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Finding the closest lattice vector when it's unusually close 

Philip Klein* 
Brown University 

A b s t r a c t  

We show how randomized rounding can be applied to finding 
the closest lattice vector. Given the basis of a lattice, and 
given a vector x not in the lattice, the heuristic will with 
high probability find the vector in the lattice that is closest 
to x (according to Euclidean norm). The catch is that the 
time required by the heuristic depends on (1) the distance 
between x and the closest lattice vector and on (2) the 
quality of the basis supplied. 

1 I n t r o d u c t i o n  

The closest lattice vector problem, also called the nearest 
lattice point problem, is NP-hard [2], and no polynomial-  
t ime approximat ion algori thm is known with a perfor- 
mance ratio bet ter  than exponential.  It  seems worth- 
while to identify circumstances in which the problem 
can be solved optimally.  

As an example of where this arises, Furst and Kan- 
nan [3] give a distribution of n-dimensional instances 
of SubsetSum problems for which there is an a lgor i thm 
that  runs in polynomial  t ime almost  always. One ingre- 
dient in their result is an algori thm that,  given a vector 
v and a basis of a lattice, finds the vector in the lattice 
that  is closest to to v assuming the following condition 
holds: 

the distance from v to the lattice is less than  
half the length of the shortest Gram-Schmidt  
vector. 

Indeed, they show that,  assuming this condition holds, 
there is a unique vector closest to v. 

Here the Gram-Schmidt vectors corresponding to a 
basis b x , . . . , b n  are the vectors b i , . . .  ,bin where b~ 
is the projection of b |  orthogonal to the vector space 
generated by b l , . . . ,  b i -x .  These are the vectors found 
by the Gram-Schmidt  algori thm for orthogonalization. 1 

Our result can be viewed as a generalization of this 
a lgor i thm-- there  is an algori thm that  for any given k 
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thonormal basis ,  i.e. where the  o u t p u t  vectors  have n o r m  1. Here 
we a s sume  no such n o r m a l i z a t i o n  is performed.  

runs in n k2+O(1) t ime and that  finds the closest vector 
to v if the following condition holds: 

the distance from v to the lattice is at  most  k 
times the length of the shortest Gram-Schmidt  
vector. 

1.1 R e l a t e d  r e s u l t s  

Some related results will help to put  our result in 
perspective. For comparison, Kannan [5] gives a closest- 
vector algori thm that  runs in t ime poly(n)n  n where n 
is the dimension of the lattice. Thus the algorithm 
presented here is only useful when k = o ( v ~ ) .  On the 
other hand, as mentioned above, Furst and Kannan  gave 
an algorithm that  runs in polynomial  t ime and finds the 
closest vector when k < 1/2, so our a lgori thm is needed 
only when k > 1/2. 

For any lattice basis and any vector v, the distance 
of v from the lattice is no more than half the sum of the 
lengths of the Gram-Schmidt  vectors; furthermore,  this 
bound is achievable. Thus our algori thm is useful only 
when the vector v is unusually close to the lattice. 

How small can the smallest Gram-Schmidt  vector 
be? One can choose a lattice and a basis for it so as 
to make the smallest Gram-Schmidt  vector arbitrarily 
small in comparison to the shortest vector in the lattice. 
On the other hand, Lagarias, Lenstra, and Sehnorr [6] 
have shown that  for every lattice there exists a basis 
(the Korkin-Zolotarev basis) where the smallest  Gram- 
Schmidt vector is at  least 3/2n times the length of the 
shortest vector in the lattice. Even in this case, for our 
algorithm to be useful, the distance between the input 
vector and the lattice must  be significantly less than the 
length of the shortest vector. 

2 N o t a t i o n  

We use the following notation. Vectors are signified 
by bold face. For vectors b l , . . . , b n ,  we denote by 
V ( b l , . . . ,  bn) the vector space generated by these vec- 
tors, and we denote by L ( b l , . . . , b n )  the lattice they 
generate. 

