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Abstract

This paper studies constraint satisfaction over connected row-convex (CRC) constraints. It
shows that CRC constraints are closed under composition, intersection, and transposition, the
basic operations of path-consistency algorithms. This establishes that path consistency over CRC
constraints produces a minimal and decomposable network and is thus a polynomial-time decision
procedure for CRC networks. This paper also presents a new path-consistency algorithm for CRC
constraints running in time @3d2) and space Olzd), wheren is the number of variables and
d is the size of the largest domain, improving the traditional time and space complexity by
orders of magnitude. The paper also shows how to construct CRC constraints by conjunction and
disjunction of a set of basic CRC constraints, highlighting how CRC constraints generalize monotone
constraints and presenting interesting subclasses of CRC constraints. Experimental results show that
the algorithm behaves well in practice.1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Constraint satisfaction techniques have been found useful in many areas such as
combinatorial optimization, hardware design, robotics, knowledge bases, and temporal
reasoning to name only a few. Some applications require to find one or all solutions, in
which case consistency techniques (e.g., arc and path consistency) are instrumental in
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reducing the size of the search space. Other applications require to put the constraints
network in minimal form, e.g., to remove redundant information, in which case consistency
techniques apply as well since they remove values which cannot appear in solutions.

In recent years, increasing attention has been devoted to the study of special classes
of constraints or constraint networks. These studies are motivated both by practical
considerations (e.g., constraint languages are based on a set of primitive constraints) and
by theoretical considerations, since stronger results and more efficient algorithms can
be obtained by exploiting special properties and tractable classes of constraints can be
identified.

The research described in this paper was motivated by the class of row-convex con-
straints identified by van Beek and Dechter [18]. When the constraints of a path-consistent
constraint network are row-convex (or can be made row-convex by permutation of values
in the domain), then the constraint network is minimal and decomposable and a solution
can be found without backtracking in(@d) after application of a path-consistency al-
gorithm (which runs in @:343)). Unfortunately, row-convex constraints are not closed
under composition and intersection, the main operations of path-consistency algorithms.
As a consequence, no conclusion can be drawn a priori for a constraint network of row-
convex constraints, since its path-consistent subnetwork may or may not be row-convex.

The first contribution of this paper is the definition of a new class of constraints, called
connected row-convex (CRC) constraints, which is closeder the operations of path-
consistency algorithms. As a consequence, the class of CRC constraints is shown to be
tractable. The paper also shows how to construct CRC constraints by conjunction and
disjunction of a set of basic CRC constraints, highlighting how CRC constraints generalize
monotone constraints [13] and presenting interesting subclasses of CRC constraints.

The second contribution of the paper is a path-consistency algorithm, called PC-CRC,
tailored to CRC constraints and running ir©Gd?) time and in Qn2d) space. PC-CRC
improves traditional algorithms by an order of magnitude and is a decision procedure
for networks of CRC constraints. The algorithm is obtained by instantiating a generic
path-consistency algorithm PC-GEN. Such an approach facilitates the understanding of
the algorithm, provides a framework for the description and comparison of existing path-
consistency algorithms, and can be reused for the development of new (specialized or not)
path-consistency-like algorithms.

The rest of the paper is organized as follows. Section 2 introduces the necessary
background and Section 3 discusses related work. Section 4 describes the class of CRC
constraints and shows that this class is tractable. Section 5 presents the generic algorithm
PC-GEN which is then instantiated to CRC constraints in Section 6. Section 7 provides
analysis and experimental results. Section 8 concludes the paper. Additional detail on some
of the presented results can be found in [2].

2. Preliminaries

Definition 1 (Binary constraint network (Montanari [13])). A (binary) constraint network
N = (Var, D, C) is a setVar of n variables(l, ..., n} represented by natural numbers,
a finite domainD; of possible values for each variable(the setD is the union of
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all domains), and a set of binary constraints between variables. A constraint between
variablei and j, denoted byC;;, is a set of couples(j;; € D; x D;) that specifies the
allowed pairs of values farand; .

The fact that(v, w) € C;; is also denoted by;; (v, w). Given a constraint network
N = (Var, D, C), d will denote the size of the largest domain, aact(\) the set
{(i, j) | Cij € C}. We assume the existence of a total ordering dveit is finally required
that(v, w) € C;; iff (w,v) € Cj;. As usual, a constraird;; will also be seen as a Boolean
matrix with | D;| rows and|D;| columns. The Boolean value are represented by 0 and 1
for convenience. Rows and columns are ordered according to the underlying ordéxr.over
A 1 (respectively, 0) at positiow, w) in the matrix meangv, w) € C;; (respectively,
(v, w) ¢ C;;). To simplify the presentation, each domain is also represented by a
(pseudo-binary) constraint;; such thatC;; (v, v) holds iff v € D;. Domain D; and
constraintC;; can be used in an interchangeable way.

Consistency techniques aim at reducing the size of the problem without altering its set
of solutions. Such techniques are usually caltexhl consistency as they analyze different
partsof the problem and remove elements that cannot belong in a solution of the problem.

Definition 2. (v1, ..., v,) is a solution of\V iff C;;(v;, v;) holds for all(i, j) € arc(\).

Definition 3. Two constraint networkd/” and A/ areequivalentiff A~ and A have the
same solutions.

The following definition describes path consistency of constraint networks [12].

Definition 4. A constraint network\" = (Var, D, C) is path-consistent iff, for every triple
(i,k, j) of variables, we have that for every € D; andv; € D; such thatC;; (v, v;),
there exists, € Dy such thaiCy (v;, vr) andCy; (vk, v;).

Note that if the definition of path consistency does allow identical nédési), then
path consistency implies arc consistency. The purpose of a path-consistency algorithm is
to compute, given a constraint netwokk= (Var, D, C), an equivalent constraint network
N’ = (Var, D', C") which is path-consistent. The resulting constraint network will thus
also be arc-consistent.

We can draw a parallel between path- and arc-consistency algorithms. An arc-
consistency algorithm removes arc-inconsistent values from the domains of variables.
Hence the outputs of an arc-consistency algorithm are domains. Working on domains is
not sufficient for a path-consistency algorithm. Suppose fhat D; = {a, b}. It can be
the case thata, b) is path-inconsistent for some pathk, j). Such a path inconsistency
does not mean that (or b) should be removed from; (or D;) but that, in a solution, it is
impossible to havéu, b) as value for the couple of variablas . Hence, a path-consistency
algorithm should “remove” path-inconsistent tuples from constraints, and the output should
be constraints. Such algorithms usually handle explicit representation of constraints and
assume a complete constraint network. An incomplete constraint network can be easily
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transformed into a complete one by addifiBUE constraints (constraints allowing any
combination of values) between every pair of varialfieg) where(, j) ¢ arc(N).

Definition 5. A constraint network\ is minimal iff Vi, j € arc(NV) Yv,w € D: if
Cij(v, w) then there is a solution oY with valuesv andw assigned té and .

Definition 6. A constraint network\" is decomposabléf, Vv;, ...v; satisfying all the
constraints relating nodeés. . .ix (1 <k < n) and for any new nodg 1, there exists;, , ,
suchthaw, ...v;, v;_, satisfy all the constraints relating nodgs. . iy, ix+1.

