Combinatorial Optimization in OPL Studio

P. Van Hentenryck', L. Michel?, P. Laborie?, W. Nuijten?, and J. Rogerie?

1 UCL, Place Sainte-Barbe, 2, B-1348 Louvain-La-Neuve, Belgium
Email: pvh@info.ucl.ac.be
2 Tlog SA, 9 rue de Verdun, F-94253 Gentilly Cedex, France
Email: {1dm,laborie,nuijten,rogerie}@ilog.fr

Abstract. OPL is a modeling language for mathematical programming
and combinatorial optimization problems. It is the first modeling langu-
age to combine high-level algebraic and set notations from modeling lan-
guages with a rich constraint language and the ability to specify search
procedures and strategies that are the essence of constraint program-
ming. In addition, OPL models can be controlled and composed using
OPLScri pt, a script language that simplifies the development of applica-
tions that solve sequences of models, several instances of the same model,
or a combination of both as in column-generation applications. Finally,
OPL models can be embedded in larger application through C++ code
generation. This paper presents an overview of these functionalities on a
scheduling application.

1 Introduction

Combinatorial optimization problems are ubiquitous in many practical appli-
cations, including scheduling, resource allocation, planning, and configuration
problems. These problems are computationally difficult (i.e., they are NP-hard)
and require considerable expertise in optimization, software engineering, and the
application domain.

The last two decades have witnessed substantial development in tools to sim-
plify the design and implementation of combinatorial optimization problems.
Their goal is to decrease development time substantially while preserving most
of the efficiency of specialized programs. Most tools can be classified in two
categories: mathematical modeling languages and constraint programming lan-
guages. Mathematical modeling languages such as AMPL [5] and GAMS [I]
provide very high-level algebraic and set notations to express concisely mathe-
matical problems that can then be solved using state-of-the-art solvers. These
modeling languages do not require specific programming skills and can be used
by a wide audience. Constraint programming languages such as CHIP [4], Pro-
LoG IIT and its successors [3], OZ [8], and ILOG SOLVER [7] have orthogonal
strenghts. Their constraint languages, and their underlying solvers, go beyond
traditional linear and nonlinear constraints and support logical, high-order, and
global constraints. They also make it possible to program search procedures to
specify how to explore the search space. However, these languages are mostly

P. Barahona and J.J. Alferes (Eds.): EPIA’99, LNAI 1695, pp. 1-[I5] 1999.
(© Springer-Verlag Berlin Heidelberg 1999

2 P. Van Hentenryck et al.

aimed at computer scientists and often have weaker abstractions for algebraic
and set manipulation.

The work described in this paper originated as an attempt to unify mode-
ling and constraint programming languages and their underlying implementation
technologies. It led to the development of the optimization programming langu-
age OPL [10], its associated script language oPLScript [9], and its development
environment OPL St udi o.

OPL is a modeling language sharing high-level algebraic and set notations
with traditional modeling languages. It also contains some novel functionalities
to exploit sparsity in large-scale applications, such as the ability to index arrays
with arbitrary data structures. OPL shares with constraint programming langu-
ages their rich constraint languages, their support for scheduling and resource
allocation problems, and the ability to specify search procedures and strategies.
OPL also makes it easy to combine different solver technologies for the same
application.

OPLScript is a script language for composing and controlling OPL models.
Its motivation comes from the many applications that require solving several
instances of the same problem (e.g., sensibility analysis), sequences of models, or
a combination of both as in column-generation applications. OPLScri pt supports
a variety of abstractions to simplify these applications, such as OPL models as
first-class objects, extensible data structures, and linear programming bases to
name only a few.

OPL Studio is the development environment of OPL and OPLScript. Beyond
support for the traditional ”edit, execute, and debug” cycle, it provides automa-
tic visualizations of the results (e.g., Gantt charts for scheduling applications),
visual tools for debugging and monitoring OPL models (e.g., visualizations of the
search space), and C++ code generation to integrate an OPL model in a larger
application. The code generation produces a class for each model objects and
makes it possible to add/remove constraints dynamically and to overwrite the
search procedure.

