To appear in Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, Washington, DC

© SIAM 2001

Better Approximation Algorithms for Bin Covering

JANOS CSIRIK *

Abstract

Bin covering takes as input a list of items with sizes in (0, 1)
and places them into bins of unit demand so as to maximize
the number of bins whose demand is satisfied. This is in
a sense a dual problem to the classical one-dimensional bin
packing problem, but has for many years lagged behind the
latter in terms of the quality of the best approximation al-
gorithms. We design algorithms for this problem that close
the gap, both in terms of worst- and average-case results.
We present (1) the first asymptotic approximation scheme
for the offline version, (2) algorithms that have bounded
worst-case behavior for instances with discrete item sizes
and expected behavior that is asymptotically optimal for
all discrete “perfect-packing distributions” (ones for which
optimal packings have sublinear expected waste), and (3) a
learning algorithm that has asymptotically optimal expected
behavior for all discrete distributions. The algorithms of (2)
and (3) are based on the recently-developed online Sum-of-
Squares algorithm for bin packing. We also present exper-
imental analysis comparing the algorithms of (2) and sug-
gesting that one of them, the Sum-of-Squares-with- Threshold
algorithm, performs quite well even for discrete distributions
that do not have the perfect-packing property.

1 Introduction

In the bin covering (or dual bin packing) problem, we
are given a list L = (ay,as,...,a,) of items with sizes
s(a;) € (0,1). One must pack the items into bins in such
a way as to maximize the number of bins that receive
items of total size 1 or more. A picturesque application
would be selling packets of canceled stamps to novice
philatelists, where each packet is guaranteed to contain
stamps whose total face value is at least $10. (Note the
contrast to bin packing, where one wants to minimize
the number of bins, subject to the constraint that each
receives items of total size 1 or less.)

Bin covering is NP-hard, and so research has
concentrated on polynomial-time approximation algo-
rithms. Given a list L and an algorithm A, let A(L)
be the number of bins filled to level at least 1 by A,
OPT(L) be the optimal number of bins that can be so
filled, and s(L) be the sum of the item sizes in L. Note
that we have s(L) > OPT(L) > A(L). In this paper

csirik@inf.u-szeged.hu. Department of Computer Sci-

ences, University of Szeged, Szeged, Hungary.
tdsjeresearch.att.com. AT&T Labs, Room €239, 180 Park
Avenue, Florham Park, NJ 07932, USA.
fClaire.Kenyon@lri.fr. Laboratoire de Recherche en Infor-
matique, Batiment 490, Université Paris-Sud, 91405 Orsay Cedex,
France.

DAVID S. JOHNSON

CLAIRE KENYON §

we are interested both in worst-case and average-case
behavior of approximation algorithms, but let us begin
with our major new worst-case result. The following
shorthand notations will be useful.

Worst-Case Ratio:

. A(L) .
A _ .
R” = min { oPT(L) ° all lists L}
Asymptotic Worst-Case Ratio:
R, = lim inf <min {O%L()L) :OPT(L) = n})

It is easy to see that no polynomial-time approxi-
mation algorithm A can have R4 > 1/2 (because of the
difficulty of distinguishing between instances that can
fill two bins as opposed to one). For typical applications
where the number of filled bins is likely to be large, R%
might thus be a better measure of performance, espe-
cially since low-order polynomial-time algorithms exist
with R4 =2/3 and 3/4 [2, 3, 9].

Unfortunately, until now 3/4 was the best asymp-
totic guarantee known. This is in contrast to the situ-
ation for bin packing, where there is a polynomial-time
asymptotic approximation scheme (PTAAS), i.e., a pa-
rameterized algorithm A, such that for any fixed € > 0
A, runs in polynomial time and satisfies R%: < 1+ e.
The existence of such schemes for bin packing has been
known for two decades [13], but it was feared by many
experts that no analogous schemes (with “< 1 + €’ re-
placed by “> 1 — €”) might exist for bin covering. This
was because the techniques used by [13] (and the sub-
sequent improvements of [15]) did not seem adaptable
to bin covering. They relied on the fact that tiny items
(ones of size smaller than, say, €/2) could essentially be
ignored in bin packing — adding them in at the end could
only cause a new bin to be started if all other bins were
already filled to levels exceeding 1 — €/2, in which case
the packing was already good enough. This allowed the
bin packing approximation schemes to concentrate on a
simplified situation with a controllable number of rea-
sonably large items to worry about. In contrast, for bin
covering small items may be crucial to the task of filling
a bin, and so they cannot be ignored.

THEOREM 1.1. There is a PTAAS for bin covering.

The approximation scheme and a proof sketch are given
in Section 2. The key idea is to recognize that although
the small items cannot be ignored, they can be treated
as a fluid in much of the computation, which is almost
as good.

The approximation scheme of Theorem 1.1 is pri-
marily of theoretical interest, since the running time is
exponential in 1/e. A second drawback for many ap-
plications is that the algorithm is an offline algorithm.
The rest of our paper concerns what we can do in the
online case. In terms of asymptotic worst-case perfor-
mance alone, this is already known: In [12] it is shown
that every online algorithm A must have ROAo < 1/2,
and it is easy to verify that the Next Fit (N F') heuris-
tic (place each item in the current bin unless that bin
is full, in which case we start a new “current” bin) has
RNF =1/2.