A decomposable constraint network is also called strongipnsistent [6]. Decompos-
able constraint networks have thus the property that any consistent instantiation of some
variables can be extended to a solution, without backtracking. A decomposable constraint
network is of course minimal. In a minimal constraint network, it is not possible to prune
further the constraints without removing solutions.

3. Related work

This research was motivated by van Beek’s result on row-convex constraints. A con-
straintC;; is row-convexf, in each row of its matrix representation, all the ones are con-
secutive. Van Beek and Dechter [18] show that, when the constraints of a path-consistent
constraint network are row-convex (or can be made row-convex by permutation of values
in the domain), then the constraint network is minimal and decomposable. One can thus
compute a solution without backtracking in#3d). Solving the CSP can then be done in
O(n3d®), the time complexity of the PC algorithm. Unfortunately, row-convex constraints
are not closed under composition and intersection. As a consequence, no conclusion can be
drawn a priori for a constraint network of row-convex constraints, since its path-consistent
subnetwork may or may not be row-convex.

This paper proposes a subclass which is closed under the main operations of path-
consistency algorithms. Different subclasses are already presented in [18]. It covers
binary relations on domains with two elements (graph 2-coloring), and linear binary
constraints which is a particular cases of CRC constraints. Closed classes are also analysed
and identified in [10,11], where Jeavons and Cooper identify the class of max-closed
constraints that can be solved in polynomial timgr(t¥*) for binary constraints). Our
class of CRC constraints, which can be solved i3@?), intersects with max-closed
constraints, but is not a subset. The authors also presents implicational relations and also
other tractables constraints not based on row convexity. Montanari [13] already shows
that a path-consistent tree or distributive networks are minimal. He also shows that path
consistency of (total) monotone constraints produces a decomposable network. Note that
CRC constraints are not distributive and generalize the monotone functions of Montanari.

The class of CRC constraints is also related to discrete temporal reasoning [17]. Valdés-
Pérez [21] shows that path-consistency algorithms find the minimal network for a subclass
of Allen’s interval algebra [1]. Such a result has also been proposed in the context of point
algebra [15,20].
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The idea of row convexity has also been exploited in the context of continuous
constraints [7,8]. They start from the result that, when constraints are convex and binary,
path consistency is sufficient to ensure decomposability. They show that for continuous
domains, this result can be generalized to ternarymaady constraints using some other
notion of consistency ((3,2)-relational consistency).

4. Connected row-convex constraints

This section introduces CRC constraints, a particular case of row-convex constraints.
CRC constraints are preserved by path-consistency algorithms (i.e., the application of a
path-consistency algorithms on a CRC network produces a CRC network), which is not
the case of general row convex constraints. As a consequence, applying path consistency
on CRC constraints produces a minimal and decomposable network. In this section, we use
the matrix representation of constraints. Given the initial dom&jnandD;, a constraint
C;; can be represented by a Boolean matrix. We assume a total ordering of the elements in
the domains. The rows and columns are ordered according to the underlying order of the
domain.

4.1. Row-convex constraints
Van Beek introduced the concept of row-convex constraint [16].

Definition 7. A constraintC;; is row-convexf, in each row of the matrix representation
of C;;, all the ones are consecutive (i.e., no two ones within a single row are separated by
a zero in that same row).

In [16], van Beek showed that if the constraints of a path-consistent constraint network
are row-convex (or can be made row-convex by permutation of values in the domain), then
the constraint network is minimal and decomposable. One can thus compute a solution
without backtracking.

The problem is that the class of row-convex constraints is too large as row convexity can
be lost during the path-consistency algorithm. Van Beek suggested to restrict the class of
row-convex constraints to a class closed under composition, intersection, and transposition,
the basic operations in PC algorithms. Following this suggestion, we present in the next
section such a class of row-convex constraints.

4.2. CRC constraints

Row-convex constraints exhibits two problems during path-consistency algorithms.
First, when a row-convex constraint is composed of disjoint blocks of 1s, its composition
with another row-convex constraint may not be row-convex. Second, even if disjoint blocks
are forbidden, intersection may create empty rows and columns and thus disjoint blocks.
Here is an illustration of these two problems:
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1 1 1 1 0 1 11
(0 1)-(1 0 0):(1 0 1),
0 1 0 0 1 0 01
1 1 1 00 1 00
(0 1)0(1 0 0):(0 0 0).
0 1 111 0 0 1
CRC constraints avoid both problems. Informally, a constraint is CRC if, after removing

the empty rows, it is row-convex and connected (two successive rows either intersect or are
consecutive).

OOkr OFrPF

Definition 8. The reduced formof a constraintC;;, denoted byC;*j, is obtained by
removing all the empty rows and columns in its matrix representation déh@ainof i
through the constraind;;, denoted byD; (C;;), is the sefv € D | Jw: (v, w) € C;;}.

Definition 9. LetC;; be arow-convex constraintamde D; (C;;). Theimageof v in Cj; is

the setfw | (v, w) € C;;}. Because of the row convexity @f;;, this set is represented as an
interval[wz, wy, ] (over the domairD; (C;)) and we denote; andw,, by min(C;;, v) and
maxC;;, v), respectively. We also denote bycqw, D;(C};)) andpredw, D;(C};)) the
successor and the predecessowadh D;(C;;). For ease of notation, these two operations
will be denotedsucqw) and pred(w) when there is no ambiguity on the underlying
domain.

Definition 10. A row-convex constrain€;; is connectedff the imagesa, b] and[a’, b']
of two consecutive rows ixT;*j is such that

b’ > pred(a) A a’ <suceb).

Definition 11. A constraintC;; is connected row-convegCRC) iff
(i) C;; andCy; are row-convex,
(i) C; andC?; are connected.

We assume thaf;; is always the transposition @ ;;. Examples of CRC constraints
are given in Fig. 1 (1 are in black, empty rows/columns are in grey). Notice that CRC
constraints are not necessarily row-convex (because of empty rows) and that row-convex
constraints are not necessarily CRC (not connected rows). The top right constraint in Fig. 1
is an example showing that a CRC constraint cannot always be made CRC by permutations
of rows and columns.

It is interesting to notice that, in the definition of CRC, the secoowld@tion can be
simplified, as suggested by the following property.

Theorem 12. Assuming thaC;*j and C;fl. are row-convex,C;"j is connected iffC}‘l. is
connected.

Proof. LetC}; andC?; be row-convex. Supposg; not connected. A simple case analysis
on the cause of the nonconnectivity@©f; leads to the nonconnectivity 6f;. O
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CRC constraints non CRC constraints

not row convex not connected

Fig. 1. Examples CRC constraints.

4.3. Properties of CRC constraints

This section shows that CRC constraints are closed under composition, intersection and
transposition.

Lemma 13. The deletion of rows and columns in a CRC constraint produces a CRC
constraint.

Proof. Itis sufficient to prove that the suppression of one (nonempty) ro tpreserve
the CRC property. Let the corresponding element, amﬂj be the resulting matrix. We
observe thale;’.‘ has exactly one row less, and possibly less columnstﬂl‘.r]ant is easy to
see thaC{;.‘ and C}j‘. are row-convex.