The Gram-Schmidt  vectors corresponding to 
b x , - . . ,  bn are denoted b I . . . .  ,btn. By definition, b~ 
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is the projection of bl  orthogonal to V ( b l , . . . ,  b l - t ) .  
We give an algori thm that,  on input x and 

b t , . . . , h m  with high probabili ty returns the vector 
y E L ( b l , . . . , b ~ )  tha t  minimizes [ x -  Yl- The t ime 
required is polynomial  t imes n Ix-y[2] mini Ibm[ 2. Tha t  is, 
the t ime is polynomial  if the distance f rom x to the lat- 
tice is not much more than the length of the smallest 
Gram-Schmidt  vector. 

3 T h e  b a s i c  a l g o r i t h m  

First we give a procedure for r andom rounding of a 
rational to an integer. This procedure is suggested by, 
but not identical to, the randomized rounding method 
of Raghavan and Thompson  [8]. For example,  it might  
"round" an integer to another  integer. 
r andRoundc  (r) :  
Write r = p + a, where p is an integer and 0 _< a < 1. 
Let b =  1 - a .  
Let  s = ~-~i>0 e-c(a+i)2 + ~ i > 0  e-c(b+i)2" 
Randomly choose an integer-Q according to the fol- 
lowing distribution: for i > 0, Pr[Q = r - (a + i)] = 
e-~(a+i)2/s and Pr[Q = r + (b + i)] = e-¢(b+i)2/s. 

LEMMA 3.1.  S <_ ~-~i>O e-ci2 + e -c(1+i)2 

Define s(c) = ~-~i>__o e-Ci2 + e-C(l+i)2 
Next, we incorporate the rounding procedure in 

a modification of a deterministic procedure used by 
Bahai [1]. 

Let b l , . . . , b ~  be a basis for a lat'tice £:. Let 
b [ ,  . . . ,  htn be the vectors derived via the Gram-Schmidt  
orthogonalization process. 

Let c be a paramete r  to be determined. We use the 
following recursive procedure. 

nearA (x, d): 
Comment: Assume x lies in V ( b l , . . . ,  bd) .  
If  d = 0 then return x (It is the zero vector). 
Else, 

Let rebtd be the projection of x in direction of btd . 

Let Cd = A[btd[ 2- 
Let Ad := randRoundc~(rd). 

Let x '  := x + (Ad -- rd)btd. 
Return nearA (x t -- ~dbd ,  d - 1) + )~dbd - 

LEMMA 3.2. X ' - -  Adbd lies in V ( b l , . . - , b d - 1 ) .  

Proof. The vector btd is the projection of bd  orthogonal 
to V ( b t , . . . , b d _ l ) ,  and hence lies in V ( b t , . . . , b d ) .  
We assume x lies in V ( b t , . . . , b d ) ,  and hence so do 
x ~ and x ~ - Adba. The projection of x ~ -- ~ d b d  in the 
direction of b* d is 0, so x '  - Adbd lies in V ( b x , . . . ,  bd) 
but has no projection orthogonal to V ( b l , . . . ,  bd -1 ) .  

LEMMA 3.3. The difference between x and x' is (Ad -- 

rd)btd . 

LEMMA 3.4.  For  a vector X E V ( b l , . . . , b d ) ,  
nearA(X, n) returns a vector 

y = Alb l  + ---  + ~ d b d  

in L ( b l , . . . , b d )  such that 

(3.1) y - - x = ( A , - r l ) b ~ + . - . + ( A d - r d ) b t d  

Proof. The vector x ~ in the procedure is assigned 

x '  := x + (Ad -- rd)btd 

By the inductive hypothesis, the recursive call 
nea rA(x  I -  Adbd, d -  1) returns a lattice vector y/ = 
Albl + . . .  + )~d-lbd-1 such that  

y ' - ( x ' -  = - rl)b  + - - - +  - r -l)h _l 

The original call then returns the vector y = y~ + Adbd,  
and we have 

Y -- xt : ()~1 -- r l )b t l  q - " "  q- (Ad-1 -- rd-1)btd  

Substi tut ing x + (Ad -- rd)btd for x ~, we obtain 

y - x = (A1 -- r l )b~  + . . - q -  (Ad -- rd)btcl 

LEMMA 3.5. Let ~ be a vector in L (b l , . . . , bd ) .  Let 
x be a vector in V ( b l , . . . , b d ) .  The probability that 
n e a r  A (x, d) returns ~ is 