We are interested in “robust” heuristics that not
only have worst-case behavior close or equivalent to
that of NF, but also have average-case behavior that
is provably much better for many distributions. In
the online algorithm world, it is all too common that
the more one attempts to improve worst-case behavior,
the more likely it is that average-case performance will
approach that of the worst-case. Conversely, algorithms
designed for good average-case performance often are
unboundedly bad in the worst-case.

Average case behavior is a function of the algorithm
A, the item-size distribution F', and the number of items
n. Let A(L,(F)) be the random variable denoting
the number of bins filled by A when applied to a
list of n items, where the size of each item is chosen
independently according to F. The key average-case
metrics for bin covering are the following.

Asymptotic Expected Ratio:

o A(L,(F))
ERZ(F) =liminf E [W}

Expected Waste Rate:
EWNF) = E[s(Ln(F)) — A(Ln(F))]

Previous work on average-case analysis for bin cov-
ering either dealt only with the convergence properties
of A(L,(F))/n (for arbitrary distributions) [14, 17, 18],
or the value of ERA (F) for the particular distribution
UJ0,1] in which item sizes are uniformly distributed in
the real interval [0, 1], as in [8]. The distributions we
consider here are the discrete distributions studied in
[1, 5, 6, 10, 11, 16], in which item sizes are all integral
multiples of 1/B for some integer B and the probabili-
ties are all rational numbers. When packing with such
distributions, one may equivalently assume that the bin

size is B and the item sizes are all integers. Most real-
world applications can be scaled so that they fit this
model for some B, and for our study of online possibil-
ities, we shall assume the model applies and allow our-
selves to consider algorithms that exploit the discrete
nature of the instances. This means that “polynomial
time” can include polynomials in n and B. For fixed
distributions, this is equivalent to ordinary polynomial
time.

Of special interest among discrete distributions are
those distributions F' that satisfy the perfect-packing
property: EWOFT(F) = o(n), in which case, by a result
of Courcoubetis and Weber [7], EWSFT(F) = O(\/n).
Note that if F has the perfect-packing property, then
the asymptotic expected ratio of OPT(L,(F)) to the
upper bound s(L,,(F')) is 1. There are many interesting
distributions that have this property, which is easily
seen to hold for bin covering if and only if it also
holds for bin packing. For instance, if U{h,j, k} is
the distribution in which item sizes are h through j,
equally likely, and the bin size is k, then U{1, j, k} has
the perfect-packing property for all 5, k, 1 < j < k [5, 6],
as do many such distributions with A > 1 [10, 11].

In [10] it was proved that for bin packing, the on-
line Sum-of-Squares algorithm (SS) had EW2S(F) =
O(y/n) for all perfect-packing distributions. The chal-
lenge is to find online algorithms for bin covering that
provably have the same property and in addition have
bounded worst-case behavior.

It is not immediately obvious how to do this. In
SS, one keeps track of the numbers n;, 1 < i < B,
of partially-filled bins in the current packing P whose
contents total ¢. When a new item is packed, it is
assigned to a bin so as to minimize ss(P) = 211'3:_11 n?
subject to the constraint that no bin is overfilled.
One can use this algorithm directly as a bin covering
heuristic and it will handle perfect-packing distributions
as desired, but will fall down miserably in the worst case,
since it never considers overfilling a bin, and for some
lists the only way to reach a total > B is to have the
total ezceed B. Thus SS by itself has R3S = 0. To do
better, one needs an adaptation that allows overfilling
bins, but doesn’t allow this to be done too aggressively.

THEOREM 1.2. For any € > 0 there is an O(nB)-time
algorithm SSNF, such that

1. RISNF > 1/2 — ¢

2. EWfSNFc (F)
distributions

O(y/n) for all perfect-packing

The SSNF algorithms are straightforward hybrids
of NF and SS. To prove the results about their
average-case performance, we rely on a key lemma from

[10], plus a new observation that the random process
determining ss(P) can be viewed as a submartingale
when the distribution has the perfect-packing property.

These algorithms, although they work well for
perfect-packing distributions, are less successful for
other discrete distributions, where they can sometimes
be outperformed by NF' acting alone. We thus also
developed what appears to be a much more robust
algorithm, “Sum-of-Squares with Threshold” (SST).
In experiments we report for a variety of discrete
distributions, the average-case performance of SST was
at least as good as and often significantly better than
that of NF and SSNF, both for large and small values
of n. Moreover SST is almost as good as the SSNF
algorithms from a theoretical point of view:

TueoreM 1.3. R3°T > 1/3 and EWS;5T(F) =
O(n?/?) for all perfect-packing distributions.

(It may be possible to improve these bounds. We
know of no lists with SST(L) < (1/2)OPT(L), and
empirically the expected waste rates for SST (and
SSNF) appear to be within a constant factor of the
optimal expected waste rates for all perfect-packing
distributions we tested.)

If one is willing to forgo a bounded worst-case ratio,
one can do even better in an average-case sense. In our
final section we sketch a proof of the following;:

THEOREM 1.4. There is a randomized O(nB)-time al-
gorithm SS™ such that EROSOS* =1 for all discrete dis-
tributions.

This is an analogue of the learning algorithm of
the same name for bin packing presented in [10]. As
with the earlier algorithm, it repeatedly re-estimates
the current distribution and solves an LP in order to
construct a virtual perfect-packing distribution that it
can simulate. A different construction is needed here,
however. Instead of introducing “imaginary items” of
size 1, we introduce imaginary items of a variety of sizes
and in addition randomly truncate real items.