Removing a row does not affect the fact ti@f; is connected. The images i@;;
which contained has now one less element GEZ If the interval becomes empty, the
corresponding row is simply suppressed.

Let [a1, b1], [az, b2] be the images irC;.l. of the rows preceding and following the
suppressed row. If these interval were not connected (say bebaus@red(as)), then
the columns OC,-*]- corresponding to positiorsiccby), ..., pred(ay) are empty, except at
row v. OtherwiseCl.*j would not be row-convex. Hence removing rovn C;; induces that
these columns will be suppressectifj. The intervaldaz1, b1], [a2, b2] are thus connected
in Cf}k O
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Lemma 14. LetC;; be a CRC constraint. Let;, v, v2 be inD;(C;;) suchthab; < v < v
and their respective images afi@1, b1], [a, b] and[az, b2] in C;;.

by <ai=1[a,blN[bz, a1l #9
az>bi1=la,blN[b1,a2] A0
by > a1 ANap < by = lai, b1l Nlaz, b2] C la, b].

Theorem 15. The intersection of two CRC constraints is a CRC constraint.

Proof. Let A;; andB;; be two CRC constraints. L&l;; = A;; N B;;. If A;; or B;; have
empty rows or columns, we may suppressiis andin B;; all rows and columns which
are empty either im;; or in B;;, and repeat this process until no more rows or columns
can be suppressed. The element€ijn not in the intersection of the obtained reduced
matrices are obviously null. We may thus assume thaand B;; have no empty rows or
columns.

The row convexity ofC;; (and Cj;) is obvious as each row (and column) is the
intersection of intervals.

Let vy, v2 € D;(C;j) such that; andv, have nonempty rows id;;, the rows between
v1 andvp are empty, and row; and rowwv; are not connected, as illustrated in Fig. 2. Let
the leftmost 1 in row1 be at positionw1, and the rightmost 1 in row, be at positionw,.
The other possible cases are symmetrical. We show that all the columns betweaed
wy are empty. Hence thd;; is CRC.

Assume that such a column is not empty (e(f; (v, w) = 1).

We necessarily have a 1 at positigies, w1), (v2, w2) and(v, w) in A;; and inB;;. As
Cij(v1, w) =0, eitherA;; or B;; has a 0 at positiotwy, w). Without loss of generality, we
suppose thaB;; (v1, w) = 0. By row convexity ofB;;, all elements belowv,, w) are also
nullin B;;. The matrixB;; is thennot connectedomewhere between rowy and rowvs.
This is impossible a®;; is CRC. O

Theorem 16. The composition of two CRC constraints is a CRC constraint.

Fig. 2. Intersection of two CRC constraints.
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Proof. Let C;; = Cix - Cy;. Empty rows inC;; and empty columns i@; can be removed
as producing empty rows/columns @;. An empty column inC;; can be suppressed
together with its corresponding row @; without affecting the result. Similarly for empty
rows in Cy;. Repeating this process leads to two constraints includ€gimnd C,j‘j. By
Lemma 13, these two constraints are CRC constraints. We may thus assuifig thas
no empty rows, and’;; no empty columns.

Let us first show thatC;; = Cix - Cy; is row-convex. Letv; < v < vz such that
Cij(v1, w) =1 andC;; (v2, w) = 1. Let[ay, a}], [a, a’] and[az, a,] be the images afy, v,
andvz in Cix. Let[b, b'] be the image ofv in C ;. We have

la1,ai1N[b, b1 # 0
[az, ap] N [b, b'] # B.

From the application of Lemma 14 on a simple case analysis on the relative positions of
[a1, a}] and[az, ay], we can conclude thdi, a'] N [b, b'] # ¥, hence thaC;; (v, w) = 1.

Let us now prove thaf’;; is CRC. Letvy, vz € D; such thatv; andv, have nonempty
rows inC;;, the rows between; andv, are empty, and rows; andv, are not connected,
as illustrated in Fig. 3. Let the leftmost 1 in raw be at positionw1, and the rightmost 1
in row vz be at positionw,. The other possible cases are symmetrical. We show that all the
columns betweem, andw; are empty. Hence that;; is CRC.

Assume that such a column is not empty (e(f; (v, w) = 1).

FromC;; (v1, w1), there exists some, such thatCi (vy, u1) =1, Cyj(u1, w1) = 1. As
(v1, w1) is the leftmost 1Cy; (11, b) = 0 for b < wy. By the row-convexity oCC;;, (v1, wi)
is also the lowest 1. Hena& (a, u1) =0 fora > v1.

From C;j (v2, wp), there exists somes such thatCix(v2, u2) = 1, Cij(u2, w2) = 1.
As (v2, wp) is the rightmost 1Cy; (2, b) = 0 for b > w». By the row convexity oiC;;,
(v2, w) is also the highest 1. Hen&®&y (a, u2) =0 fora > vy.

From C;; (v, w), there exists somez such thatCi; (v, u3) = 1, Cyj(u3, w) = 1. As
(v, w) is the downmost 1C;i(a,us3) = 0 for a > v. Given thatC;; is CRC, we must
haveu < u1 < up. By the row convexity olCy;, Cy; (c, w) = 0 for ¢ > u3. This make<y;
notconnected somewhere between rawsndu,. Impossible a€y; is CRC.

The proof for the symmetrical cases is similar

Cik Cy Cj
v 1] o 1] v
0 R
u3 IR i
vi [ LTl el A ol o1 vi
0 ui 00! 01, -
777777 L o] Coo0r 0
v2 0 1 L 20 1lo_|o v2
""" It et el el e el u2 10 100!
R S R w2 w wi
u3 ul u2 w2 w wi

Fig. 3. Composition of two CRC constraints.
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Theorem 17. The transposition of a CRC constraint is a CRC constraint.

Theorem 18. Let N' be composed of CRC constraints. The application of a path-
consistency algorithm t&/ produces a minimal and decomposable constraint network.

Proof. Straightforward as path consistency can be achieved by only using composition,
intersection and transposition of (the matrix representation of) constraints.

Theorem 19. The class of CRC constraints is tractable.
4.4, Examples of CRC constraints

It is important to discuss some examples of CRC constraints and to show how they
generalize monotone constraints [13]. Let us assume the existence of a (total) ordering in
each domairD; . For ease of notation, we will use the same ordering syrdbfar all the
domains.

Definition 20. Let < and > be total orderings oD; and D;, respectively. A (binary)
constraintC;; is (<, >)-monotone if

- Vv,v' € D;, Yw € Dj: if Cjj(v, w) andv’ < v thenC;; (v', w)

—YveD;, Yw,w' € D;: if Cjj(v, w) andw’ > w thenC;; (v, w’).

A constraintis monotone if it is{, >)-monotone. Itis possible to generalize the class of
monotone constraints by allowing any combination of the ordering relations. This provides
some insights on why CRC constraints are important and how they generalize monotone
constraints.

Definition 21. A constraints istaircaseif it is («, 8)-monotone withy, 8 € {<, >}.

