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Abstract

Bin covering takes as input a list of items with sizes in ��� ��
and places them into bins of unit demand so as to maximize
the number of bins whose demand is satis�ed	 This is in
a sense a dual problem to the classical one
dimensional bin
packing problem� but has for many years lagged behind the
latter in terms of the quality of the best approximation al

gorithms	 We design algorithms for this problem that close
the gap� both in terms of worst
 and average
case results	
We present ��� the �rst asymptotic approximation scheme
for the o�ine version� ��� algorithms that have bounded
worst
case behavior for instances with discrete item sizes
and expected behavior that is asymptotically optimal for
all discrete �perfect
packing distributions
 �ones for which
optimal packings have sublinear expected waste�� and ��� a
learning algorithm that has asymptotically optimal expected
behavior for all discrete distributions	 The algorithms of ���
and ��� are based on the recently
developed online Sum�of�
Squares algorithm for bin packing	 We also present exper

imental analysis comparing the algorithms of ��� and sug

gesting that one of them� the Sum�of�Squares�with�Threshold
algorithm� performs quite well even for discrete distributions
that do not have the perfect
packing property	

� Introduction

In the bin covering �or dual bin packing� problem� we
are given a list L � �a�� a�� � � � � an� of items with sizes
s�ai� � ��� ��� One must pack the items into bins in such
a way as to maximize the number of bins that receive
items of total size � or more� A picturesque application
would be selling packets of canceled stamps to novice
philatelists� where each packet is guaranteed to contain
stamps whose total face value is at least 	��� �Note the
contrast to bin packing� where one wants to minimize

the number of bins� subject to the constraint that each
receives items of total size � or less��

Bin covering is NP
hard� and so research has
concentrated on polynomial
time approximation algo

rithms� Given a list L and an algorithm A� let A�L�
be the number of bins �lled to level at least � by A�
OPT �L� be the optimal number of bins that can be so
�lled� and s�L� be the sum of the item sizes in L� Note
that we have s�L� � OPT �L� � A�L�� In this paper
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we are interested both in worst
case and average
case
behavior of approximation algorithms� but let us begin
with our major new worst
case result� The following
shorthand notations will be useful�

Worst
Case Ratio�

RA � min

�
A�L�

OPT �L�
� all lists L

�

Asymptotic Worst
Case Ratio�

RA
� � lim infn��

�
min

�
A�L�

OPT �L�
� OPT �L� � n

��

It is easy to see that no polynomial
time approxi

mation algorithm A can have RA � ��
 �because of the
di�culty of distinguishing between instances that can
�ll two bins as opposed to one�� For typical applications
where the number of �lled bins is likely to be large� RA

�

might thus be a better measure of performance� espe

cially since low
order polynomial
time algorithms exist
with RA

� � 
�� and ��� �
� �� ���
Unfortunately� until now ��� was the best asymp


totic guarantee known� This is in contrast to the situ

ation for bin packing� where there is a polynomial
time
asymptotic approximation scheme �PTAAS�� i�e�� a pa

rameterized algorithm A� such that for any �xed � � �
A� runs in polynomial time and satis�es R

A�

� � � � ��
The existence of such schemes for bin packing has been
known for two decades ����� but it was feared by many
experts that no analogous schemes �with �� � � �� re

placed by �� �� ��� might exist for bin covering� This
was because the techniques used by ���� �and the sub

sequent improvements of ����� did not seem adaptable
to bin covering� They relied on the fact that tiny items
�ones of size smaller than� say� ��
� could essentially be
ignored in bin packing � adding them in at the end could
only cause a new bin to be started if all other bins were
already �lled to levels exceeding �� ��
� in which case
the packing was already good enough� This allowed the
bin packing approximation schemes to concentrate on a
simpli�ed situation with a controllable number of rea

sonably large items to worry about� In contrast� for bin
covering small items may be crucial to the task of �lling
a bin� and so they cannot be ignored�

Theorem ���� There is a PTAAS for bin covering�



�

The approximation scheme and a proof sketch are given
in Section 
� The key idea is to recognize that although
the small items cannot be ignored� they can be treated
as a �uid in much of the computation� which is almost
as good�

The approximation scheme of Theorem ��� is pri

marily of theoretical interest� since the running time is
exponential in ���� A second drawback for many ap

plications is that the algorithm is an o�ine algorithm�
The rest of our paper concerns what we can do in the
online case� In terms of asymptotic worst
case perfor

mance alone� this is already known� In ��
� it is shown
that every online algorithm A must have RA