The purpose of this paper is to illustrate how to solve combinatorial opti-
mization problems in OPL Studi o using a scheduling application. It is of course
impossible to cover even a reasonable fraction of the features available in OPL and
oPLScri pt but the hope is to convey a flavor of these languages and an overview
of the overall approach. See [I1] for a companion paper describing the constraint
programming features of OPL. The rest of this paper is organized as follows. Sec-
tion] describes the oPL model for the scheduling applications, Section B how
OPLScri pt can control the models, while Section [describes C++ code generation.
All the models/scripts/programs can be run in ILOG OPL StupIO 2.1.

2 The Modeling Language OPL

This section illustrates OPL on a scheduling application. The application demon-
trates various modeling concepts of OPL as well as some of the OPL support for
scheduling applications. In particular, the application illustrates the concepts

Combinatorial Optimization in OPL Studio 3

of activities, unary resources, discrete resources, state resources, and transition
times, giving a preliminary understanding of the rich support of OPL in this im-
portant area. To ease understanding, the application is presented in stepwise
refinements starting with a simplified version of the problem and adding more
sophisticated concepts incrementally.

2.1 The Basic Model

Consider an application where a number of jobs must be performed in a shop
equipped with a number of machines. Each job corresponds to the processing
of an item that needs to be sequentially processed on a number of machines
for some known duration. Each item is initially available in area A of the shop.
It must be brought to the specified machines with a trolley. After it has been
processed on all machines, it must be stored in area S of the shop. Moving an
item from area x to area y consists of (1) loading the item on the trolley at area
x; (2) moving the trolley from area x to area y and (3) unloading the item from
the trolley at area y. The goal is to find a schedule minimizing the makespan.
In this version of the problem, we ignore the time to move the trolley and we
assume that the trolley has unlimited capacity. Subsequent sections will remove
these limitations.

The specific instance considered here consists of 6 jobs, each of which requires
processing on two specified machines. As a consequence, a job consists of 8 tasks

1. load the item on the trolley at area A;

2. unload the item from the trolley at the area of the first machine required by

the job;

process the item on the first machine;

load the item on the trolley at the area of this machine;

5. unload the item from the trolley at the area of the second machine required
by the job;

6. process the item on the second machine;

7. load the item on the trolley at the area of this machine;

8. unload the item from the trolley at Area S;

=

Figures [l and 2 depict an OPL model for this problem, while Figure[3 describes
the instance data. This separation between model and data is an important
feature of modeling languages.

The statement starts by defining the set of jobs, the set of tasks to be per-
formed by the jobs, and the possible locations of the trolley. As can be seen in
the instance data (see Figure B)), the tasks correspond to the description given
previously. The trolley has five possible locations, one for each available machine,
one for the arrival area, and one for the storage area. The statement then defines
the machines and the data for the jobs, i.e., it specifies the two machines required
for each job and the duration of the activities to be performed on these machi-
nes. The machines are identified by their locations for simplicity. The statement
also specifies the duration of a loading task, which concludes the description of
the input data.

4

P. Van Hentenryck et al.

enum Jobs ...;

enum Tasks ...;

enum Location ...;
{Location} Machines = ...;
struct jobRecord {
Location machinel;

int durationsi;
Location machine?2;

I¥

int durations2;

jobRecord job[Jobs] = ...;
int loadDuration = ...;

Location location[Jobs,Tasks];
initialize {
forall(j in Jobs) {

+;

¥

location[j,loadA] = areal;
location[j,unload1l] = job[j].machinel;
location[j,process1] = job[j].machinel;
location[j,loadl] = job[j].machinel;
location[j,unload2] = job[j].machine2;
location[j,process2] = job[j].machine2;
location[j,load2] = job[j].machine2;
location[j,unloadS] = areaS;

int duration[Jobs,Tasks];
initialize {
forall(j in Jobs) {

duration[j,loadA] = loadDuration;
duration[j,unload1l] = loadDuration;
duration[j,processi] = job[j].durationsi;
duration[j,loadl] = loadDuration;
duration[j,unload2] = loadDuration;
duration[j,process2] = job[j].durations2;
duration[j,load2] = loadDuration;
duration[j,unloadS] = loadDuration;

Fig. 1. The Trolley Problem: Part I.