Examples of staircase constraints are:

ax +by+c<0, ax+by+c>0, axy+b <0,
axy+b >0, af(x)+by+c <0, af(x) +by+c =0,

with a, b, ¢ rationals, f (x) a function such thaf’(x) is either always positive or always
negative on the considered interval. Intersection and/or composition of staircase constraints
are CRC but not necessarily staircase. For instance, assuming a doraaid, .. ., 10},

the two constraints

Sx—3y—-4>20A2x—y—-7<0

x-y<10Ax+y=>0
are CRC but not staircase. Itis also possible to define other (sub)classes of CRC constraints,
such asy > (ax + by + ¢)2, with b integer, and assuming a domain of positive integers.
These constraints are CRC, but not staircase.

Staircase constraints are an important generalization of monotone constraints and are
tractable.
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Proposition 22. The class of staircase constraints is tractable.

The difference between monotone constraints and CRC constraints appears clearly if a
constructive definition of CRC constraints is given. This definition involves conjunctions
and disjunctions dbasicCRC constraints. Intuitively, a basic constraint defines a rectangle
within the domain, or it defines an empty row/column.

Definition 23. A basic CRC constrairttetween variablesand is a constraint of one of
the following forms:

(Upper Right) UR?]-}’(v,w) =v<aArw=b
b
(Upper left) UL?j (w,w)=v<arw<b
(Lower Right) LF%-b(U, w)=v=aAw=b
(Lower Left) LL?jb(v, w)=v=>aAw<bh.
A basic domain constrains a constraint of the form
(Domain) DC!(v) = v#a.
Notice that a €, >)-monotone constraint over a domaih can also be expressed as
a disjunction of Upper Right basic constraints. The next definition, and its associated

theorem, thus show clearly the generalization provided by CRC constraints. The definition
provides a constructive definition of CRC constraints.

Definition 24. A CNF-CRC constrainis a constraint of the form:

(Vo) () (Vi) (V)

apeD; apeD; apeD; apeD;
I;keDj bkeDj I;keDj I;keDj
a b,
AV pet)A(\/ pch).
axeD; breD;j

Theorem 25. The following classes of constraints are tractable and equivalent
(i) CRC constraints,
(i) CNF-CRC constraints,
(i) the closure, by intersection and composition, of staircase constraints and basic
domain constraints.

5. PC-GEN: A generic path-consistency algorithm

In this section we present a new generic path-consistency algorithm PC-GEN that
can be parametrized like the arc-consistency algorithm AC-5 [19]. This approach has
many advantages. The generic algorithm can be instantiated to existing path-consistency
algorithms, providing thus a framework for the description and comparison of existing
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algorithms. New path-consistency algorithms can also be derived from the generic one.
Only the two proceduresstPH CoNsand LocALPATHCONS have to be implemented. The
correctness of the obtained instantiation is then a consequence of the correctness of the
generic algorithm. This approach is used in the next section to design PC-CRC, an efficient
path-consistency algorithm specialized to CRC constraints.

5.1. Basic operations

The specification of the basic operations in PC-GEN are given in Fig. 4. All
specifications assume a constraint netwafk= (Var, D, C). A parameterp subscripted
with O (po) represents the value gf at call time. As is traditional, PC-GEN uses a
gueueQ to drive the algorithm. A tupl€i, k, j, v) in Q implies that it is necessary to
reconsider the constraiat; with respect to patld, &, j) knowing that, for some, (v, u)
has been removed fro;;. Procedure EQUEUE is required to take @) time, wheres
is the number of new elements to insert in the queue and procedige BJE must take
constant time. The deletion of tuples is performed by procedwreNB, which removes
tuple (v, w) from C;; and(w, v) from C;;. Hence,

(v,w) € Cijj & (w,v) € Cy;

will be an invariant of the algorithm, assuming it holds initially.

procedure PRUNE(IN A, i, j)
Pre: i, j € arc(N).
Post Cij = Cij, \ {{v, w) | (v, w) € A},
Cji = Cjip \ {{w, v) [ (v, w) € A}.

procedure INITQUEUE(out Q)
Post 0 ={}.

function EMPTYQUEUE(in Q): Boolean
Post EMPTYQUEUE < (Q ={}).

procedure DEQUEUHinout Q, out i, k, j, v)
Post (i, k, j,v) € QoandQ = Qo \ {{i, k, j, v)}.

procedure ENQUEUE(Z, j, A, inout Q)
Pre: A C Cj;.
Post O = Qo U{{i, j,k,v) | k € arc(NV) andj # k and(v, w) € A}
U{{j,i,k,w) | k earc(V) andj #i # k and(v, w) € A}.

Fig. 4. The basic operations for PC-GEN.
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5.2. Parametric procedures

PC-GEN is parametrized by two procedures (Fig. 3THCONS and LOCALPATH
Conswhose implementations are left open. ProcedwmeHZoNs computes the set of
tuples inC;; which are not path-consistent for the pathk, j). Because of the relationship
betweenC;; andC;;, A is also the set of tuples (in reverse order)f that are not path-
consistent for patlij, k, i). This is illustrated in Fig. 6(a).

Procedure bcALPATHCONS returns inA a set of tuples ofC;; that are not path-
consistent for(i, k, j) after tuple (v,u) (for some u) has been removed from the
constraintC;;. The setA is also the set of tuples (in reverse order)@f that are not
path-consistent in patty, k, i) after tuple(u, v) has been removed frofy; .

The size ofA computed by lOCALPATHCONS can vary. The setq, illustrated in
Fig. 6(b), contains the tuples ifi;; that become path inconsistent f@rk, j) due to the
removal of tuple(v, u) from C;x. In some cases, it is possible, but not always desirable,

Let PCixj (v, w) =3u: (v,u) € Cir and(u, w) € Cy;.

procedure PATHCONS(in i, k, j, out A)
Pre: i, k, j € arc(N).
Post A = A, with

Az = {{v,w) € Cjj | =PCi; (v, w)}.

procedure LocALPATHCONS(in i, k, j, v, out A)
Pre: i, k, j € arc(\).
Post A1 € A C Ap, with

Ar={{v, w') € Cij | =PCit; (v, w')},

Ao = {(U’, w’) € Cij | =PCi; (U’, w’)}.

Fig. 5. Parametric procedures for PC-GEN.

(a) PathCons( i,k,j,/\) (b) LocalPathCons( i.k,j,v, A\ | ) (c) LocalPathCons( ik,j,v,/\ 5 )

Fig. 6. Pruning of RTHCoNsand LOCALPATHCONS.
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to prune a larger set of tuples. As an extreme caseprunes all tuples irC;; which are
path inconsistent with respect ta &, j) at call time, regardless of whether they can be
supported by(v, u) (see Fig. 6(c)). The specification of the parametric procedures takes
advantage of this fact and allows for both flexibility and efficiency. Any intermediate
can be computed.

Notice that the definition oPCi; (v, u) (Fig. 5) does not require € Dy. This comes
from the simple observation that the fixpoint of

Cij :=Cij N Cir.Cii.Cy;

is the same as the fixpoint of
Cij :=Cij N Cir.Cy;

computed for all, j, k € arc(\V).

The choice of not consideringy; will simplify the instantiation of these procedures for
particular classes of constraints, without affecting the correctness of PC-GEN.