2 An Asymptotic Approximation Scheme

The basic idea for our approximation scheme is as
follows. Partition the items into large items called
“bricks,” medium items that will not be used until
the very end, and small items, called “pebbles.” The
definition of large is such that bins will on average
contain many (but not too many) large items. Relax the
problem by allowing pebbles to be melted into a fluid
that can be arbitrarily divided between different bins.
This new problem only depends on the brick set and
on the total fluid volume. Using a rounding approach

similar to that of de la Vega and Lueker [13], find a
quasi-optimal way to fill the bins using bricks and fluid.
From the solution to the relaxed problem, construct a
feasible solution to the original problem by removing the
fluid and placing pebbles and medium items in a greedy

manner. A more formal description of the algorithm
follows.
2.1 The algorithm

In order that we may use “L” to denote the set of large
items, let us use X to denote the set of all items in
the instance. We may assume without loss of generality
that s(X) > 2, e < 1/2 and 1/e is an integer. Note that
this implies that 1+ 1/e < (4/3)/e.

1. Definition of large and small items. If n <
[s(X)](1+1/€), then let L =X and M =S = ¢.
Ifn > |s(X)|(141/€), let L be the largest [s(X)]/e
items of X, M denote the next largest |s(X)] items
of X, and S denote the remaining items.

2. Handling the large items. If s(X) > 13/¢3,

(a) Rounding the large items. Partition L
into 1/€? groups according to rank so that
all groups have the same cardinality as far
as possible : Let ¢ < 1/e2 and p > 0
such that |L| = p/e? + q. Then groups
G1,Gs,...,G, each have cardinality p+1, and
groups Gyi1,...,Gy 2 each have cardinality
p. The ith group G; contains items whose
rank (by decreasing size) in L is in [1 + (i —
D(p+ 1),1 +i(p+ 1)) if i < ¢, and in
l+(G—-1)p+q,l+ip+q)ifi>q.

For each ¢, round the values of the elements of
G; down to the value of the smallest element
of GG;. This creates a multiset Line. Let H
denote the set of element sizes in Li,¢. (Note
that H has cardinality at most 1/€2.) For each
item size v in H, let n(v) denote the number
of items of size v in Liys.

Solving the relaxed and rounded prob-
lem. To deal with the relaxed bin covering
problem with brick set Ljys and fluid volume
s(S), solve the following linear program. A
bin configuration is a multiset of items of Lj,¢
whose total size is less than 2. Let C denote
the set of bin configurations. For each config-
uration C' € C, let s(C') denote the total size of
items in C. In addition, for each configuration
C € C and item size v € H, let n(v,C') denote
the number of occurrences of v in C. The lin-
ear program has one variable z¢ for each bin

configuration C' € C. The constraints are as
follows:

i. For every item size v € H, we have
Y ceen(v,C)ze < n(v).
i Yo st. so)<1(l = s(C)) < 5(5).
iii. vC e C z¢ > 0.

The goal of the linear program is to maximize
YcecTo. Let x* = (z%)cec denote the
solution obtained, and let yo = |z].

Converting to a packing of the large
items. Pack the items of Li,f into bins
according to the yc’s (ignoring any excess
items), and replace each item of Li,s by the
corresponding item of L.

Otherwise, s(X) < 13/ and L consists of at most
(4/3)|s(X)|/e < 18/€* items. We can thus in
constant time (albeit exponential in 1/¢) determine
(via exhaustive search) the packing of L into a
maximum number of bins whose total shortfall is
at most s(.5).

3. Counstructing a solution to the original prob-
lem. If S is empty, all the bins in the packing based
on the yc’s are full and this is our final packing
(we ignore any unpacked items). Otherwise, put
the items of S U M in underfilled bins in a greedy
manner, closing a bin as soon as its size is > 1.

We claim that the greedy process in Step 3 must fill all
the underfilled bins. There are at most |s(X)| bins in
the packing based on the yc’s, and the excess that any
underfilled one receives is less than the largest element
of SU M that it receives. Thus the total excess volume
is less than that of the largest |s(X)] = |M] items in
S UM, which is less than s(SU M) — s(S), so there are
enough items in S U M to finish filling all the bins.

2.2 The analysis

THEOREM 2.1. The algorithm described above is a
polynomial-time asymptotic approximation scheme for
bin covering.

Running time. Everything except Step 2b takes
O(n) time for fixed e. To analyze the complexity
of the linear program in Step 2b, recall that there
are only 1/e? = O(1) element sizes, and at most n
elements of each size, so that there can be at most
n'/¢* variables and 1 + 1/€® constraints apart from the
at most nt/< non-negativity constraints. Thus the LP
is of polynomial size for fixed ¢ and can be solved in
polynomial time by the ellipsoid method.

Correctness. It suffices to show that for some
constants ¢ and ¢/, the number of bins filled to 1 or
more is at least OPT(X)(1 — ce) — ¢, in which case the
algorithm A, would be based on the above scheme with e
replaced by €/c. We begin with three easy observations,
the first two of which are sufficiently easy to be stated
without proof.

OBSERVATION 2.2. s(X) < 20PT(X) + 1.