Pro@ Write 9 = 51bl + " "  + 5dbd, and consider the 
invocation of n e a r a  (x, d). The  value of ra is determined 
by x. Let E be the event tha t  he = 5~. Assuming 
E occurs, x' = x + (Sa - ra)btd. By the inductive 
hypothesis, the probabili ty that  the call nearA(x '  -- 
5aba, d -  1) returns :~ - ddba is 

( H ( 1 / s ( A , b ~  [2))) exp(--A[(x ' - -Sdbd)--(S ' - -Sdbd)[2)  
i<d / 

This is the probabili ty that  the original call nearA (x, d) 
returns :~, assuming E occurs. Using Lemma  3.1, the 
probabili ty of E is at least 

(1/s(  A[b td[2) ) exp(--(rd -- 5d)2 A[b ?dl2 ) 
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By mult iplying these two probabilities, we get a lower 
bound on the unconditioned probabil i ty that  the origi- 
nal call returns :~: 

(~ <I-[ ' /~(Albll2))  

e x p ( - A ( l ( x '  - ~dbd) 

- (~  - (fdba)l 2 + (rd - Jd)~lbta[2)) 

= ( l ' I1 / s (A lh~[2) l  
\ iSd / 

e x p ( - A ( l x '  - ~tl2 + (rd - dd)2lbta[2)) 

Since x ' - : 9  C V(b l  . . . .  , bd-1) and btd is orthogonal 
to V ( b l , . . . ,  bd -1 ) ,  we have 

Ix' - $,12 + (rd -- Jd)21b~al 2 : [(x' + (ra - Jd)b~a) -- ~.[2 

so the probabil i ty is as stated in the lemma. 

In order to find the nearest lattice vector to a vector 
x, we call n e a r A ( x , n )  many  times, and output  the 
nearest vector among those returned by these calls. 
The nearest vector returned will probably be in fact 
the nearest lattice vector if the number  of calls is large 
enough. According to Lemma  3.5, the number of calls 
required depends on the distance of the nearest vector 
from x, the product  of the terms l / s ( . ) ,  and the value 
of the pa ramete r  A. 

4 C h o i c e  o f  p a r a m e t e r s  

Let A = ( l n n ) /  mini [b~[ 2. Then for every invocation of 
nearA (x, d), we have ed > Inn.  We use this bound in 
est imating s(cd), defined as 

S(Cd) = Z e-CUi2 A- e -c~(1+i)2 
i>0 

We get 

s(c~) <-- E n-i2 + n-(1+i)2 
i>0 

--  1 + 2 ( n  -1  + n - 4  + n - 9  + . . . )  

= l + 2 / n + O ( n  -4)  

Hence 

IIs(c.) 
d<n 

9 
< (exp(~ + 0( . -4) ) )"  

= e~(1 + o(1))  

With this choice of parameters,  it follows from 
Lemma  3.5 that  for any input vector x and any lat- 
tice vector ~, the probabili ty that  a call to n e a r  returns 

is 
['](n-[~-x[~/mini ]b~l ~) 

5 T h e  d e t e r m i n i s t i c  a l g o r i t h m  

We have presented a randomized algorithm, but it is 
easy to derandomize it. Consider one trial of near .  It  
explores one path  in a randomized decision tree of depth 
n, a rooted tree where the edges from each node to its 
children are labeled with probabilities that  sum to 1. 
The probabil i ty  of a pa th  starting at the root is defined 
to be the product of the probabilities on the edges of 
the path.  