5.3. AlgorithmPC-GEN

PC-GEN is depicted in Fig. 7 and mimics AC-5. In the loop on lines 2-7,
procedure RTHCONS identifies the path-inconsistent tuples with respect to each path
of length two. The inconsistent tuples are enqueued and processed in the second loop,
on lines 8-14, where procedur@tALPATHCONS is used to prune tuples @f;; which

Algorithm PC-GEN
Post \ is a path-consistent constraint network equivalentgo

begin
1 INITQUEUE(Q);
2 for eachi, k, j € arc(N) with i < j do
3 begin
4 PATHCONS(i, k, j, A);
5 ENQUEUE(, j, A, Q0);
6 PRUNE(A, i, j)
7 end;
8 while not EMPTYQUEUE(Q) do
9 begin
10 DEQUEUHOQ, i, k, j, v);
11 LoCALPATHCONS(i, k, j, v, A);
12 ENQUEUE(, j, A, Q);
13 PRUNE(A, i, j)
14 end
end

Fig. 7. The path-consistency algorithm PC-GEN.
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become inconsistent after the removal of a tuple frépn The restriction; < j in the
first loop is justified by the fact thatAPHCONS(i, k, j, A) treats both pathsi, , j)
and (j, k,i). Note that paths of the forn, i,i) could be discarded since the resulting
A set is empty. The removal of the tuple, w) in C;; and (w,v) in Cj; requires to
reconsider all length-two paths involving eith@r j) or (j, i) as the first or as the second
arc. It is, however, unnecessary to consider explicitly the second arc (inNb&HEJE
procedure) since @CALPATHCONS(, j, k, v) covers both pathg, j, k) and(k, j,i) and
LocAaLPATHCONS(j, i, k, w) covers pathgj,i, k) and (k,i, j). This is because of the
invariant maintained by procedur@BnE.

5.4, Correctness

The correctness of PC-GEN is given in Appendix A.1.
Theorem 26. Algorithm PC-GEN terminates and is correct.
5.5. Complexity bounds

Although we do not develop here a concrete implementation for the basic operations of
PC-GEN, we may assume the complexity bound ¢fYdor DEQUEUE, O(A) for PRUNE,
and Q(s) for ENQUEUE, wheres is the number of elements to insert in the queue. As usual
the O notation denotes an upper bound of the worst case complexity.

If the complexity of RTHCONs is O(¢), the loop at lines 2—7 takes(@) - O(r) time.
If PATHCONStakes @A) time, the loop at lines 2—7 has a complexity afy®, whereg is
the total number of elements that can be enqueued throughout the execution of PC-GEN.
Also, if LocALPATHCONS takes Q¢) time (with O(r) > O(d)), the loop at lines 8-14
takes Qgq) - O(¢) time. Finally, if LocALPATHCONStakes @A) time, the loop at lines 8—
14 has a complexity of @). These observations will become helpful when we will analyze
particular instances of PC-GEN.

Theorem 27. Given a time complexity dD(d?) for procedurePATHCONS and a time
complexity ofO(d) for procedureLoCALPATHCONS, algorithm PC-GEN is bounded
by O(n3d3).

Theorem 28. Given a time complexity db(d?) for procedurePATHCONS and a time
complexity ofO(A) for procedureLocaLPATHCONS, algorithm PC-GEN is bounded
by O(n3d?).

5.6. Relaxing the specification of the parametric procedures

The specification of the generic procedureasHPCoNs and LOCALPATHCONS can be
further relaxed without affecting the correctness nor the complexity of PC-GEN. Such
a generalisation is important as it formalizes existing path-consistency algorithms such
as PC-4, and also allows an efficient specialisation of PC-GEN for CRC constraints. The
general idea is that, when some w) is not path-consistent with respect(@x, j) (i.e.,
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—PCij (v, w)), itis not necessary to prurie, w) immediately if we are ensured that, w)
will eventually be pruned when some other element in the queue will be processed.

Definition 29. The tuple{(v, w) is look-ahead-ILH(1)) for path(i, &, j) iff

(i,k,j,v)yeQV {j,k,i,w)e Q.
Definition 30. The tuple(v, w) is look-ahead-nfLH(m)) for path(i, k, j) (m > 1) iff

Ju: (v,u) € Cix AFk": =PCipri (v, u) A ({v, u) is LH(m — 1) forik'k)
V Jui (u, w) € Cjg ATkt =PCjrpe(u, w) A ((u, w) is LH(m — 1) for jk'k).

The relaxed parametric procedures are specified in Fig. 8. We will denote by PC-GEN
the algorithm PC-GEN using the proceduregPCoNs* and LOCALPATHCONS*. The
correctness of PC-GENSs proven in the Appendix A.2.

One may also extend the queue by considering tuples of the iokm;, (v, w)). Such
a tuple denotes it is necessary to reconsider consifaintith respect to to patki, &, j)
becausev, w) has been removed from constraifif,. Such an extension is useful for
instantiating PC-GEN to PC-4.

The specification of procedureseEQUEUE and ENQUEUE can easily be extended.
Atuple (v, w) will now be LH(1) for path(i, k, j) iff

Ju: (i,k, Js (v, u)) €Q V(j,k, i, (w, u)) € Q.

Let PCixj (v, w) =3u: (v,u) € Cix and(u, w) € Cy;.
Pkaj (v, w) =PCij (v, w) vV Im: (v, w) is LH(m) for ikj

procedure PATHCONS*(in i, k, j, out A)
Pre: i, k, j € arc(\V).
Post A% C A C Ap, with

A5 = {(v, w) € C;j | ~PCj;; (v, w)}

Az ={{v,w) € Cjj | =PCij (v, w)}.

procedure LOCALPATHCONS*(in i, k, j, v, out A)
Pre: i, k, j € arc(\V).
Post A7 C A C Ay, with

47 = {[v.w) e Cyj | -PCy, (0. w)}.

Ap = {(v/,w/)e Cij |—-PCikj(v/,w/)}.

Fig. 8. Relaxed parametric procedures for PC-GEN.



Y. Deville et al. / Artificial Intelligence 109 (1999) 243-271 259

With the given specification of tcALPATHCONS, such an extension of the queue is
useless as only the elemenis used in the definition of the resulting set.

5.7. Instantiating PC-GEN to existing PC algorithms

One can show that PC-GEN can be instantiated to yield a PC algorithm with a
time complexity of @Qn3d3), and a space complexity of (@d?). Such complexities
were obtained in [3,14]. The classical PC-4 has the same time complexity, but a space
complexity of Qn3d?3).

PC-GEN can also be instantiated to existing path-consistency algorithms, providing thus
a framework for their comparison. For instance, PC-GEN can be instantiated to PC-2 [12]
and PC-6 [3]. The classical PC-4 [9] is an instance of PC-Gising the extended queue.

Itis here necessary to use PC-GENstead of PC-GEN, as PC-4 uses a technique covered
by our definition of LH(1).

6. PC-CRC: A path-consistency algorithm for CRC constraints

In this section, we provide PC-CRC, an efficientinstance of PC-GEN specialized to CRC
constraints. PC-CRC has a time complexity ¢f:€%2) and a space complexity of@?d).
We describe the representation of CRC constraints and the instantiation of the generic
procedures. A precise and complete description will be provided. As the application of
PC-CRC produces a minimal and decomposable constraint network, we also provide an
algorithm to find a solution of the constraint network.