Combinatorial Optimization in OPL Studio

scheduleHorizon = 2000;

UnaryResource machine[Machines];

StateResource trolley(Location);

Activity act[i in Jobs,j in Tasks] (duration[i,jl);
Activity makespan(0);

minimize
makespan.end
subject to {
forall(j in Jobs & ordered t1, t2 in Tasks)
act[j,t1] precedes act[j,t2];
forall(j in Jobs) {
act[j,processl] requires machine[job[j].machinel];
act[j,process2] requires machine[job[j].machine2];
b
forall(j in Jobs, t in Tasks : t <> processl & t <> process2)
act[j,t] requiresState(location[j,t]) trolley;
forall(j in Jobs)
act[j,unloadS] precedes makespan;

+s

search {
setTimes(act);

Fig. 2. The Trolley Problem: Part II.

Jobs = {j1,j2,j3,j4,j5,j6};
Tasks = {loadA,unloadl,processl,loadl,unload?,process2,10ad2,unloadS};
Location = {m1,m2,m3,areal,areaS};
Machines = { ml, m2, m3 };
job = [
<m1,80,m2,60>, <m2,120,m3,80>, <m2,80,m1,60>,
<m1,160,m3,100>, <m3,180,m2,80>,<m2,140,m3,60>];
loadDuration = 20;

Fig. 3. The Trolley Problem: the Instance Data.

6 P. Van Hentenryck et al.

The remaining instructions in Figure [I] specify derived data that are useful
in stating the constraints. The instruction

Locations location[Jobs,Tasks];
initialize {
forall(j in Jobs) {
location[j,loadA] = areal;
location[j,unloadl] = job[j].machinel;
location[j,processl] = job[j].machinel;
location[j,loadl] = job[j].machinel;
location[j,unload2] = job[j].machine2;
location[j,process2] = job[j].machine2;
location[j,load2] = job[j].machine2;
location[j,unloadS] = areaS;
s
1

specifies the locations where each task of the application must take place, while
the next two instructions specify the durations of all tasks. The subsequent
instructions, shown in Figure [, are particularly interesting. The instruction

ScheduleHorizon = 2000;

specifies that the schedule horizon is 2000, i.e., that all tasks must be completed
by that date. The instruction

UnaryResource machine[Machines];

declares the machines of this application. Machines are unary resources, which
means that no two tasks can be scheduled at the same time on them. The
implementation of OPL uses efficient scheduling algorithms for reasoning about
these resources, including the edge-finder algorithm [2]6]. Note also that the array
machine is indexed by a set of values. In fact, arrays in OPL can be indexed by
arbitrary data structures (e.g., a set of records), which is important to exploit
sparsity in large scale applications and to simplify modeling. The instruction

StateResource trolley(Location);

defines the trolley as a state resource whose states are the five possible locations
of the trolley. A state resource is a resource that can only be in one state at
any given time: Hence any two tasks requiring a different state cannot overlap
in time. The instructions

Activity act[i in Jobs,j in Tasks] (duration[i,j]l);
Activity makespan(0);

define the decision variables for this problem. They associate an activity with
each task of the application and an activity to model the makespan. An activity
in OPL consists of three variables, a starting date, an ending date, and a duration,
and the constraints linking them. Note also how the subscripts i and j are used in

Combinatorial Optimization in OPL Studio 7

the declaration to associate the proper duration with every task. These generic
declarations are often useful to simplify problem description. The rest of the
statement specifies the objective function and the constraints. The objective
function consists of minimizing the end date of the makespan activity. Note that
the starting date, the ending date, and the duration of an activity are all accessed
as fields of records (or instance variables of objects). The instruction

forall(j in Jobs & ordered t1, t2 in Tasks)
act[j,t1] precedes act[j,t2];

specifies the precedence constraints inside a job. It also illustrates the rich ag-
gregate operators in OPL. The instruction

forall(j in Jobs) {
act[j,processl] requires machine[job[j].machinel];
act[j,process2] requires machine[job[j].machine2];