OBSERVATION 2.3. For a set I of items and fluid vol-
ume W, let OPT(I,W) denote the optimal bin covering
using items from I and completing bins with at most W
amount of fluid. Then OPT(L,s(S)) > OPT(LUS).

OBSERVATION 2.4.

OPT(LUS) > OPT(X)— [s(X)]|e — (1 —¢).

Proof. Take an optimal packing of X = LUMUS.
We may assume |L| > |s(X)]/e since otherwise L = X
and the Observation holds trivially. Thus since OPT <
|s(X)], the average number of large items per full bin
is at least 1/e. Remove the [[s(X)]e] full bins that
contain the most large items. There are at least this
many bins by Observation 2.2 and our assumption that
e < 1/2. Note also that by our assumption that e
is the reciprocal of an integer, we have [|s(X)]e] <
|s(X)]e+(1—¢). These bins collectively contain at least
|s(X)] large items, which can now be used in place of
the medium items in the rest of the packing. We have
thus constructed a packing of L U S which fills at least
OPT(X)— |s(X)]e— (1 —¢) bins. N

Observations 2.2, 2.4, and 2.3 suffice to handle
the case when s(X) < 13/€® and we fill at least
OPT(L,s(S)) bins. In this case we have

A(X) OPT(X)— |s(X)|e—(1—¢)

OPT(X)(1—2¢)—e—(1—¢)
OPT(X)(1 —2¢)—1

v v v

When s(X) > 13/€3, we pay an extra price for using
the rounding procedure of Steps 2a through 2c. We can
analyze the rounding procedure as in [13]. Let Lgyp
denote the set obtained by, for each ¢, rounding the
values of the elements of G; upwards, to the value of
the smallest element of G;_; (or to 1 if i = 1). We
have Linf < L < Lg,p in the sense that items can be
put in one-to-one correspondence so that each item of
Ly is no larger than the corresponding item of L which
is itself no larger than the corresponding item of Lgyp.
Thus

OPT(Lint, 5(S)) < OPT(L,5(S)) < OPT(Lgup, 5(S)).

Notice now that all groups have cardinality p or p 4+ 1,
so that Lg,, can be obtained from Lin¢ by removing
the p + 1 smallest elements and adding p elements
of size 1 plus possibly one more element (to account
for when the group size switches from p + 1 to p).
Thus OPT(Lgyp,s(S)) < OPT(Lin,s(S)) + p + 1
and, recalling that p < |L|e?, the solution of the
linear program satisfies Y~ x5 = OPT(Ling,s(S)) >
OPT(L,s(S)) — |L|e* — 1.

Since there are only 1+ 1/€? constraints other than
the non-negativity constraints, a basic optimal solution
x* (which itself can be found in polynomial time by
standard techniques) has at most 1 + 1/€? fractional
coordinates and so Y. yc > Yo ze — (L +1/€?).

The additional shortfall due to the rounding pro-
cedure is thus at most (|L|e2 + 1) + (1 + 1/€?).
Working through the math (and using the fact that
s(X) > 13/€®) we conclude that in this case, A(z) >
OPT(X)(1 — 5¢) — 4 which means that in all cases,
A(x) > OPT(X)(1 — 5¢) — 4, which suffices to prove
that we have a PTAAS. W

Note that although this asymptotic approximation
scheme is a close analog in performance to the one of
[13] for bin packing, it does not come close to the poly-
nomial time bin packing algorithm of Karmarkar and
Karp [15], which guaranteed a packing with A(L) <
OPT(L)+O(log?>(OPT(L))). That algorithm improved
on the one of [13] by taking € to be a function of n but
not stating the resulting (superpolynomial-size) LP ex-
plicitly (or solving it exactly). Instead the algorithm
used a column-generation approach to find new vari-
ables when needed (based on approximation schemes for
the knapsack problem). A similar approach could prob-
ably be used in the context of our algorithm to solve the
LP that arises when s(X) > 13/¢®. However, it won’t
work for the case of our algorithm where s(X) < 13/¢?
and we must resort to an exhaustive search over a space
exponential in 1/e. Thus for now it remains an open
question as to whether a Karmarkar-Karp type algo-
rithm is possible for bin covering.

3 Robust Online Algorithms

In this section, we consider two approaches to adapting
the Sum-of-Squares algorithm for bin packing to pro-
duce a bin covering algorithm that both has sublinear
expected waste for all perfect-packing distributions and
has a relatively small constant bound on R% .

Algorithm SSNF,. We first consider a class of
direct hybrids of SS and NF. Algorithm SSNF,.,r >0
maintains two separate packings, one governed by SS
and one by NF. If the current total number of full bins
is less than r times the number of partially filled bins

in the SS packing, the next item is put into the NF
packing, otherwise it is put into the SS packing.

1 1
4r +2°

THEOREM 3.1. For all v > 0, RSSNF > 5
Proof. Let f be the number of full bins in the final
packing of a list L, and let p be the number of partially
full bins in the final SS packing. By the definition
of the algorithm, SSNF,.(L) = f > r(p — 1). Since
every full bin contains items of total size less than 2,
every partially filled bin contains items of total size less
than 1, and the NF packing has at most one partially
filled bin, we have OPT(L) < s(L) < 2f +p+1 <
2f + f/r+2=SSNF.(L)(2+1/r) + 2. The theorem
follows by standard mathematical manipulations. H

THEOREM 3.2. If F is a discrete perfect-packing distri-
bution and r > 0, EWSSNFr = O(\/n).