6.1. Representation of CRC constraints

CRC constraints can be represented in spa@d @s shown in Fig. 9. It is necessary
to keep a description ob; (C;;), since row-convexity is only enforced on the reduced
form. Fig. 9 also specifies the operations on CRC constraints which are all implemented
in constant time. For instance MBTYSUPPORTv, w, i, k, j) can be implemented by
b'>ana <b with a =MIN (v,i,k), b =MAX (v,i,k), @ =MIN (w, j, k), andb’ =
MAX (w, j, k). As the domainsD, (Cy;) and Di(Cy;) are not necessarily identical, the
EMPTYSUPPORTv, w, i, k, j) does not computeC; (v, w), but PC,?kj (v, w), which is
P ;ij(v, w) with LH(m) restricted ton < 2.

6.2. Instantiation of the generic procedures

An implementation of ProceduresasfHCoONS and LOCALPATHCONS is given in
Fig. 10. Note that RTHCONS is expressed in terms ofdCALPATHCONS. In LOCAL
PaTHCONS, BOUNDEDMIN computes the interval’ to be removed on the left of the

3The value u could be used as follows in the specification ofod¢ALPATHCONS (respectively,
LOCALPATHCONS"). The setA; (respectively,A}) can be further reduced by imposirig, w’) € C]Lr}'t (where

C,i('}“ denotes the original set of constraint tuples betwieand ;).
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LetD={b,..., B}.
LetC;; = {(vl, v1), ...y (Un, Um)} ifi=j
= {(vl, w1, ..., {Um, wm)} if i £j (wherevg, wg € D).
Data Structure
Syntax
C;j.supminarray[b .. B] of elemente D
C;j.supmaxarray[b .. B] of elemente D
C,j first: elemente D
C;j.succ array[b .. B] of elemente D
C;j.pred array[b .. B] of elemente D.
Semantics
C;j.supmiriv] = min(C;, v)
C,-j.supmakv] = ma>(C,»j, v)
Cl-j.first= min{v € D; (Cij)}
C;j.sucgv] = sucqv) in D;(C;;)
C;j.predv] = pred(v) in D; (C;;).
Invariant
Cij=Cj;
C,-j.supmimu] €D;(Cji)
C,-j.supmakv] € Dj (Cji).
Interface
Let Pc?kj (v, w) = PCit;j (v, w) v Im < 2: (v, w) is LH(m) for ikj
function EMPTYSUPPORT(N v, w, i, k, j): Boolean
Post EMPTYSUPPORT(v, w, i, k, j) = —=PCZ; (v, w)
function FIRST(in i, j): Integer
Post FIRST(, j) = minfv € D; (C;;)}
function MIN(in v, i, j): Integer
Post MIN (v, i, j) = min(Cij, v)
function Max(in v, i, j): Integer
Post MAX (v, i, j) =maxC;;, v)
function Succ(in v, i, j): Integer
Post Succ(v, i, j) =sucqv) in D;(C;;)
function PRED(in v, i, j): Integer
Post PRED(v, i, j) = pred(v) in D;(C;;)

Fig. 9. The CRC ©NSTRAINTmModule.

interval in rowv while BOUNDEDMAX computes the intervalt” to be removed on the
right of the interval in rom. Although this pruning is sufficient, it may destroy the CRC
property. We know that removingl the inconsistent tuples yields a CRC constraint. To
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procedure PATHCONS(in i, k, j, out A)
begin
A=,
for eachv € D;(C;;) do
begin
LOCALPATHCONS(i, k, j, v, Ay);
A:=AUAy;
end
end

DU WN P

procedure LOCALPATHCONS(in i, k, j, v, out A)
begin

1 BOUNDEDMIN(i, k, j, (v, MAX(v, i, j) ), A, wmin);
2 if wmin=MAX(v, i, j)then A:= A’
3 else
4 begin
5 BOUNDEDMAX (i, k, j, (v, MIN(v, i, j) ), A”, wmay);
6 PROPAGATH(, j, k, (v, Wmin), BOUNDEDMIN, PRED, A1);
7 PROPAGATH(, j, k, (v, wmin), BOUNDEDMIN, SUCC, A2);
8 PROPAGATH(, j, k, (v, Wmax, BOUNDEDMAX, PRED, A3);
9 PROPAGATH(, j, k, (v, Wmax, BOUNDEDMAX, SUCC, Ay);
10 A=A UA"UALU AU A3 U Ag;
11 end

end

Fig. 10. RTHCoNsand LocALPATHConNsfor CRC constraints.

preserve the property, we thus perform additional pruning on the rows above or felow
This is the role of the RoPAGATEInstructions. The specifications and implementations of
the subproblems procedures are given Appendix A.3. The intuition berdahLPATH
Consis captured in Fig. 11. Becausg; := C;; N C;.Cy; produces a CRC constraint, the
implementation is guaranteed to ke€p connected row-convex. Note thaRBPAGATE
works fromu to the exterior, while BUNDEDMIN and BOoUNDEDMAX work from the
exterior to the interior.

The implementation of bcALPATHCONS could be optimized in several ways. For
instance, in Fig. 11, there is an elemabbvev, left to Wmin, which is supported. As the
resulting constraint is known to be CRC, every elentexibwu, left to Wpin, can directly
be be suppressed.

6.3. Correctness

The LocaLPATHCONS procedure for CRC constraints is an instance of tleechL
PaTHCONS* procedure specified in Fig. 8, where Lkl has been restricted to the case
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! ! }
Wmin Wmax Wmin

Fig. 11. lllustrating locALPATHCoNsfor CRC constraints: Two possible cases.

procedure PRUNE(IN A, i, j)
Pre: i, j e arc(N),
C;;j is a CRC constraint,
Cij \ Ais a CRC constraint.
Post C;j = Cij, \ {{(v, w) | (v, w) € A},
Cji =Cjig \ {(w, v) [ (v, w) € A}.

Fig. 12. Pruning for PC-CRC.

m < 2. Lines 1 and 5 compute the sat which is sufficient for correctness. In order to
keep the CRC property, the setg, A2, A3 and A4 are then computed in lines 6-10. We
haveA; C A3. SinceA} C Az, we haveA; C Ap.

The correctness of HCONS is a direct consequence of the correctness oEAL
PATHCONS.

6.4. Complexity

PRUNE can be performed in @) assuming the elements o are ordered to
preserve the CRC property, as specified in Fig. 12. The ordering can be performed
during the construction ofA during LoCALPATHCONS without incurring any cost.

An implementation ofA as a doubly-linked list is sufficient for this purpose given
the way A is constructed as mentioned in the previous section. The complexity of
Procedures ROPAGATE, BOUNDEDMIN and BOUNDEDMAX is obviously QA). Hence
LocALPATHCONSis O(A). By Theorem 28, the time complexity of PC-GEN iGd?).

The space complexity per constraint isdp and Qnd) for all the constraints. The space
complexity of the queue is bounded by3d) because elements in the queue can be
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procedure INSTANTIATE(in NV, out {(x1, ..., x,))

Pre: A/ has only CRC constraints, and is path-consistent,
Di #0(1<i<n)

Post (x1,...,x,) is a solution of\/.

begin
1 fori :==1tondo
2 begin
3 L :=FIRST(i, i);
4 for j:=1toi —1do L := max{, MIN(xj, j,i));
5 x;i =L
6 end
end

Fig. 13. INSTANTIATE for CRC constraints.

grouped as tuples of the forth j, E, v), where the seE is initially arc(\) \ {j}. The set
E can be shared by all elements of the queue except the first one.