+s

specifies the unary resource constraints, i.e., it specifies which task uses which
machine. The OPL implementation collects all these constraints that can then be
used inside the edge-finder algorithm. The instruction

forall(j in Jobs, t in Tasks : t <> processl & t <> process2)
act[j,t] requiresState(location[j,t]) trolley;

specifies the state resource constraints for the trolley, i.e., it specifies which tasks
require the trolley to be at a specified location. The instruction

forall(j in Jobs)
act[j,unloadS] precedes makespan;

makes sure that the makespan activity starts only when all the other tasks are
completed. Finally, note the instruction

search {
setTimes (act) ;

that specifies the search procedure. It illustrates that OPL support user-defined
search procedures. The search procedure in this model is rather simple and uses
a procedure setTimes(act) that assigns a starting date to every task in the
array act by exploiting dominance relationships. The solution produced by oPL
for this application is of the form

act[jl,loadA] = [0 -- 20 --> 20]
act[jl,unloadl] = [40 -- 20 --> 60]
act[j1,processl] = [60 -- 80 --> 140]
act[j1,loadl] = [140 -- 20 --> 160]
act[j1,unload2] = [160 -- 20 --> 180]

8 P. Van Hentenryck et al.

act[jl,process2] = [380 -- 60 --> 440]
act[jl,load2] = [440 -- 20 --> 460]
act[jl,unloadS] = [460 -- 20 --> 4380]

act[j6,unloadS] = [540 -- 20 --> 560]
makespan = [660 -- 0 --> 560]

It displays the starting date, the duration, and the completion time of each
activity in the model.

2.2 Transition Times

Assume now that the time to move the trolley from an area to another must
be taken account. This new requirement imposes transition times between suc-
cessive activities. In OPL, transition times can be specified between any two
activities requiring the same unary or state resource. Given two activities a and
b, the transition time between a and b is the amount of time that must elapse
between the end of a and the beginning of b when a precedes b. Transition times
are modelled in two steps in OPL. First, a transition type is associated with each
activity. Second, a transition matrix is associated with the appropriate state or
unary resource. To determine the transition time between two successive activi-
ties a and b on a resource r, the transition matrix is indexed by the transition
types of a and b.

In the trolley application, since the transition times depend on the trolley
location, the key idea is that each activity may be associated with a transition
type that represents the location where the activity is taking place. For instance,
task unloadl of job j1 is associated with state m1 if the first machine of j1 is
machine 1. The state resource can be associated with a transition matrix that,
given two locations, return the time to move from one to the other. The model
shown in the previous section can thus be enhanced easily by adding a declaration

int transition[Location,Location] = ...;
and by modifying the state resource and activity declarations to become

StateResource trolley(Location,transition);

UnaryResource machine[Machines];

Activity act[i in Jobs,j in Tasks] (duration[i,j])
transitionType locationl[i,j];

Using a transition matrix of the form

[
[0, 50, 60, 50, 90 1,
[50, 0, 60, 90, 50 1,
[60, 60, 0, 80, 80 1,
[60, 90, 80, 0,120 1,
[90, 50, 80,120, 0]

Combinatorial Optimization in OPL Studio 9

would lead to an optimal solution of the form

act[j1l,loadA] = [0 -- 20 --> 20]
act[jl,unloadl] = [70 -- 20 --> 90]
act[j1,process1] = [90 -- 80 --> 170]
act[j1,loadl] = [370 -- 20 --> 390]
act[jl,unload2] = [530 -- 20 --> 550]
act[jl,process2] = [550 -- 60 --> 610]
act[j1,lo0ad2] = [850 -- 20 --> 870]

act[j1,unloadS] = [920 -- 20 --> 940]
act[j6,unloadS] = [920 -- 20 --> 940]
makespan = [940 -- 0 --> 940]

