, Algorithmica, 2 (1987), pp. 153—

174.

. H. GREENE AND F. F. Yao, Finite-resolution computational geometry, in Proc. 27th Ann.

IEEE Sympos. Found. Comput. Sci., IEEE Press, Piscataway, NJ, 1986, pp. 143-152.

. J. GuiBas, D. E. KNUTH, AND M. SHARIR, Randomized incremental construction of Delau-

nay and Voronoi diagrams, Algorithmica, 7 (1992), pp. 381-413.

. J. GuiBAS, D. SALESIN, AND J. STOLFI1, Epsilon geometry: Building robust algorithms from

imprecise computations, in Proc. 5th Ann. ACM Sympos. Comput. Geom., Association for
Computing Machinery, New York, 1989, pp. 208-217.

. J. GUIBAS AND J. STOLFI, Primitives for the manipulation of general subdivisions and the

computation of Voronoi diagrams, ACM Trans. Graph., 4 (1985), pp. 74-123.

. M. HOFFMANN, The problems of accuracy and robustness in geometric computation, IEEE

Computer, 22 (1989), pp. 31-41.

. M. HOFFMANN, J. E. HOPCROFT, AND M. T. KARASICK, Robust set operations on polyhedral

solids, IEEE Comput. Graph. Appl., 9 (1989), pp. 50-59.
JOE, Construction of three-dimensional Delaunay triangulations using local transforma-
tions, Comput. Aided Geom. Design, 8 (1991), pp. 123-142.

. KArAsick, D. LIEBER, AND L. R. NACKMAN, Efficient Delaunay triangulations using ra-

tional arithmetic, ACM Trans. Graph., 10 (1991), pp. 71-91.

. G. KIRKPATRICK, Optimal search in planar subdivisions, SIAM J. Comput., 12 (1983),

pp. 28-35.

. T. LEE, On k-nearest neighbor Voronoi diagrams in the plane, IEEE Trans. Comput., C-31

(1982), pp. 478-487.

. T. LEE AND F. P. PREPARATA, Location of a point in a planar subdivision and its applica-

tions, SIAM J. Comput., 6 (1997), pp. 594-606.

. LioTTA, F. P. PREPARATA, AND R. TAMASSIA, Robust Proximity Queries in Implicit Voronoi

Diagrams, Technical Report CS-96-16, Center for Geometric Computing, Comput. Sci.
Dept., Brown Univ., Providence, RI, 1996.

. MEHLHORN AND S. NAHER, LEDA: A platform for combinatorial and geometric computing,

Comm. ACM, 38 (1995), pp. 96-102.

. MEHLHORN, S. NAHER, T. SCHILZ, S. SCHIRRA, M. SEEL, R. SEIDEL, AND C. UHRIG,

Checking geometric programs or verification of geometric structures, in Proc. 12th Ann.
ACM Sympos. Comput. Geom., Association for Computing Machinery, New York, 1996,
pp. 159-165.

. J. MILENKOVIC, Verifiable implementations of geometric algorithms using finite precision

arithmetic, Artif. Intell., 37 (1988), pp. 377-401.
MUCKE, Detri 2.2: A robust implementation for 3d Triangulations, manuscript,
http://www.geom.umn.edu:80/software/cglist /lowdvod.html (1996).

. P. PREPARATA, A new approach to planar point location, SIAM J. Comput., 10 (1981),

pp. 473-482.

. P. PREPARATA AND M. 1. SHAMOS, Computational Geometry: An Introduction, Springer-

Verlag, New York, 1985.

. P. PREPARATA AND R. TAMASSIA, Efficient point location in a convex spatial cell-complex,

SIAM J. Comput., 21 (1992), pp. 267-280.

. SARNAK AND R. E. TARJAN, Planar point location using persistent search trees, Comm.

ACM, 29 (1986), pp. 669—-679.

. SUGIHARA AND M. IRr1, Construction of the Voronoi diagram for ‘one muillion’ generators

in single-precision arithmetic, Proc. IEEE, IEEE Press, Piscataway, NJ, 80 (1992),
pp. 1471-1484.

R
C.
C
C

ROBUST PROXIMITY QUERIES 889

. SUGIHARA, Y. Ooisui, AND T. IMAI, Topology-oriented approach to robustness and its
applications to several Voronoi-diagram algorithms, in Proc. 2nd Canad. Conf. Comput.
Geom., 1990, pp. 36-39.

. TAMASSIA AND J. S. VITTER, Optimal cooperative search in fractional cascaded data

structures, Algorithmica, 15 (1996), pp. 154-171.

Yap AND T. DUBE, A Basis for Implementing Ezact Geometric Algorithms, manuscript,

http://simulation.nyu.edu/projects/exact /references.html (1993).

. K. Yap, Symbolic treatment of geometric degeneracies, J. Symbolic Comput., 10 (1990),

pp- 349-370.

. K. Yap, Toward exact geometric computation, Comput. Geom., 7 (1997), pp. 3-23.