Theorem 31. For CRC constraints, PC-GEN has a time complexity0s342) and a
space complexity @(n2d).

The above theorem is valid for incomplete constraint networks of CRC constraints as
well, since the completion of the constraint network introduEBSJE constraints which
are CRC.

6.5. Finding a solution

A path-consistent constraint network with CRC constraints is decomposable due to
Helly’s theorem (e.g., [8]). The proof in [18] is constructive and the author proposes a
O(n?d) algorithm to find a solution. We propose in Fig. 13 arsTANTIATE procedure
with a time complexity of @:2) for CRC constraints. It is based on van Beek’s algorithm,
but takes advantage of the data structure.

The total complexity to detect inconsistency or to find a solution of a constraint
network composed with CRC constraints is thua€?), the time complexity of the path-
consistency algorithm.

Theorem 32. The class of CRC constraints is tractabled3d?).

7. Analysis and experimental results

This section analysis the class of CRC networks. It also studies how PC-CRC performs
in practice (does it perform better than the theoretical complexity? How large are the
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Fig. 14. Pruning of PC-CRC.

constant factors?). Extensive experimentations have been performed. Data sets have been
randomly generated for the following combinations of the parameters:

— n (number of node): from 10 to 80;

— d (size of the domain): from 10 to 45;

— density from 10 to 80%.
Density is here defined as the probability tb&v, w) holds forv, w € D (i.e., the number
of ones in the matrices compared to the size of the matrices). Only complete constraint
networks were considered and more than 2,000 executions of PC-CRC have been recorded
and analyzed using statistical methods. All the experiments have been performed on a SUN
Ultra 1 workstation running Solaris.

7.1. Satisfiable versus nonsatisfiable constraint networks

We first analyse CRC constraint networks from the satisfiability point of view. As PC-
CRC produces a minimal and decomposable constraint network, if the algorithm terminates
without detecting an inconsistency, then the constraint network is known to be satisfiable.
Fig. 14 depicts the pruning for = 30, d = 45, and densities from 10 to 80. The dark
bars measure the density of the constraints after application of PC-@&®Gi{yout). The
grey bars indicate the pruning factodénsityin — densityout)/densityin). Nonsatisfiable
networks thus have a pruning factor of 100%. For all the different valudsmityin, the
statistical error of the resultindensityoutis less that 2.4 (i.e., the 95% confidence interval
is included indensityout+ 2.4).

From these experiments, one can observe that wersityin is less than 45, the
constraint network is always nonsatisfiable. Whaensityin is greater than 55, the
constraint network is always satisfiable. Between 45 and 55, the percentage of satisfiable
constraint networks is around 53%. The global shape of the results also holds for other
combinations ofi andd, except for the position of the frontier between the nonsatisfiable
and satisfiable problems. In our data sets, the frontier always lies between 40 and 60.
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Fig. 15. Execution time for different densities.

7.2. Influence of density on complexity

The theoretical time complexity of PC-CRC is(#342). This complexity could be
refined to take into account the density of the constraint network. We then have a time
complexity of Qn3(densityx d)?).

It is interesting to compare this new theoretical complexity with experimental results.
Fig. 15 displays the execution time of PC-CRC #o& 30, d = 45 and various densities.

The top of the dark bar denotes the lower bound of the 95% confidence interval and the
top of the grey bar the upper bound. This shows a significative difference of execution time
between nonsatisfiable (density 10—45) and satisfiable (density 55-80) constraint networks.
Interestingly, the execution time for satisfiable constraint networks is almost independent
from the density.

7.3. Theoretical complexity versus experimental complexity

The theoretical time complexity of @342) only provides ampper bounf theworst-
casecomplexity. By experimental complexity, we mean to model the real execution time
of a set of test problems by a polynomial of the form:

> aijn'd’  (withi, j >0, andi + j <5).
The degree 5 is inferred by the theoretical complexity.

Such an experiment has been performed for a density of 70, since it is representative
of the difficult cases. We used a statistical software package called ECHIP. This software
proposed an experimental plan (number of constraint networks to generate, vahles of
andd to consider). For the measured execution times, the software proposed the following
complexity:

2.23x 10°°1%d’ +0.00333/%d' + 0.0772?
+0.1547'd’ + 3.820 + 2.79d’ + 59.29.

Only the statically significative coefficients; are consideredy’ = n — 35 andd’ =
d —17.5. The ECHIP software were also able to assess both the validity and the predictive
ability of the model.
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Fig. 16. Execution time for different densities.

These experiments show that the time complexity of PC-CRCdsand that the actual
coefficient of the polynomial are very small for the higher degree terms (the first term is
dominant only fom > 185). The CPU time of the experiments is shown in Fig. 16. As can
be observed, the CPU time is linear with respeect for a givenn.

7.4. PC-CRC versus classical PC algorithms

For solving CRC constraint networks, one may use the specialized PC-CRC algorithm
or any other PC algorithm. Although we know the theoretical complexity of PC-CRC is
better than the theoretical complexity of classical PC algorithms, and that the experimental
complexity of PC-CRC is very good, it is interesting to analyse the experimental
complexity of general PC algorithms on CRC constraint networks. To perform this
experimentation, we used an instance of PC-GEN close to PC-4, but with a better space
complexity. We compare this algorithm and PC-CRC o 10, a density of 70, and
n = 10, 20,30 (see Fig. 17). The confidence intervals of the execution times for both
algorithms are very small (always less than 5% of the measured execution time). The
results clearly indicates that, in this case, the experimental complexity of the general
algorithm is worse than PC-CRC. Similar differences appear for other values of the
parameters.

8. Conclusion

This paper introduces the class of CRC constraints and showed that it is closed under
composition, intersection, and transposition, the basic operations of path-consistency
algorithms. As a consequence, path consistency over CRC constraints produces a minimal
and decomposable network and is thus a polynomial-time decision procedure for CRC
networks. This paper then presented a new path-consistency algorithm for CRC constraints
running in time Qn34?) and space @2d), wheren is the number of variables aads the
size of the largest domain, improving the traditional time and space complexity by orders
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Fig. 17. PC-CRC versus PC-GEN.

of magnitude. Experimental results show that the algorithm behaves well in practice. The
paper also showed how to construct CRC constraints by conjunction and disjunction of
a set of basic CRC constraints, highlighting how CRC constraints generalize monotone
constraints, presenting interesting subclasses of CRC constraints, and highlighting how
to construct CRC constraints. The automatic recognition of CRC constraint constraint
networks, i.e.,

“given a constraint network, does there exist an ordering on the domains that makes
the constraint network CRC?”

remains an interesting open issue. To be useful, an algorithm answering this question
should run in timeS2(n3d?) since otherwise it is preferable to apply a general path-
consistency algorithm (running in time(&¥d®)) and to apply an algorithm recognizing
row-convex constraint constraint networks (which runs in tim@3@?) [18]). Finally,
current work is devoted to studying how to use similar ideas for other classes of discrete
and continuous constraints and for other consistency notions (e.g., [5]).
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Appendix A
A.1. Correctness of PC-GEN

The correctness of PC-GEN is proved using a similar argument than in [19]. Given two
constraint networksd/ = (Var, D, C) andN’ = (Var, D/, C'), we define\' T N if Vi, j €
arc(N)D; € D; A Cij € Cj;. We also defineV” = N U N, with N = (Var, D", C"),

Dl{/ =D; U Dl{ andCi’} =C;; U Ci/j'

We prove that the output of PC-GEN is the largest path-consistent constraint network
for A/. One can easily show that such a largest constraint network always exists, is unique,
and is equivalent tgv". We first show that the invariat™* C A/ is preserved in PC-GEN,
whereA™ is the largest path-consistent constraint network\NorPartial correctness (i.e.,
if the program terminates, it produces a correct result) can then be proved by showing
that, when PC-GEN terminates, the constraint network is path-consistent. We finally prove
termination, hence the (total) correctness of the algorithm.