Proof. Assume the instance is scaled so that the
bin size is B and all item sizes are integers, as can be
done for any discrete distribution. In the final packing,
let fxr and fss denote the numbers of full bins in the
NF and SS packings, respectively, and similarly let
pnF and pss be the numbers of partially filled bins.
The total waste consists of the total excess over B in
the full bins plus the contents of the partially filled bins.
Since no bins are overfilled under S.S, no bin can receive
total contents exceeding 2B under N F', and there is at
most one partially-filled in the N F' packing, we thus can
bound the waste by B(fnF + pss + 1).

Now, as shown in [10], E[pss] = O(v/nB), which is
O(y/n) for fixed B. And by the operation of SSNF,
whenever an item is added to the NF packing, the
number of full bins in the NF packing is at most r
times the number of partially-filled bins under SS. The
technical difficulty here is that this only says that fypr
is bounded by a constant times the mazimum number
of partially filled bins during the course of the SS
packing, not the final number. Here is where martingale
arguments come in. The key lemma from [10] that
yielded a bound on the expected number of partially
filled bins under SS when F was a perfect-packing
distribution can be stated as follows:

LEMMA 3.2.1. Let F be a discrete distribution satisfy-
ing EWOFPT(F) = O(\/n). Then given any packing P
and an item x randomly generated according to F', SS
will pack © in such a way that the expected increase in
ss(P) is at most 4.

We wish to use this lemma to bound the mazimum
number of partially filled bins during the packing pro-
cess. Let P; denote the SS packing after ¢ items have

been packed, n; ; denote the number of bins with level
jin P;, and ss(P;) = Zf’:_ll n; ;. The key observation
is that Lemma 3.2.1 implies that the sequence of ran-
dom variables X; = 4i — ss(P;) is a submartingale. By

Proposition 5.13 in [4], we thus have for all z > 0

min X; < —x
p[1<i<n ¢

:| S E|Xn| _E(Xl)

- (3.1)

Note that E[ss(P;)] > 0 for all ¢ > 0, so that the right
hand side of (3.1) is at most 4n/z. We thus have

4dn

p[max ss(P)>4n+m} < —
T

1<i<n

(3.2)

Let W; denote the number of partially full bins in P;.
Now by the Cauchy-Schwartz inequality, we have that
for any packing P;,

j=1
Thus by (3.2) we have
4
P Lrgagc Wi > /B(4n +a:)] < il
<iln xr

This allows us to conclude that the expected maximum
number of partially filled bins

(3.4)

E {max WZ]
1<i<n

[ee]

< ;]

< +4Bn Z% p [121%)(” Wi > 3V 4Bn]
]:

< 4Bn]Z; P Lrg&xn W; > v/B(4n+(j2=1)4n)

= 4n 11
< 4Bn | 2 —— | =—VB
> n +]2:; n(? —1) 5 n

From this we can conclude that the expected waste
under SSNF, is less than (r +1)(11/2)v/Bn + 1 which
for fixed B is O(y/n). A

Algorithm SST. The performance of SSNF;. can
be dominated by that for NF when the distribution is
not a perfect-packing distribution, and NF’s average-
case performance is typically unimpressive. Thus it
is worth looking for more robust alternatives. To
this end, we have devised the Sum-of-Squares-with-
Threshold algorithm (SST). In this algorithm, we keep
track not only of the counts n;, 1 <i < B — 1, but also

of f, the number of bins currently filled to level > B,
and s, the sum of the sizes of the items seen so far. At
any time, the current threshold is

2B,

T= { max(B, (s/f) — 1),

To pack an item z, the algorithm considers all the ways
to insert x into a partially-filled bin or into a new bin
and, among all the possibilities that yield a bin level
< T, chooses the one that minimizes the value of ss(P)
for the resulting packing P. (Note that ss(P) continues
to be a sum over only the counts for partially filled bins.)
Ties are broken first in favor of filling a bin, and then
in favor of the bin whose new level will be closest to B.

if f=0
otherwise

THEOREM 3.3. RIT > 1/3.

Proof. To prove this, it suffices to show that
s(L)/B < 3SST(L). Consider the last time a new bin
was started and, with a slight overloading of notation,
let = denote both the item that started the new bin
and its size. We partition the partially filled bins of the
current packing P into z classes X;, 1 < ¢ < z, where
X; consists of all those bins whose levels are congruent
to ¢ (mod z).

Cram 3.3.1. For each nonempty class X;, the average
level is more than (T — x)/2.

Proof of Claim. We use the fact that since z
started a new bin, its placement caused an increase in
the sum-of-squares potential function ss(P) and hence,
by the definition of SST, all legal ways of packing z into
a partially filled bin of P must also increase ss(P). Let

h =
t =

min{h : njype > 0}
max{h : i+ hx < B}

Observe that njyce < Ny (ey1)e forall e, b <e <t
Otherwise, there would have to be a ¢ in this range
such that n;ice > 0 but niy (cq1)2 < Nitce- In this case,
however, placing z into a bin with level i + cx would
be a legal placement that does not increase ss(P), a
contradiction.

Note that as a consequence of the previous observa-
tion we must have n; ¢ > 0, which in turn implies that
i+ (t+ 1)z > T, as otherwise we could legally place x
in a bin with level ¢ + tz which would fill the bin and
so reduce ss(P). Thus the average level of bins in class
X; is at least

S+ cx) _i+w®+ﬂ
t—b+1 - 2
T—z+i+b

T—x

> |
2 2

Since the Claim holds for all the nonempty X, this
implies that the average level of all partially filled bins
in P is at least (T — z)/2.