� � ��
�
and it is easy to verify that the Next Fit �NF � heuris

tic �place each item in the current bin unless that bin
is full� in which case we start a new �current� bin� has
RNF
� � ��
�
We are interested in �robust� heuristics that not

only have worst
case behavior close or equivalent to
that of NF � but also have average
case behavior that
is provably much better for many distributions� In
the online algorithm world� it is all too common that
the more one attempts to improve worst
case behavior�
the more likely it is that average
case performance will
approach that of the worst
case� Conversely� algorithms
designed for good average
case performance often are
unboundedly bad in the worst
case�

Average case behavior is a function of the algorithm
A� the item
size distribution F � and the number of items
n� Let A�Ln�F �� be the random variable denoting
the number of bins �lled by A when applied to a
list of n items� where the size of each item is chosen
independently according to F � The key average
case
metrics for bin covering are the following�

Asymptotic Expected Ratio�

ERA
��F � � lim infn��

E

�
A�Ln�F ��

OPT �Ln�F ��

�

Expected Waste Rate�

EWA
n �F � � E �s�Ln�F ���A�Ln�F ���

Previous work on average
case analysis for bin cov

ering either dealt only with the convergence properties
of A�Ln�F ���n �for arbitrary distributions� ���� ��� ����
or the value of ERA

��F � for the particular distribution
U ��� �� in which item sizes are uniformly distributed in
the real interval ��� ��� as in ���� The distributions we
consider here are the discrete distributions studied in
��� �� �� ��� ��� ���� in which item sizes are all integral
multiples of ��B for some integer B and the probabili

ties are all rational numbers� When packing with such
distributions� one may equivalently assume that the bin

size is B and the item sizes are all integers� Most real

world applications can be scaled so that they �t this
model for some B� and for our study of online possibil

ities� we shall assume the model applies and allow our

selves to consider algorithms that exploit the discrete
nature of the instances� This means that �polynomial
time� can include polynomials in n and B� For �xed
distributions� this is equivalent to ordinary polynomial
time�

Of special interest among discrete distributions are
those distributions F that satisfy the perfect�packing

property� EWOPT
n �F � � o�n�� in which case� by a result

of Courcoubetis and Weber ���� EWOPT
n �F � � O�

p
n��

Note that if F has the perfect
packing property� then
the asymptotic expected ratio of OPT �Ln�F �� to the
upper bound s�Ln�F �� is �� There are many interesting
distributions that have this property� which is easily
seen to hold for bin covering if and only if it also
holds for bin packing� For instance� if Ufh� j� kg is
the distribution in which item sizes are h through j�
equally likely� and the bin size is k� then Uf�� j� kg has
the perfect
packing property for all j� k� � � j � k ��� ���
as do many such distributions with h � � ���� ����

In ���� it was proved that for bin packing� the on

line Sum
of
Squares algorithm �SS� had EWSS

n �F � �
O�
p
n� for all perfect
packing distributions� The chal


lenge is to �nd online algorithms for bin covering that
provably have the same property and in addition have
bounded worst
case behavior�

It is not immediately obvious how to do this� In
SS� one keeps track of the numbers ni� � � i � B�
of partially
�lled bins in the current packing P whose
contents total i� When a new item is packed� it is
assigned to a bin so as to minimize ss�P � �

PB��
i�� n�i

subject to the constraint that no bin is over�lled�
One can use this algorithm directly as a bin covering
heuristic and it will handle perfect
packing distributions
as desired� but will fall down miserably in the worst case�
since it never considers over�lling a bin� and for some
lists the only way to reach a total � B is to have the
total exceed B� Thus SS by itself has RSS

� � �� To do
better� one needs an adaptation that allows over�lling
bins� but doesn�t allow this to be done too aggressively�

Theorem ���� For any � � � there is an O�nB��time

algorithm SSNF� such that

�� RSSNFr
� � ��
� �

�� EWSSNF�
n �F � � O�

p
n� for all perfect�packing

distributions

The SSNF algorithms are straightforward hybrids
of NF and SS� To prove the results about their
average
case performance� we rely on a key lemma from



�

����� plus a new observation that the random process
determining ss�P � can be viewed as a submartingale
when the distribution has the perfect
packing property�

These algorithms� although they work well for
perfect
packing distributions� are less successful for
other discrete distributions� where they can sometimes
be outperformed by NF acting alone� We thus also
developed what appears to be a much more robust
algorithm� �Sum
of
Squares with Threshold� �SST ��
In experiments we report for a variety of discrete
distributions� the average
case performance of SST was
at least as good as and often signi�cantly better than
that of NF and SSNF � both for large and small values
of n� Moreover SST is almost as good as the SSNF
algorithms from a theoretical point of view�

Theorem ���� RSST
� � ��� and EWSST

n �F � �
O�n���� for all perfect�packing distributions�

�It may be possible to improve these bounds� We
know of no lists with SST �L� � ���
�OPT �L�� and
empirically the expected waste rates for SST �and
SSNF � appear to be within a constant factor of the
optimal expected waste rates for all perfect
packing
distributions we tested��

If one is willing to forgo a bounded worst
case ratio�
one can do even better in an average
case sense� In our
�nal section we sketch a proof of the following�

Theorem ���� There is a randomized O�nB��time al�

gorithm SS� such that ERSS�

� � � for all discrete dis�

tributions�

This is an analogue of the learning algorithm of
the same name for bin packing presented in ����� As
with the earlier algorithm� it repeatedly re
estimates
the current distribution and solves an LP in order to
construct a virtual perfect
packing distribution that it
can simulate� A di�erent construction is needed here�
however� Instead of introducing �imaginary items� of
size �� we introduce imaginary items of a variety of sizes
and in addition randomly truncate real items�

� An Asymptotic Approximation Scheme

The basic idea for our approximation scheme is as
follows� Partition the items into large items called
�bricks�� medium items that will not be used until
the very end� and small items� called �pebbles�� The
de�nition of large is such that bins will on average
contain many �but not too many� large items� Relax the
problem by allowing pebbles to be melted into a �uid
that can be arbitrarily divided between di�erent bins�
This new problem only depends on the brick set and
on the total �uid volume� Using a rounding approach

similar to that of de la Vega and Lueker ����� �nd a
quasi
optimal way to �ll the bins using bricks and �uid�
From the solution to the relaxed problem� construct a
feasible solution to the original problem by removing the
�uid and placing pebbles and medium items in a greedy
manner� A more formal description of the algorithm
follows�

��� The algorithm

In order that we may use �L� to denote the set of large
items� let us use X to denote the set of all items in
the instance� We may assume without loss of generality
that s�X� � 
� � � ��
 and ��� is an integer� Note that
this implies that � � ��� � ��������

�� De�nition of large and small items� If n �
bs�X�c�� � ����� then let L � X and M � S � ��
If n � bs�X�c�������� let L be the largest bs�X�c��
items ofX �M denote the next largest bs�X�c items
of X � and S denote the remaining items�


� Handling the large items� If s�X� � ������

�a� Rounding the large items� Partition L
into ���� groups according to rank so that
all groups have the same cardinality as far
as possible � Let q � ���� and p � �
such that jLj � p��� � q� Then groups
G�� G�� � � � � Gq each have cardinality p��� and
groups Gq��� � � � � G���� each have cardinality
p� The ith group Gi contains items whose
rank �by decreasing size� in L is in �� � �i �
���p � ��� � � i�p � ��� if i � q� and in
�� � �i� ��p� q� � � ip� q� if i � q�

For each i� round the values of the elements of
Gi down to the value of the smallest element
of Gi� This creates a multiset Linf � Let H
denote the set of element sizes in Linf � �Note
that H has cardinality at most ������ For each
item size v in H � let n�v� denote the number
of items of size v in Linf �

�b� Solving the relaxed and rounded prob�

lem� To deal with the relaxed bin covering
problem with brick set Linf and �uid volume
s�S�� solve the following linear program� A
bin con�guration is a multiset of items of Linf

whose total size is less than 
� Let C denote
the set of bin con�gurations� For each con�g

uration C � C� let s�C� denote the total size of
items in C� In addition� for each con�guration
C � C and item size v � H � let n�v� C� denote
the number of occurrences of v in C� The lin

ear program has one variable xC for each bin



�

con�guration C � C� The constraints are as
follows�

i� For every item size v � H � we haveP
C�C n�v� C�xC � n�v��

ii�
P

C s�t� s�C������ s�C�� � s�S��

iii� �C � C xC � ��
The goal of the linear program is to maximizeP

C�C xC � Let x� � �x�C�C�C denote the
solution obtained� and let yC � bx�Cc�

�c� Converting to a packing of the large

items� Pack the items of Linf into bins
according to the yC �s �ignoring any excess
items�� and replace each item of Linf by the
corresponding item of L�

Otherwise� s�X� � ����� and L consists of at most
�����bs�X�c�� � ����� items� We can thus in
constant time �albeit exponential in ���� determine
�via exhaustive search� the packing of L into a
maximum number of bins whose total shortfall is
at most s�S��

�� Constructing a solution to the original prob�

lem� If S is empty� all the bins in the packing based
on the yC �s are full and this is our �nal packing
�we ignore any unpacked items�� Otherwise� put
the items of S �M in under�lled bins in a greedy
manner� closing a bin as soon as its size is � ��

We claim that the greedy process in Step � must �ll all
the under�lled bins� There are at most bs�X�c bins in
the packing based on the yC �s� and the excess that any
under�lled one receives is less than the largest element
of S �M that it receives� Thus the total excess volume
is less than that of the largest bs�X�c � jM j items in
S �M � which is less than s�S �M�� s�S�� so there are
enough items in S �M to �nish �lling all the bins�

��� The analysis

Theorem ���� The algorithm described above is a

polynomial�time asymptotic approximation scheme for

bin covering�

Running time� Everything except Step 
b takes
O�n� time for �xed �� To analyze the complexity
of the linear program in Step 
b� recall that there
are only ���� � O��� element sizes� and at most n
elements of each size� so that there can be at most
n���

�

variables and � � ���� constraints apart from the

at most n���
�

non
negativity constraints� Thus the LP
is of polynomial size for �xed � and can be solved in
polynomial time by the ellipsoid method�

Correctness� It su�ces to show that for some
constants c and c�� the number of bins �lled to � or
more is at least OPT �X���� c��� c�� in which case the
algorithmA� would be based on the above scheme with �
replaced by ��c� We begin with three easy observations�
the �rst two of which are su�ciently easy to be stated
without proof�

Observation ���� s�X� � 
OPT �X� � ��

Observation ���� For a set I of items and �uid vol�

ume W � let OPT �I�W � denote the optimal bin covering

using items from I and completing bins with at most W
amount of �uid� Then OPT �L� s�S�� � OPT �L � S��

Observation ����

OPT �L � S� � OPT �X�� bs�X�c�� ��� ���

Proof� Take an optimal packing of X � L�M �S�
We may assume jLj � bs�X�c�� since otherwise L � X
and the Observation holds trivially� Thus since OPT �
bs�X�c� the average number of large items per full bin
is at least ���� Remove the dbs�X�c�e full bins that
contain the most large items� There are at least this
many bins by Observation 
�
 and our assumption that
� � ��
� Note also that by our assumption that �
is the reciprocal of an integer� we have dbs�X�c�e �
bs�X�c�������� These bins collectively contain at least
bs�X�c large items� which can now be used in place of
the medium items in the rest of the packing� We have
thus constructed a packing of L � S which �lls at least
OPT �X�� bs�X�c�� ��� �� bins�

Observations 
�
� 
��� and 
�� su�ce to handle
the case when s�X� � ����� and we �ll at least
OPT �L� s�S�� bins� In this case we have

A�X� � OPT �X�� bs�X�c�� ��� ��

� OPT �X���� 
��� �� ��� ��

� OPT �X���� 
��� �

When s�X� � ������ we pay an extra price for using
the rounding procedure of Steps 
a through 
c� We can
analyze the rounding procedure as in ����� Let Lsup

denote the set obtained by� for each i� rounding the
values of the elements of Gi upwards� to the value of
the smallest element of Gi�� �or to � if i � ��� We
have Linf � L � Lsup in the sense that items can be
put in one
to
one correspondence so that each item of
Linf is no larger than the corresponding item of L which
is itself no larger than the corresponding item of Lsup�
Thus

OPT �Linf � s�S�� � OPT �L� s�S�� � OPT �Lsup� s�S���



�

Notice now that all groups have cardinality p or p � ��
so that Lsup can be obtained from Linf by removing
the p � � smallest elements and adding p elements
of size � plus possibly one more element �to account
for when the group size switches from p � � to p��
Thus OPT �Lsup� s�S�� � OPT �Linf � s�S�� � p � �
and� recalling that p � jLj��� the solution of the
linear program satis�es

P
C x

�
C � OPT �Linf � s�S�� �

OPT �L� s�S��� jLj�� � ��
Since there are only ������ constraints other than

the non
negativity constraints� a basic optimal solution
x� �which itself can be found in polynomial time by
standard techniques� has at most � � ���� fractional
coordinates and so

P
C yC �

P
C x

�
C � �� � ������

The additional shortfall due to the rounding pro

cedure is thus at most �jLj�� � �� � �� � ������
Working through the math �and using the fact that
s�X� � ������ we conclude that in this case� A�x� �
OPT �X��� � ��� � � which means that in all cases�
A�x� � OPT �X��� � ��� � �� which su�ces to prove
that we have a PTAAS�

Note that although this asymptotic approximation
scheme is a close analog in performance to the one of
���� for bin packing� it does not come close to the poly

nomial time bin packing algorithm of Karmarkar and
Karp ����� which guaranteed a packing with A�L� �
OPT �L��O�log��OPT �L���� That algorithm improved
on the one of ���� by taking � to be a function of n but
not stating the resulting �superpolynomial
size� LP ex

plicitly �or solving it exactly�� Instead the algorithm
used a column
generation approach to �nd new vari

ables when needed �based on approximation schemes for
the knapsack problem�� A similar approach could prob

ably be used in the context of our algorithm to solve the
LP that arises when s�X� � ������ However� it won�t
work for the case of our algorithm where s�X� � �����
and we must resort to an exhaustive search over a space
exponential in ���� Thus for now it remains an open
question as to whether a Karmarkar
Karp type algo

rithm is possible for bin covering�

� Robust Online Algorithms

In this section� we consider two approaches to adapting
the Sum
of
Squares algorithm for bin packing to pro

duce a bin covering algorithm that both has sublinear
expected waste for all perfect
packing distributions and
has a relatively small constant bound on RA

��

Algorithm SSNFr � We �rst consider a class of
direct hybrids of SS and NF � Algorithm SSNFr� r � �
maintains two separate packings� one governed by SS
and one by NF � If the current total number of full bins
is less than r times the number of partially �lled bins

in the SS packing� the next item is put into the NF
packing� otherwise it is put into the SS packing�

Theorem ���� For all r � �� RSSNFr
� � �



� �

�r � 

�

Proof� Let f be the number of full bins in the �nal
packing of a list L� and let p be the number of partially
full bins in the �nal SS packing� By the de�nition
of the algorithm� SSNFr�L� � f � r�p � ��� Since
every full bin contains items of total size less than 
�
every partially �lled bin contains items of total size less
than �� and the NF packing has at most one partially
�lled bin� we have OPT �L� � s�L� � 
f � p � � �

f � f�r � 
 � SSNFr�L��
 � ��r� � 
� The theorem
follows by standard mathematical manipulations�

Theorem ���� If F is a discrete perfect�packing distri�

bution and r � �� EWSSNFr
n � O�

p
n��

Proof� Assume the instance is scaled so that the
bin size is B and all item sizes are integers� as can be
done for any discrete distribution� In the �nal packing�
let fNF and fSS denote the numbers of full bins in the
NF and SS packings� respectively� and similarly let
pNF and pSS be the numbers of partially �lled bins�
The total waste consists of the total excess over B in
the full bins plus the contents of the partially �lled bins�
Since no bins are over�lled under SS� no bin can receive
total contents exceeding 
B under NF � and there is at
most one partially
�lled in the NF packing� we thus can
bound the waste by B�fNF � pSS � ���

Now� as shown in ����� E�pSS� � O�
p
nB�� which is

O�
p
n� for �xed B� And by the operation of SSNF �

whenever an item is added to the NF packing� the
number of full bins in the NF packing is at most r
times the number of partially
�lled bins under SS� The
technical di�culty here is that this only says that fNF

is bounded by a constant times the maximum number
of partially �lled bins during the course of the SS
packing� not the �nal number� Here is where martingale
arguments come in� The key lemma from ���� that
yielded a bound on the expected number of partially
�lled bins under SS when F was a perfect
packing
distribution can be stated as follows�

Lemma ������ Let F be a discrete distribution satisfy�

ing EWOPT
n �F � � O�

p
n�� Then given any packing P

and an item x randomly generated according to F � SS
will pack x in such a way that the expected increase in

ss�P � is at most ��

We wish to use this lemma to bound the maximum

number of partially �lled bins during the packing pro

cess� Let Pi denote the SS packing after i items have



�

been packed� ni�j denote the number of bins with level

j in Pi� and ss�Pi� �
PB��

i�� ni�j � The key observation
is that Lemma ��
�� implies that the sequence of ran

dom variables Xi � �i� ss�Pi� is a submartingale� By
Proposition ���� in ���� we thus have for all x � �

p

�
min
��i�n

Xi � �x
�
� EjXnj �E�X��

x
�����

Note that E�ss�Pi�� � � for all i � �� so that the right
hand side of ����� is at most �n�x� We thus have

p

�
max
��i�n

ss�P � � �n� x

�
� �n

x
���
�

Let Wi denote the number of partially full bins in Pi�
Now by the Cauchy
Schwartz inequality� we have that
for any packing Pi�

Wi �
B��X
j��

ni�j �
p
B � �

vuutB��X
j��

n�i�j �
p
B � ss�Pi�

�����
Thus by ���
� we have

p

�
max
��i�n

Wi �
p
B��n� x�

�
� �n

x
�����

This allows us to conclude that the expected maximum
number of partially �lled bins

E

�
max
��i�n

Wi

�

�
p
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p
Bn

From this we can conclude that the expected waste
under SSNFr is less than �r�������
�

p
Bn�� which

for �xed B is O�
p
n��

Algorithm SST � The performance of SSNFr can
be dominated by that for NF when the distribution is
not a perfect
packing distribution� and NF �s average

case performance is typically unimpressive� Thus it
is worth looking for more robust alternatives� To
this end� we have devised the Sum�of�Squares�with�

Threshold algorithm �SST �� In this algorithm� we keep
track not only of the counts ni� � � i � B � �� but also

of f � the number of bins currently �lled to level � B�
and s� the sum of the sizes of the items seen so far� At
any time� the current threshold is

T �

�

B� if f � �
max�B� �s�f�� ��� otherwise

To pack an item x� the algorithm considers all the ways
to insert x into a partially
�lled bin or into a new bin
and� among all the possibilities that yield a bin level
� T � chooses the one that minimizes the value of ss�P �
for the resulting packing P � �Note that ss�P � continues
to be a sum over only the counts for partially �lled bins��
Ties are broken �rst in favor of �lling a bin� and then
in favor of the bin whose new level will be closest to B�

Theorem ���� RSST
� � ����

Proof� To prove this� it su�ces to show that
s�L��B � �SST �L�� Consider the last time a new bin
was started and� with a slight overloading of notation�
let x denote both the item that started the new bin
and its size� We partition the partially �lled bins of the
current packing P into x classes Xi� � � i � x� where
Xi consists of all those bins whose levels are congruent
to i �mod x��

Claim ������ For each nonempty class Xi� the average

level is more than �T � x��
�

Proof of Claim� We use the fact that since x
started a new bin� its placement caused an increase in
the sum
of
squares potential function ss�P � and hence�
by the de�nition of SST � all legal ways of packing x into
a partially �lled bin of P must also increase ss�P �� Let

b � minfh � ni�hx � �g
t � maxfh � i� hx � Bg

Observe that ni�cx � ni��c���x for all c� b � c � t�
Otherwise� there would have to be a c in this range
such that ni�cx � � but ni��c���x � ni�cx� In this case�
however� placing x into a bin with level i � cx would
be a legal placement that does not increase ss�P �� a
contradiction�

Note that as a consequence of the previous observa

tion we must have ni�tx � �� which in turn implies that
i � �t � ��x � T � as otherwise we could legally place x
in a bin with level i � tx which would �ll the bin and
so reduce ss�P �� Thus the average level of bins in class
Xi is at leastPt

c�b�i� cx�

t� b� �
� i�

x�b� t�




�
T � x� i� b



�
T � x



�



�

Since the Claim holds for all the nonempty Xi� this
implies that the average level of all partially �lled bins
in P is at least �T � x��
�

Let F and U denote the number of full and partially
�lled bins and at the time x was packed� Let F � be such
that B�F �F �� is total volume of items in full bins� By
the de�nition of the threshold T in the description of
the algorithm SST �

T �
B�F � F �� � U�T � x��


F
� �

This implies

F �
BF � � U�T � x��


T � ��B
�
�F � � U��T � x�


�T � �B � ��� � F � � U




After x is packed� no new bins are started by
assumption� and the only way that the waste can grow is
if new items are added to the partially �lled bins� Note
that the worst situation is if all the partially
�lled bins
are �lled to level B��� If any partially
�lled bin were to
be completely �lled� the total waste would increase by at
most 
B�� while the number of full bins would increase
by �� which would drive the ratio of �s�L��B��F down
toward 
� and we are only trying to prove an upper
bound of �� Thus at the end of the packing of L� we
will in the worst
case have

s�L��B � F � F � � U � F � 
F � �SST �L��

as required�

Theorem ���� For any discrete perfect�packing distri�

bution F � EWSST
n � O�n�����

Proof� We �rst observe that by the operation of
SST � the expected increase in ss�P � at any step is no
more than it would be under SS� so the martingale
arguments used to prove Theorem ��
 still apply� Thus
we can conclude from ����� with x � �n��� that for some
�xed c the probability that the maximum number of
partially �lled bins ever encountered under SS exceeds
cn��� is at most ��n���� We break into cases�

In those instances for which the maximum number
of partially �lled bins exceeds cn���� the waste can be
no more than nB� so the contribution to the overall
expected waste is at most nB�n��� � Bn���� In those
instances where the cn��� bound applies� we can argue
that the threshold T must in bounded time decline to
B and stay there� since the contribution of the partially
�lled bins to the sum of item sizes s becomes less and
less signi�cant� and when T � B� newly
�lled bins must
have contents at least � unit less than the average for
previously �lled bins� Once T converges to B� the

waste due to overfull bins can no longer grow� Since
by assumption the waste due to partially �lled bins is
at most cn���� the desired overall asymptotic bound
follows� Details postponed to the full paper�

We implemented the bin covering algorithms NF �
SSNFr� r � f�� �g� and SST � and tested them on
the discrete distributions covered for bin packing in
����� We also determined the asymptotic expected ratios
of OPT �Ln�F �� to s�Ln�F �� for these distributions
using the linear programs described in the next section�
Experimental results� although limited� support our
conjecture about the superiority of SST � Figures �
through � cover our results for the interval distributions
Uf��� j� ���g� in which the bin size is ��� and the
item sizes are �� through j� equally likely� This set
of distributions was chosen for the variety of optimal
behavior it exhibits�

Figure � compares the asymptotic expected ratios
of OPT �Ln�F �� to s�Ln�F �� for bin packing and bin
covering under these distributions� as a function of j�
�� � j � ��� The j�s for which Uf��� j� ���g is a
perfect
packing distribution are those for which both
curves coincide with the horizontal line at ����� The
straight lines leaving the frame continue to be straight
outside the frame� Note that for the non
perfect

packing distributions� the departure from ratio � is more
pronounced for bin covering than bin packing�
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Figure 
 compares the performance of NF � SSNF

and SST on these distributions for n � ���� with
averages taken over � instances� �We also tested
SSNF�� whose behavior was typically worse than that
for SSNF
 on the non
perfect
packing distributions��
Note that SST outperforms SSNF
 for all non
perfect
packing distributions and is better than NF �typically
substantially so� for all j � ��� and within � for
j � f��� ��g� SSNF
 on the other hand is substantially
outperformed by NF for several j�

Given that SST intentionally leaves bins partially
full� one might expect it not to do well until n is fairly
large� Figure � indicates that this is not the case�
at least with reference to the competition� Here the
algorithms �including SSNF�� are compared for the
above distributions when n � ���� with averages now
taken over ������ instances so that equivalent precision
can be obtained� Here both SSNF� and SSNF
 are
always outperformed by NF � while SST holds its own
for small j and then pulls signi�cantly ahead as j
increases�

� Online Algorithms that are Asymptotically

Optimal for all Discrete Distributions

We begin by showing that for any �xed discrete distri

bution F there is an O�nB� algorithm SSF such that

ERSSF

� �F � � �� We then indicate how to use these to
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build a learning algorithm SS� that has ERSS�

� �F � � �
for all discrete distributions F �

The algorithms SSF are built using the linear pro

grams alluded to in the previous section for determining
the optimum expected waste rate for a given distribu

tion F � These linear programs are similar to those pre

sented for bin packing in ����� Suppose our discrete
distribution is as described above� with a bin capacity
B� integer item sizes s�� s�� � � � � sJ � and rational proba

bilities p�� p�� � � � � pJ �

Let us say that a bin has level h if the total size of
the items it contains is h� Our linear program �LP� will
have JB variables v�j� h�� � � j � J and � � h � B���
where v�j� h� represents the rate at which items of size
sj go into bins whose current level is h� There are three
sets of constraints� The �rst two essentially say that
all items are packed into bins that were at the time
incompletely �lled�

v�j� h� � �� � � j � J� � � h � B � � �����

B��X
h�	

v�j� h� � pj � � � j � J �����

The third set of constraints says that bins with a given
level are created at least as fast as they disappear�
To formulate these constraints� we use the following



�

shorthand to denote the net rate of creation of bins with
level h� � � h � 
B � 
�

x�h� �

JX
j��

v�j� h� sj��
JX
j��

v�j� h�

where the values of v�k� h� sk� when h� sk � � and of
v�j� h� when h � B are taken to be � by de�nition for
all h and k� Our �nal set of constraints is then simply

x�h� � � � � h � B � � �����

To specify the LP�s optimization criterion� let

w �

B��X
h��

h � x�h�

w �

�B��X
h�B��

�h�B�x�h�

Note that these correspond to the waste due to under

and over�lling bins� respectively� We wish to minimize

c�F � 	 w � w� �����

We then have the following analog of Theorem ��� from
����� which will be proved in the full paper�

Theorem ���� There is a constant 	B� depending on

B but not otherwise on F � such that for all su	ciently

large n



EWOPT
n �F �� nc�F �



 � 	B
p
n �����

and

lim
n��

E

� jPOPT
n �F �j

s�Ln�F ���B

�
� �� c�F �PJ

i�� sipi
� ������

Note that if c�F � � � then F has the perfect packing
property� and so we can simply use the Sum
of
Squares
bin packing algorithm SS for SSF � By the results in
����� its expected waste �in bin packing terms� will be
O�
p
n� and can be at most B times that in bin covering

terms� which is still O�
p
n� for �xed F �

Suppose� however� that c�F � � � and so F does
not have the perfect packing property� We now derive a
new distribution F � that does have the perfect packing
property from F � We begin by modifying p to a new
function q � f�� � � � � B � �g 
 Q that will be our
new probability distribution� This is accomplished in
stages� We begin by setting q��h� �

P
s�j��h p�j��

� � h � B��� Then� from the values of the variables in
an optimal solution to the LP� we derive the rates r�i� j�

at which items of size i create over�lled bins with total
contents B � j� For � � h � B � �� de�ne

q��h� � q��h��
h��X
i��

r�i� j� �

B��X
i�h��

r�i� i� h��

For each r�i� j� this is equivalent to replacing r�i� j�
items of size i with items of size i � j� which in e�ect
gets rid of all the over�lled bins in the optimal packing
speci�ed by the LP� To get rid of the under�lled bins�
we set q��h� � q��h� � x�B � h� and normalize to a

probability distribution by letting !x �
PB��

h�� x�h� and
setting

q�h� �
q��h�

� � !x
� � � h � B � ��

It is not di�cult to show that the distribution F �

determined by q has the perfect packing property� and
hence if packed by SS will have O�

p
n� waste� Our

algorithm SSF works by simulating the SS packing
of a list generated according F � while packing a list
generated according to F � We do this by a combination
of introducing imaginary items and truncating real
items� The basic packing loop goes as follows�

First� we �ip a biased coin and with probability
!x��� � !x�� we decide to generate an imaginary item�
The size of the imaginary item is chosen to be h with
probability x�B � h��!x� This item is then added to the
packing according to the SS rule� For the purposes of
the packing� it takes up space just like a real item� but
at the end of the packing a bin containing an imaginary
item may not really be full� in which case all its �real�
contents will be declared wasted�

If the coin �ips the other way� then we take the
next item from our online list of real items to be packed�
Let h be its size� and let r�h� �� � q��h��

Ph��
i�� r�i� j��

Then declare the �truncation� t for the item to be i with
probability r�h� i��q��h�� � � i � h� and pack it using
SS� treating it from now until the end of the packing as
if its size is really h � t� If in the end this item is in a
full bin� that bin will actually be over�lled by at least t�
and this item can thus contribute t to the overall waste
for the �nal packing�

It is easy to verify that� counting the imaginary
items and truncations as real� this process produces the
SS packing of a list L of items generated according to
F �� and that the expected length of L is n�� � !x� � 
n�
including n!x imaginary items� Thus by the results of
���� for SS� this packing is expected to contain at most
O�
p
n� wasted space�
Let us now consider separately the additional waste

caused by imaginary items and by truncated items� An
imaginary item of size i in a full bin of the SS packing
can cause real items of total �truncated� size at most



��

B � i to be wasted� Since imaginary items of size i
are generated with probability x�B � i��!x whenever an
imaginary item is generated� the expected total waste
of this sort is thus at most

n!x

B��X
i��

�B � i�
x�B � i�

!x
� n

B��X
i��

ix�i� � nw�

Item truncation can cause additional waste in two ways�
First� it can cause a bin to be over�lled� Second� it can
cause a bin that contained an imaginary item of size i
to yield more than B � i real waste� In either case� the
additional waste attributable to the item is at most the
amount by which it was truncated� Thus the expected
waste due to item truncation is at most

n

B��X
h��

h��X
i��

r�h� i��i� � n

B��X
i��

B��X
h�i��

r�h� i��i�

� n

B��X
i��

x�B � i��i� � nw

From this we can conclude that the expected waste
is within O�

p
n� of the expected waste in an optimal

solution� and so ERSSF

� �F � � ��
Our algorithm SS� that has ERSS�

� �F � � � for all
discrete distributions F works by re�ning its estimate
Fi of F at ever increasing intervals� solving the LP� and
then applying SSFi until the next re�nement� Details
and proofs will appear in the full paper�
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