2.3 Capacity Constraints

Consider now adding the requirement that the trolley has a limited capacity,
i.e., it can only carry so many items. To add this requirement in OPL, it is
necessary to model the trolley by two resources: a state resource as before and
a discrete resource that represents its capacity. Several activities can require
the same discrete resource at a given time provided that their total demand
does not exceed the capacity. In addition, it is necessary to model the tasks
of moving from a location to another. As a consequence, each job is enhanced
by three activities that represents the move from area A to the first machine,
from the first machine to the second machine, and from the second machine to
area S. Each of these trolley activities uses one capacity unit of the trolley. The
declarations

int trolleyMaxCapacity = 3;

DiscreteResource trolleyCapacity(trolleyMaxCapacity) ;
enum TrolleyTasks {onTrolleyAl,onTrolleyl2,onTrolley2S};
Activity tact[Jobs,TrolleyTasks];

serve that purpose. It is now important to state that these activities require the
trolley capacity and when these tasks must be scheduled. The constraint

forall(j in Jobs, t in TrolleyTasks)
tact[j,t] requires trolleyCapacity;

specify the resource consumption, while the constraints

forall(j in Jobs) {

tact[j,onTrolleyAl] .start = act[j,loadA].start;

tact[j,onTrolleyAl]

tact[j,onTrolley12].
.end = act[j,unload?2]
.start =
.end = act[j,unloadS]

tact[j,onTrolley12]
tact[j,onTrolley2S]
tact[j,onTrolley2s]

.end = act[j,unloadl].
act[j,loadl].
.end;
.start;
.end;

start =

act[j,load2]

end;
start;

10 P. Van Hentenryck et al.

specify the temporal relationships, e.g., that the activity of moving from area
A to the first machine in a job should start when the item is being loaded on
the trolley and is completed when the item is unloaded. The trolley application
is now completed and the final model is depicted in Figures [and [l This last
model in fact is rather difficult to solve optimally despite its reasonable size.

3 The Script Language OPLScCRIPT

OPLScript is a language for composing and controlling OPL models. It is par-
ticularly appropriate for applications that require solving several instances of
the same model, a sequence of models, or a combination of both as in column-
generation applications. See [9] for an overview of these functionalities. OPLScri pt
can also be used for controlling OPL models in order to find good solutions quickly
or to improve efficiency by exploiting more advanced techniques (e.g., shuffling
in job-shop scheduling). This section illustrates how OPLScript can be used to
find a good solution quickly on the final trolley application.

The motivation here is that it is sometimes appropriate to limit the time
devoted to the search of an optimal solution by restricting the number of failures,
the number of choice points, or the execution time. Figure [7] depicts a script for
the trolley problem that limits the number of failures when searching for a better
solution. The basic idea of the script is to allow for an initial credit of failures
(say, i) and to search for a solution within these limits. When a solution is found
with, say, f failures, the search is continued with a limit of ¢+ f failures, i.e., the
number of failures needed to reach the last solution is increased by the initial
credit. Consider now the script in detail. The instruction

Model m("trolley.mod","trolley.dat");

defines a OPLScri pt model in terms of its model and data files. Models are first-
class objects in OPLScri pt: They can be passed as parameters of procedures and
stored in data structures and they also support a variety of methods. For in-
stance, the method nextSolution on a model can be used to obtain the succes-
sive solutions of a model or, in optimization problems, to produce a sequence of
solutions, each of which improves the best value of the objective function found
so far. The instruction

m.setFailLimit (fails);

specifies that the next call to nextSolution can perform at most fails failures,
i.e., after fails failures, the execution aborts and nextSolution() returns O.
The instructions

while m.nextSolution() do {
solved := 1;
cout << "solution with makespan: " << m.objectiveValue() << endl;
m.setFailLimit (m.getNumberOfFails() + fails);

Combinatorial Optimization in OPL Studio

11

enum Jobs ...;
enum Tasks ...;
enum Location ...;
{Location} Machines = ...;
struct jobRecord {
Location machinel;
int durationsi;
Location machine2;
int durations2;
}s
jobRecord job[Jobs] = ...;
int loadDuration = ...;
int transition[Location,Location] = ...;
int trolleyMaxCapacity = ...;