Let F' and U denote the number of full and partially
filled bins and at the time 2 was packed. Let F' be such
that B(F + F") is total volume of items in full bins. By
the definition of the threshold 7" in the description of
the algorithm SST,

B(F + F')+ U(T — z)/2

T -1
> F
This implies
F>BF’+U(T—m)/2 (FF+U)T -z) _ F'4+U
T+1-B 20r-(B-1)) — 2

After = is packed, no new bins are started by
assumption, and the only way that the waste can grow is
if new items are added to the partially filled bins. Note
that the worst situation is if all the partially-filled bins
are filled to level B—1. If any partially-filled bin were to
be completely filled, the total waste would increase by at
most 2B —3 while the number of full bins would increase
by 1, which would drive the ratio of (s(L)/B)/F down
toward 2, and we are only trying to prove an upper
bound of 3. Thus at the end of the packing of L, we
will in the worst-case have

s(L)/B < F + F'+U < F + 2F =35ST(L),

as required. W

THEOREM 3.4. For any discrete perfect-packing distri-
bution F, EWST = O(n?/3).

Proof. We first observe that by the operation of
SST, the expected increase in ss(P) at any step is no
more than it would be under SS, so the martingale
arguments used to prove Theorem 3.2 still apply. Thus
we can conclude from (3.4) with & = 4n*/3 that for some
fixed ¢ the probability that the maximum number of
partially filled bins ever encountered under SS exceeds
en?/? is at most 1/n'/?. We break into cases.

In those instances for which the maximum number
of partially filled bins exceeds cn?/?, the waste can be
no more than nB, so the contribution to the overall
expected waste is at most nB/n'/®> = Bn?/3. In those
instances where the en?/? bound applies, we can argue
that the threshold 7" must in bounded time decline to
B and stay there, since the contribution of the partially
filled bins to the sum of item sizes s becomes less and
less significant, and when T' > B, newly-filled bins must
have contents at least 1 unit less than the average for
previously filled bins. Once T converges to B, the

waste due to overfull bins can no longer grow. Since
by assumption the waste due to partially filled bins is
at most en®/3, the desired overall asymptotic bound
follows. Details postponed to the full paper. W

We implemented the bin covering algorithms NF,
SSNF,, r € {1,9}, and SST, and tested them on
the discrete distributions covered for bin packing in
[11]. We also determined the asymptotic expected ratios
of OPT(L,(F)) to s(L,(F)) for these distributions
using the linear programs described in the next section.
Experimental results, although limited, support our
conjecture about the superiority of SST. Figures 1
through 3 cover our results for the interval distributions
U{18,7,100}, in which the bin size is 100 and the
item sizes are 18 through j, equally likely. This set
of distributions was chosen for the variety of optimal
behavior it exhibits.

Figure 1 compares the asymptotic expected ratios
of OPT(Ly(F)) to s(L,(F)) for bin packing and bin
covering under these distributions, as a function of j,
18 < j < 99. The j’s for which U{18,j,100} is a
perfect-packing distribution are those for which both
curves coincide with the horizontal line at 1.00. The
straight lines leaving the frame continue to be straight
outside the frame. Note that for the non-perfect-
packing distributions, the departure from ratio 1 is more
pronounced for bin covering than bin packing.

1.05
|

1.00
|

EXPECTED OPTIMAL RATIO

0.95
|

- Bin Packing
—— Bin Covering

0.90
|

T T T T T
20 40 60 80 100

J
Figure 1: Comparison of asymptotic expected ratios of
OPT(L.(F)) to s(Ln(F)) for distributions U{18, 5,100},
18 < j < 99.

0.95 1.00
| |

100,000,000
0.90
|

0.85
|

AVERAGE RATIOS, N
0.80
|

0.75
|

0.70
|

T T T T T
20 40 60 80 100

J
Figure 2: Measured average values of A(L,(F))/s(Ln(F))
for various algorithms and distributions U{18, 5,100}, 18 <
j < 99, when n = 100, 000, 000.

Figure 2 compares the performance of NF, SSN Fy
and SST on these distributions for n = 108, with
averages taken over 3 instances. (We also tested
SSNFy, whose behavior was typically worse than that
for SSNFy on the non-perfect-packing distributions.)
Note that SST outperforms SSN Fy for all non-perfect
packing distributions and is better than NF' (typically
substantially so) for all j > 19, and within 1% for
j € {18,19}. SSNFy on the other hand is substantially
outperformed by NF for several j.

Given that SST intentionally leaves bins partially
full, one might expect it not to do well until n is fairly
large. Figure 3 indicates that this is not the case,
at least with reference to the competition. Here the
algorithms (including SSNF;) are compared for the
above distributions when n = 100, with averages now
taken over 10,000 instances so that equivalent precision
can be obtained. Here both SSNF; and SSNF, are
always outperformed by NF', while SST holds its own
for small j and then pulls significantly ahead as j
increases.