Lemma A.1. Let N'* be the largest path-consistent constraint network @ After the
execution of PC-GEN, we hawé* C V.

Proof. We prove a stronger result: The invarigvit C A/ is preserved in PC-GEN at lines
2 and 8. The invariant holds for the first execution of line 2\as= Ay and A* C Af.
Execution of lines 4-6 preserves the invariant becalisentains path-inconsistent tuples
that cannot belong to the path-consistéit. The proof for the invariant in line 8 is
similar. O

Theorem A.2 (Partial correctness)Algorithm PC-GEN is partially correct.

Proof. By Lemma A.1, it is sufficient to show that, when PC-GEN terminatéss path-
consistent. Assume that PC-GEN terminates withw) € C;; such that-PCy; (v, w).
Letu,...,u, be all the elements supporting, w) in the initial constraint network\/p

(i.e., Cik(v,u;) A Cij(ur, w)). At the end of PC-GEN, these supports have been deleted.
We havern > 0, since otherwisgv, w) would have been removed fro€); by line 2. Let

u be the last support db, w) during the computation. Since we hav®Ci;; (v, w) at the

end of the execution, eithév, u) has been removed frofy; or (u, w) has been removed
from Ci;. Such a removal implied the insertion @fk, j, v) or (j, k,i,u) in the queue.

As the algorithm is assumed to terminate, when this element will be dequeue and treated
by LocALPATHCONS, (v, w) will be removed fromC;; (since—PCy; (v, w)) and thus

(v, w) belongs taA;. Contradiction. O

Lemma A.3 (Termination). In algorithm PC-GEN, ifsy, ..., s, are the numbers of new
elements inQ after successive iterations of linéor 12, thensy + - - - + 5, < O(n3d?).

Proof. Given that a tuple{v, w) can only be pruned at most once per constrdint
(specification of the subproblems), and given the specificationNgfUE UE, it follows
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that, for alli, j, k € arc(\V), for all v € D, the elementi, k, j, v) can be enqueued at most
O(d) times in the queu® during the execution of PC-GEN.O

Theorem A.4. Algorithm PC-GEN terminates and is totally correct.
A.2. Correctness of PC-GEN

The correctness of PC-GENs proved in three steps. We first show that in PC-
GEN, if a tuple has the LHg) property, then it is eventually removed. We then prove
that, in an execution of PC-GEN, we may substitute executionsAsH €oNSs (or
LocALPATHCONS) by executions of RTHCONS* (or LOCALPATHCONS"). Hence the
correctness of PC-GEN Let us first observe that the relaxed specifications does not
influence Lemmas A.1 and A.3.

Lemma A.5. If, during the execution of PC-GEN, we havéCi; (v, w) and (v, w)
LH(@m) with respect takj, for somev, w, i, k, j, m, then the tuplgv, w) will eventually
be pruned fronC;;.

Proof. The proofis by induction om. Form = 1, we have(i, k, j, v) € Q (the other case
is similar). Termination ensures the existence of a calld@ ALPATHCONS(I, k, j, v). By
hypothesis, we havePCy;; (v, w). The tuple(v, w) will thus be in the resulting\ set and
pruned fromC;;. Form > 1, we have-PCy; (v, w) and

Ju: (v,u) € Cig AIk": =PCipi (v, 1) A ({(v, u) is LHGm — 1) for ik'k)

(the other case is similar). By induction hypothesis, the typle:) will eventually be
pruned fromCj, inducing the insertion ofi, k, j, v) in the queue. We are now in a similar
casethanfom =1. O

Theorem A.6 (Correctness of PC-GENL Algorithm PC-GEN is totally correct.

Proof. Given that PC-GEN always terminates and that the parametric procedures may
now compute smallen sets, it is sufficient to prove that all the postponed tuples will
eventually be pruned. Let us consider an execution of PC-GE&t p be the number of
setsA computed by RTHCoONS* and LOCALPATHCoONS* which do not respect the initial
specification of the parametric procedures. The proof is by inductiop.dfor p = 0,
PC-GEN is PC-GEN. Forp > 1, consider thepth call of these calls toAHCoNS* and
LocALPATHCONS*. Except for this call, the remaining part of the execution of PC-GEN

is now identical to an execution of PC-GEN. By Lemma A.5, all the postponed tuples will
eventually be pruned. The induction hypothesis can now by applied to thepothecalls;

the remaining postponed tuples will thus eventually be pruned.

A.3. Subproblems for PC-CRC

procedure PROPAGATH(N i, k, j, (v, w), BOUNDED, NEXT,
out A)
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Let vy = NEXTK(v),
wy and Ag such that BUNDED(, k, J, (vk, w), Ak, wi),
m =maxk | Ay # 0 N wy = w}.
Post A =Uickgme1 Ak
begin
1 A=,
2 Ucalc ‘= V;
3 repeat
4 Veale '=NEXT (Veate);
5 BOUNDED(i, ky ji (veate, W), Acales wcalc);
6 A:=AU Acucs
7 until (Weale 7é w);
end

procedure BOUNDEDMIN(in i, k, j, (v, w), out A, wmin)
Post wmin=maxXw € D;(Cj;) | Yw' € [MIN(v, i, j), w]:
EMPTYSUPPORT, w', i, k, j)}
A={(v,w')|w €[MIN(v,i, j), wminl}

begin
1 A=
2 w2 :=MIN(v, i, j);
3 while (w2 < w) A =EMPTYSUPPORTv, wo, i, k, j) do
4 begin
5 A:=AU{{v,w)};
6 wz = sucqwy);
7 end;
8 Wmin := PRED(w2);
end

procedure BOUNDEDMAX(in i, k, j, (v, w), out A, wmay)
Post wmax=minfw € D;(Cj;) | Yw' € [w, MAX (v, i, )]
EMPTYSUPPORTw, w', i, k, j)}
A={{v,w') | w' € [wmax MAX (v, i, j)1}
begin
A=
w2 :=MAX (v, 1, j);
while (w2 > w) A =EMPTYSUPPORTv, w2, i, k, j) do
begin
A=AU{{v, w2)};
w2 = PRED(w2);
end;
Wmax := SUCw?);
end

O~NO OIS WNPE
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