Location location[Jobs,Tasks];
initialize {
forall(j in Jobs) {
location[j,loadA] = areal;
location[j,unloadl] = job[j].machinel;
location[j,process1] = job[j].machinel;
location[j,loadl] = job[j].machinel;
location[j,unload2] = job[j].machine2;
location[j,process2] = job[j].machine2;
location[j,load2] = job[j].machine2;
location[j,unloadS] = areaS;
s
s

int duration[Jobs,Tasks];
initialize {
forall(j in Jobs) {

duration[j,loadA] = loadDuration;
duration[j,unloadl] = loadDuration;
duration[j,processl] = job[j].durationsi;
duration[j,loadl] = loadDuration;
duration[j,unload2] = loadDuration;
duration[j,process2] = job[j].durations2;
duration[j,load2] = loadDuration;
duration[j,unloadS] = loadDuration;

Fig. 4. The Final Trolley Model: Part 1.

12 P. Van Hentenryck et al.

scheduleHorizon = 2000;

UnaryResource machine[Machines];

StateResource trolley(Location);

DiscreteResource trolleyCapacity(trolleyMaxCapacity) ;

Activity act[i in Jobs,j in Tasks] (durationl[i,jl)
transitionType location[i,j];

Activity tact[Jobs,TrolleyTasks];

Activity makespan(0);

minimize
makespan.end
subject to {
forall(j in Jobs & ordered tl1, t2 in Tasks)
act[j,t1] precedes act[j,t2];
forall(j in Jobs) {
act[j,processl] requires machine[job[j].machinel];
act[j,process2] requires machine[job[j].machine2];
s
forall(j in Jobs, t in Tasks : t <> processl & t <> process2)
act[j,t] requiresState(location[j,t]) trolley;
forall(j in Jobs, t in TrolleyTasks)
tact[j,t] requires trolleyCapacity;
forall(j in Jobs) {

start = .start;

+s

+;

tact[j,onTrolleyAl].
.end = act[j,unloadl]
.start =
.end = act[j,unload2]

tact[j,onTrolleyAl]
tact[j,onTrolley12]
tact[j,onTrolley12]

tact[j,onTrolley2S].
.end = act[j,unloads]

tact[j,onTrolley2S]

forall(j in Jobs)
act[j,unloadS] precedes makespan;

search {
setTimes(act);

+s

act[j,loadA]
act[j,loadl]

start = act[j,load2]

.end;
.start;
.end;
.start;
.end;

Fig. 5. The Final Trolley Model: Part II.

Combinatorial Optimization in OPL Studio 13

Model m("trolley.mod","trolley.dat");
int fails := 1000;
m.setFailLimit (fails);

int solved := 0;
while m.nextSolution() do {
solved := 1;
cout << "solution with makespan: " << m.objectiveValue() << endl;

m.setFailLimit (m.getNumberOfFails() + fails);
}
m.setFailLimit (m.getNumberOfFails() + fails);
if solved then {

m.restore();

cout << "final solution with makespan: " << m.objectiveValue() << endl;
cout << "Time: " << m.getTime() << endl;
cout << "Fails: " << m.getNumberOfFails() << endl;
cout << "Choices: " << m.getNumberOfChoicePoints() << endl;
cout << "Variables: " << m.getNumberOfVariables() << endl;

Fig. 6. A Script for the Trolley Problem (trolley.osc) .

make up the main loop of the script and produce a sequence of solutions, each
of which having a smaller makespan. Note the instruction

m.setFailLimit (m.getNumberOfFails() + fails);

that retrieves the number of failures needed since the creation of model m and sets
anew limit by adding fails to this number. The next call to nextSolution takes
into account this new limit when searching for a better solution. Note also the
instruction m.restore () to restore the last solution found by nextSolution().
This script displays a result of the form

solution with makespan: 2310
solution with makespan: 2170
solution with makespan: 2080

solution with makespan: 1690
solution with makespan: 1650
solution with makespan: 1620

final solution with makespan: 1620
Time: 7.0200

Fails: 3578

Choices: 3615

Variables: 204

14 P. Van Hentenryck et al.

4 Code Generation in OPL STUDIO

Once a reasonable model has been successfully designed in OPL, it can be inte-
grated in a larger application through C++ code generation.