The  analysis shows that,  for the closest lattice 
vector :~, there is one path  through the decision tree 
that  leads to a leaf corresponding to :~, and that  path 
has probabil i ty  Q(n -[y-x[~/mini [b:[~). Let p be this 
probabil i ty (or a lower bound on it). 

Let S be the set of nodes v (not jus t  leaves) in the 
decision tree where the probabili ty of the root-to-v path  
is at least p. The deterministic algorithm is: explore 
the tree, visiting every node of S. Each leaf visited 
corresponds to a candidate closest vector; return the 
closest of these candidates. 

By the analysis of the randomized algorithm, the 
deterministic algorithm will find the closest vector. 
It  remains to determine how long the deterministic 
algori thm takes. Let S I be the subset of nodes v E 
S such tha t  no children of v are in S. Note that  
IS I <_ nlS' [. Consider a random root-to-leaf traversal 
of the tree, and let Ev denote the event that  v is 
traversed during this traversal. For each v E S, we have 
Pr[Ev] _> p. Furthermore, the events Ev for v E S'  are 
disjoint events, so their probabilities add up to at most 
1. Hence [Sq < 1/p. Thus the deterministic algorithm 
traverses at most  n/p  nodes. 

6 P r o o f  o f  L e m m a  3 . 1  

Define fic(x ) --= exp( -c (1  - x + i)2) + e x p ( - c ( x  + i)2). 
Define f~(x) = )--~i>of~" Our aim is to prove that  
max{f~(z)  : 0 < z ~ 1} = L(0) .  We assume c.> 6. 

Note tha t  A(1 - z) = L ( x ) ,  so it suffices to prove 
the inequality for 0 < x < 1/2. 

The  first derivative of re(x) is 

2e E ( 1 - x + i )  exp ( - c (1 -x+ i )2 ) - ( x+ i )  exp(-c(x+i)  2) 
i>O 

LEMMA 6.1. The first derivative is zero at x = O. 

Proof. Let h(j) = j .  e x p ( - e j 2 ) .  The i ---- 0 term in the 
sum is h(1) at  x = 0. For i > 0, the te rm is h( i+l ) -h ( i )  
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at  x = 0. Hence the sum of  the first k terms is h(k + 1). 
The  l imi t  of  h(k + 1) as k --+ cx~ is 0, so the sum is zero. 

T h e  second derivative of fc(x)  is 

2c( j+  1 -  z) 2 - 1 2c(j + x) 2 - 1 
2 c E  e'~(p(c(f'-(--l'---- x')~ + exp(c( j  + x) 2) 

j>_0 

LEMMA 6.2.  The second derivative is negative for x < 
1/c. 

Proof. For z < 1/c, the j = 0 term is bounded  by 

(2c - 1 ) e x p ( - c ( 1  - l / c )  2) + ((2/c)  - 1 ) e x p ( - 1 / c )  

_< ( 2 c ) e x p ( - c ( 1  - 2 /c))  + ( 2 / c -  1)(1 - 1/c) 

(6.2) < (2c) e x p ( - c  + 2) - (1 - 3/c)  

For j > 1, the j t e rm is bounded by 

( 2 c ( j + l )  2) e x p ( - c ( l + j - 1 / c ) 2 ) + ( 2 c ( j + l / c )  2) e x p ( - c / 2 )  
(6.3) 
and we have 

exp(- -c(1  + j - -  l / c )  2) 

<_ e x p ( - c ( ( j  + 1) 2 - 2(1 + j ) /c))  

_< e x p ( - ( j  2 + 25 + 1 ) c +  2( j  + 1)) 

<_ exp(-cj 2) exp(--2j(c-- I) -- c+  2) 

so we can bound  (6.3) by 

(2c(j  + 1) 2) e x p ( - 2 j ( c  - 1) - c + 2) e x p ( - c j  2) 