4 Online Algorithms that are Asymptotically
Optimal for all Discrete Distributions

We begin by showing that for any fixed discrete distri-

bution F' there is an O(nB) algorithm SS¥ such that

EROSOSF (F) = 1. We then indicate how to use these to

=100

AVERAGE RATIOS, N

Figure 3: Measured average values of A(L,(F))/s(Ln(F))
for various algorithms and distributions U{18, 5,100}, 18 <
7 <99, when n = 100.

build a learning algorithm SS* that has ERSS™ (F) = 1
for all discrete distributions F'.

The algorithms SS¥ are built using the linear pro-
grams alluded to in the previous section for determining
the optimum expected waste rate for a given distribu-
tion F'. These linear programs are similar to those pre-
sented for bin packing in [10]. Suppose our discrete
distribution is as described above, with a bin capacity
B, integer item sizes si, So,...,Ss, and rational proba-
bilities py, pa,--.,pJ.

Let us say that a bin has level h if the total size of
the items it contains is h. Our linear program (LP) will
have JB variables v(j,h), 1< j<Jand0 < h < B-1,
where v(j, h) represents the rate at which items of size
s; go into bins whose current level is h. There are three
sets of constraints. The first two essentially say that
all items are packed into bins that were at the time
incompletely filled:

B-1
Yook =p;, 1<i<J (4.6)
h=0

The third set of constraints says that bins with a given
level are created at least as fast as they disappear.
To formulate these constraints, we use the following

shorthand to denote the net rate of creation of bins with
level h, 1 < h <2B —2:

J J

o(h) =Y v(j,h—s;) = > v(j,h)

j=1 j=1

where the values of v(k, h — si) when h — s, < 0 and of
v(j, h) when h > B are taken to be 0 by definition for
all h and k. Our final set of constraints is then simply

2(h)>0 1<h<B-1 (4.7)

To specify the LP’s optimization criterion, let

B-1
> h-x(h)
h=1

2B—2
w = Y (h—DB)x(h)
h=B+1

Note that these correspond to the waste due to under-
and overfilling bins, respectively. We wish to minimize

¢(F)=w+w. (4.8)

We then have the following analog of Theorem 4.1 from
[10], which will be proved in the full paper:

THEOREM 4.1. There is a constant ap, depending on
B but not otherwise on F', such that for all sufficiently
large n

|EWSPT(F) — ne(F)| < apvn (4.9)

and

M} AR
s(Ln(F))/B Sl sipi

Note that if ¢(F') = 0 then F has the perfect packing
property, and so we can simply use the Sum-of-Squares
bin packing algorithm SS for SS¥. By the results in
[10], its expected waste (in bin packing terms) will be
O(4/n) and can be at most B times that in bin covering
terms, which is still O(y/n) for fixed F'.

Suppose, however, that ¢(F) > 0 and so F does
not have the perfect packing property. We now derive a
new distribution F” that does have the perfect packing
property from F. We begin by modifying p to a new
function ¢ : {1,...,B — 1} — Q that will be our
new probability distribution. This is accomplished in
stages. We begin by setting ¢;(h) = Es(j):hp(j),
1 < h < B-1. Then, from the values of the variables in
an optimal solution to the LP, we derive the rates r(i, 7)

lim E[

n—o0

(4.10)

at which items of size ¢ create overfilled bins with total
contents B + j. For 1 < h < B — 1, define

h—1 B—1
@) =q(h) =Y r(i,j)+ Y r(i,i—h).
i=1 i=h+1

For each r(i,j) this is equivalent to replacing r(i,j)
items of size i with items of size ¢ — j, which in effect
gets rid of all the overfilled bins in the optimal packing
specified by the LP. To get rid of the underfilled bins,
we set g3(h) = g2(h) + (B — h) and normalize to a
probability distribution by letting & = Ef;ll x(h) and
setting
g3(h)

oM =177

It is not difficult to show that the distribution F”
determined by ¢ has the perfect packing property, and
hence if packed by SS will have O(y/n) waste. Our
algorithm SS¥ works by simulating the SS packing
of a list generated according F’ while packing a list
generated according to F'. We do this by a combination
of introducing imaginary items and truncating real
items. The basic packing loop goes as follows:

First, we flip a biased coin and with probability
Z/(1 + &), we decide to generate an imaginary item.
The size of the imaginary item is chosen to be h with
probability (B — h)/z. This item is then added to the
packing according to the S.S rule. For the purposes of
the packing, it takes up space just like a real item, but
at the end of the packing a bin containing an imaginary
item may not really be full, in which case all its “real”
contents will be declared wasted.

If the coin flips the other way, then we take the
next item from our online list of real items to be packed.
Let h be its size, and let r(h,0) = ¢;(h) — 2?1—11 (i, 7).
Then declare the “truncation” ¢ for the item to be 7 with
probability r(h,i)/qi(h), 0 < i < h, and pack it using
S S, treating it from now until the end of the packing as
if its size is really h — ¢. If in the end this item is in a
full bin, that bin will actually be overfilled by at least ¢,
and this item can thus contribute ¢ to the overall waste
for the final packing.

It is easy to verify that, counting the imaginary
items and truncations as real, this process produces the
SS packing of a list L of items generated according to
F' and that the expected length of L is n(1+ Z) < 2n,
including nZ imaginary items. Thus by the results of
[10] for SS, this packing is expected to contain at most
O(y/n) wasted space.

Let us now consider separately the additional waste
caused by imaginary items and by truncated items. An
imaginary item of size ¢ in a full bin of the SS packing
can cause real items of total (truncated) size at most

, 1<h<B-1.