int main(int argc,char* argv[])
{
IloSolver_trolleyComplete solver;
if (solver.nextSolution()) {
IloArray_act act = solver.get_act();
IloEnum_Jobs Jobs = solver.get_Jobs();
IloEnum _Tasks Tasks = solver.get_Tasks();
IloEnumIterator_Jobs iteJobs(Jobs);
while (iteJobs.ok()) {
IloEnumIterator_Tasks iteTasks(Tasks);
while (iteTasks.ok()) {

cout << "act[" << *iteJobs << "," << *xiteTask << "]=";
cout << act[*iteJobs] [*iteTask] << endl;
++iteTasks;
++iteJobs;
cout << endl;
solver.end();
return O;

Fig. 7. C++ Code for the Trolley Problem.

The basic idea behind code generation consists of producing a C++ class associa-
ted with each object in the model and a top-level class for the model. In other
words, the generated code is specialized to the model and is strongly typed. The-
ses classes can then be used to access and modify the data and, of course, to solve
the model and collect the results. Figure [6] depicts C++ code to obtain the first
solution to the trolley application and to display the main activities. Instruction
IloSolver_trolley solver; defines an instance solver that encapsulates the
functionality of the trolley model. The class definition is available in the .h that
is not shown here. The instruction IloArray_act act = solver.get_act(); is
used to obtain the array of activities, while the instructions

IloEnum_Jobs Jobs = solver.get_Jobs();
IloEnum Tasks Tasks = solver.get_Tasks();
IloEnumIterator_Jobs iteJobs(Jobs);

obtain the enumerated types and define an iterator for the jobs. The remaining
instructions iterate over the enumerated sets and display the activities.

Combinatorial Optimization in OPL Studio 15

Acknowledgments

Pascal Van Hentenryck is supported in part by the Actions de recherche con-
certées (ARC/95/00-187) of the Direction générale de la Recherche Scientifique.

References

1.

10.

11.

J. Bisschop and A. Meeraus. On the Development of a General Algebraic Modeling
System in a Strategic Planning Environment. Mathematical Programming Study,
20:1-29, 1982.

J. Carlier and E. Pinson. Adjustments of Heads and Tails for the Job-Shop Pro-
blem. FEuropean Journal Of Operations Research, 78:146—-161, 1994.

A. Colmerauer. An Introduction to Prolog III. Commun. ACM, 28(4):412-418,
1990.

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Bert-
hier. The Constraint Logic Programming Language CHIP. In Proceedings of the
International Conference on Fifth Generation Computer Systems, Tokyo, Japan,
December 1988.

R. Fourer, D. Gay, and B.W. Kernighan. AMPL: A Modeling Language for Ma-
thematical Programming. The Scientific Press, San Francisco, CA, 1993.

W. Nuijten. Time and Resource Constrained Scheduling: A Constraint Satisfaction
Approach. PhD thesis, Eindhoven University of Technology, 1994.

Ilog SA. Ilog Solver 4.4 Reference Manual, 1998.

G. Smolka. The Oz Programming Model. In Jan van Leeuwen, editor, Computer
Science Today. LNCS, No. 1000, Springer Verlag, 1995.

P. Van Hentenryck. OPL Script: A Language for Composing and Controlling
OPL Models. Technical Report RR 3/99, Department of Computing Science and
Engineering, UCL, April 1999.

P. Van Hentenryck. The OPL Optimization Programming Language. The MIT
Press, Cambridge, Mass., 1999.

P. Van Hentenryck, L. Michel, L. Perron, and J.-C. Régin. Constraint Programming
in OPL. In International Conference on Principles and Practice of Declarative
Programming (PPDP’99), Paris, France, September 1999.

	Introduction
	The Modeling Language OPL
	The Basic Model
	Transition Times
	Capacity Constraints

	The Script Language OPLScript
	Code Generation in OPL Studio