+ ( 2 c ( j  + l / c )  2) e x p ( - c j  2) 

_< e x p ( - c j  ~) + (2c(j  + l / c )  ~) e x p ( - c j  2) 

< 3cj 2 e x p ( - c j  2) 

Hence the sum of terms j > 1 is less than  

3 E cj2 e x p ( - c J 2 )  < 3 c e x p ( - c )  E rk 
j>1 k>0 

where r = 4 e x p ( - 3 c ) .  It follows tha t  the sum is less 
than  3. lc  e x p ( - c ) .  

Adding this bound to  our bound (6.2) on the j -- 0 
term,  we see tha t  the second derivative is negative for 
c > 6 a n d  x <_ 1/c. 

Finally,  the  following l emma  proves tha t  the value 
of re(x)  for  0 < x < .5 is less than the value for x = 0. 

LEMMA 6.3.  For 0 < x < .5, the first derivative is 
negative. 

Proof. By combining L e m m a  6.1 and L e m m a  6.2, we 
can infer t ha t  the first derivative is negative for 0 < 

x < 1/c. To finish the proof, therefore, we need only  
consider 1/e  < x < .5 

We show tha t  each te rm j is negative, i.e. we show 
tha t  

(6.4) (j  + x) e x p ( - c ( j ~ )  2) 

> ( j W l - x )  e x p ( - - c ( j + l - x )  2) 

We subst i tu te  x = . 5 - e  into (6.4), obtaining as our new 
goal 

(6.5) ( j  + .5 - ~) e x p ( - c ( j  + .5 - e) 2) 

> (j  + . 5  + e )  e x p ( - c ( j  + . 5  + e ) z )  

To show (6.5), it suffices to show 

(6.6) j + .5 + e 
j + . 5 - e  

< e x p ( - c ( j  + . 5 -  c) ~ + c(j + . 5  + Q2) 

which can be rewri t ten as 

1 + 5  
(6.7) l---S-- ~ < exp(4c( j  + .5)e) 

where 6 = e/( j  + .5). 
We fur ther  rewrite (6.7) as 

(6.8) ( 1 +  25 + 252 + 263 + . .  .) 

< 1 + (4c(j + .5)~)  + ~ ( 4 c ( j  + .5 )e )  2 

(6.9) + ~ ( 4 e ( j  + .5)¢) 3 + - - -  

so, subt rac t ing  1 f rom both  sides, it suffices to show tha t  

2( (6.10) S 

is positive. 
First  we consider the case j > 1. The  k = 1 t e rm is 

(6.11) 4c( j  + . 5 )  j + . 5  e 

As for the te rms with k >_ 2, since j > 1, each such t e rm 
is more  than  

and the sum of such terms with k > 2 is more  than  
e 2 -3(3~-~. 5 ). T h e  absolute value of this sum is less 

than  (6.11), so the sum of all te rms is positive. 
Now we consider the case j = 0. The  k = 1 t e rm 

is 4c(.5) - .~ = (2c - 4)e, which is positive. The  k = 2 
t e rm is 

(4c/2)  2 e2 _ 2(2¢) 2 = (2c 2 - 8)e 2 (6.12) 2! 
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The k = 3 term is at  least - 2 (2e )  3. 
terms with k > 3 is at  least 

The sum of  the 

- - 2 ( 2 ¢ ) 3 ( 1 - 4 - r + r 2 + .  ..) 

where r = 2e. Because we assume x >_ 1/c,  we have 
• < . 5 -  l / c ,  so r _< 1 - 2 / c .  Hence l + r + r 2 - 4  -. . .  <_ c/2,  
so the sum of the terms with k > 3 is at  least 

--2(2e)3(c/2) 

Adding this value to the k = 2 term, (2c 2 - 8 )e  2, gives 
us a positive value as long as 4c < 2c 2 - 8, which holds 
for c _  5. 
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