B — i to be wasted. Since imaginary items of size ¢
are generated with probability (B — i)/Z whenever an
imaginary item is generated, the expected total waste
of this sort is thus at most

B-1 . B-1

nx B—iwzn 1x(1) = nw.

2. ()= ; (1)
Ttem truncation can cause additional waste in two ways.
First, it can cause a bin to be overfilled. Second, it can
cause a bin that contained an imaginary item of size ¢
to yield more than B — ¢ real waste. In either case, the
additional waste attributable to the item is at most the
amount by which it was truncated. Thus the expected
waste due to item truncation is at most

B—1h—1 B-2 B-1
n Y S e = 0> Y r(hi)i)
h=1 i=1 i=1 h=t+1

B—2
= n Z z(B +1i)(i) =nw

From this we can conclude that the expected waste
is within O(y/n) of the expected waste in an optimal
solution, and so ERSS" (F) = 1.

Our algorithm SS* that has ERSS" (F) = 1 for all
discrete distributions F' works by refining its estimate
F; of F' at ever increasing intervals, solving the LP, and
then applying SS¥: until the next refinement. Details
and proofs will appear in the full paper.

Acknowledgment. The authors thank Jim Reeds for
pointing out the relevance of submartingales to our
average-case analysis.

References

[1] S. Albers and M. Mitzenmacher. Average-case anal-
yses of first fit and random fit bin packing. In Proc.
Ninth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 290-299, Philadelphia, 1998. Society
for Industrial and Applied Mathematics.

[2] S.B. Assman, D. S. Johnson, D. J. Kleitman, and J. Y-
T. Leung. On a dual version of the one-dimensional bin
packing problem. J. Algorithms, 5(4):502-525, 1984.

[3] S. B. Assmann. Problems in Discrete Applied Mathe-
matics. PhD thesis, Department of Mathematics, MIT,
Cambridge, MA, 1983.

[4] L. Breiman. Probability.
Mass., 1968.

[5] E. G. Coffman, Jr., C. Courcoubetis, M. R. Garey, D. S.
Johnson, L. A. McGeoch, P. W. Shor, R. R. Weber,
and M. Yannakakis. Fundamental discrepancies be-
tween average-case analyses under discrete and contin-
uous distributions. In Proceedings 23rd Annual ACM
Symposium on Theory of Computing, pages 230-240,
New York, 1991. ACM Press.

Addison-Wesley, Reading,

10

[6] E.G. Coffman, Jr., C. Courcoubetis, M. R. Garey, D. S.
Johnson, P. W. Shor, R. R. Weber, and M. Yannakakis.
Bin packing with discrete item sizes, Part I: Perfect
packing theorems and the average case behavior of
optimal packings. SIAM J. Disc. Math., 13:384-402,
2000.

[7] C. Courcoubetis and R. R. Weber. Stability of on-line
bin packing with random arrivals and long-run average
constraints. Prob. Eng. Inf. Sci., 4:447-460, 1990.

[8] J. Csirik, J. B. G. Frenk, G. Galambos, and A. H. G.
Rinnooy Kan. Probabilistic analysis of algorithms for
dual bin packing problems. J. Algorithms, 12:189-203,
1991.

[9] J. Csirik, J. B. G. Frenk, M. Labbé, and S. Zhang. Two

simple algorithms for bincovering. Acta Cybernetica,

14:13-25, 1999.

J. Csirik, D. S. Johnson, C. Kenyon, J. B. Orlin,

P. W. Shor, and R. R. Weber. On the sum-of-squares

algorithm for bin packing. In Proceedings of the 32nd

Annual ACM Symposium on the Theory of Computing,

pages 208-217, New York, 2000. ACM.

J. Csirik, D. S. Johnson, C. Kenyon, P. W. Shor,

and R. R. Weber. A self organizing bin packing

heuristic. In M. Goodrich and C. C. McGeoch, editors,

Proceedings 1999 Workshop on Algorithm Engineering

and Ezperimentation, pages 246-265, Berlin, 1999.

Lecture Notes in Computer Science 1619, Springer-

Verlag.

J. Csirik and V. Totik. On-line algorithms for a dual

version of bin packing. Disc. Appl. Math., 21:163-167,

1988.

W. Fernandez de la Vega and G. S. Lueker. Bin packing

can be solved within 14 in linear time. Combinatorica,

1:349-355, 1981.

S. Han, D. Hong, and J. Y.-T. Leung. Probabilistic

analysis of a bin covering algorithm. Oper. Res. Lett.,

18:193-199, 1996.

N. Karmarkar and R. M. Karp. An efficient approx-

imation scheme for the one-dimensional bin packing

problem. In Proc. 28rd Ann. Symp. on Foundations of

Computer Science, pages 312-320, 1982. IEEE Com-

puter Soc.

C. Kenyon, Y. Rabani, and A. Sinclair. Biased random

walks, Lyapunov functions, and stochastic analysis of

best fit bin packing. J. Algorithms, 27:218-235, 1998.

Preliminary version under the same title appeared

in Proc. Seventh Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 351-358, 1996.

W. T. Rhee. A note on optimal bin packing and

optimal bin covering with items of random size. STAM

J. Comput., 19:705-710, 1990.

W. T. Rhee and M. Talagrand. Optimal bin covering

with items of random size. SIAM J. Comput., 18:487—

498, 19809.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

