
Constraints, 7, 289–315, 2002
© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Consistency Techniques in Ordinary
Differential Equations

YVES DEVILLE AND MICHA JANSSEN {yde, mja}@info.ucl.ac.be
Université catholique de Louvain, Pl. Ste Barbe 2,
B-1348 Louvain-la-Neuve, Belgium

PASCAL VAN HENTENRYCK pvh@cs.brown.edu
Box 1910, Brown University, Providence, RI 02912, USA

Abstract. This paper takes a fresh look at the application of interval analysis to ordinary differential equa-
tions and studies how consistency techniques can help address the accuracy problems typically exhibited by
these methods, while trying to preserve their efficiency. It proposes to generalize interval techniques into a
two-step process: a forward process that computes an enclosure and a backward process that reduces this
enclosure. Consistency techniques apply naturally to the backward (pruning) step but can also be applied to
the forward phase. The paper describes the framework, studies the various steps in detail, proposes a number of
novel techniques, and gives some preliminary experimental results to indicate the potential of this new research
avenue.

Keywords: consistency, continuous problems, differential equations

1. Introduction

Differential equations (DE) are important in many scientific applications in areas such
as physics, chemistry, and mechanics to name only a few. In addition, computers play a
fundamental role in obtaining solutions to these systems.

The Problem

A (first-order) ordinary differential equation (ODE) system � is a system of the form

u1
′�t�= f1�t� u1�t�� � � � � un�t��

u2
′�t�= f2�t� u1�t�� � � � � un�t��

���

un
′�t�= fn�t� u1�t�� � � � � un�t��

In the following, we use the vector representation u′�t� = f �t� u�t�� or, more simply,
u′ = f �t� u�. We will also assume that function f is sufficiently smooth. Given an initial
condition u�t0� = u0 and assuming existence and uniqueness of a solution, the solution
of � is a function s∗
 � → �n satisfying � and the initial condition s∗�t0� = u0. Note

290 Y. DEVILLE, M. JANSSEN AND P. VAN HENTENRYCK

Figure 1. (a) Discrete methods. (b) Interval methods.

that differential equations of order p (i.e., f �t� u�u′� u′′� � � � � u�p�� = 0) can always be
transformed into an ODE by introduction of new variables.

Example 1. Given the ODE u′�t� = −u2�t�, and the initial condition u�0� = 0�1, the
solution is the function s∗�t�= 1

t+10 .

There exist different mathematical methods for proving the existence and uniqueness
of a solution of an ODE system with initial value. But, in practice, a system is generally
required, not only to prove existence, but also to produce numerical values of the solution
s∗�t� for different values of variable t. Although, for some classes of ODE systems, the
solution can be represented in closed form (i.e., combination of elementary functions), it
is safe to say that most ODE systems cannot be solved explicitly [10]. For instance, the
innocent-looking equation u′ = t2+u2 cannot be solved in terms of elementary functions!

Discrete variable methods aim at approximating the solution s∗�t� of any ODE system,
not over a continuous range of t, but only at some points t0� t1� � � � � tm (see Figure 1.(a)).
Discrete variable methods include one-step methods (where s∗�tj� is approximated from
the approximation uj−1 of s∗�tj−1�) and multistep methods (where s∗�tj� is approximated
from the approximations uj−1� � � � � uj−p of s∗�tj−1�� � � � � s

∗�tj−p�) [10]. In general, these
methods do not guarantee the existence of a solution within a given bound and may
suffer from traditional numerical problems of floating-point systems.

Interval Analysis in ODE

Interval techniques for ODE systems were introduced by Moore [14]. These methods
provide numerically reliable enclosures of the exact solution at points t0� t1� � � � � tm (see
Figure 1.(b)). To achieve this result, they typically apply a one-step Taylor interval
method and make extensive use of automatic differentiation to obtain the Taylor coeffi-
cients [1, 5, 15, 17, 18]. A description and a bibliography of the application of interval
analysis to ODE systems can be found in [2]. An extended bibliography on enclosure
methods and related topics is also given in [3].

The major problem of interval methods on ODE systems is the explosion of the size of
resulting boxes at points t0� t1� � � � � tm. There are mainly two reasons for this explosion.
On the one hand, step methods have a tendency to accumulate errors from point to point.

CONSISTENCY TECHNIQUES 291

On the other hand, the approximation of an arbitrary region by a box, called the wrapping
effect, may introduce considerable loss of accuracy after a number of steps. One of the
best systems in this area is Lohner’s AWA [13, 20]. It uses the Picard iteration to prove
existence and uniqueness and to find a rough enclosure of the solution. This rough
enclosure is then used to compute correct enclosures using a mean value method and the
Taylor expansion on a variational equation on global errors. It also applies coordinate
transformations to reduce the wrapping effect.

Goal of the Paper

This paper mainly serves two purposes. First, it provides a unifying framework to extend
traditional numerical techniques to intervals providing reliable enclosures. In particular,
the paper shows how to extend explicit and implicit, one-step and multistep, methods
to intervals. Second, the paper attempts to take a fresh look at the traditional problems
encountered by interval techniques and to study how consistency techniques may help. It
proposes to generalize interval techniques into a two-step process: a forward process that
computes an enclosure and a backward process that reduces this enclosure. In addition,
the paper studies how consistency techniques may help in improving the forward process
and the wrapping effect.

The techniques are reasonably simple mathematically and algorithmically and were
motivated by the same intuitions as the techniques at the core of the Numerica system
[24]. In this respect, they should complement well existing methods. But, as was the
case for Numerica, only extensive experimental evaluation will determine which com-
binations of these techniques are useful in practice and which application areas they are
best suited for. Preliminary experimental results illustrate the potential benefits.

The techniques presented herein are complementary, and would benefit, those pro-
posed in the ACLP language [11]. ACLP provides an interval-based constraint language
allowing higher-order objects, which makes it possible to state differential equations.
ODE systems in ACLP are transformed into a set of basic constraints according to the
classical (one-step) Taylor interval method. Although the basic constraints are solved
by an interval-based constraint solver, this approach is (roughly) equivalent to classical
interval techniques for ODE systems.

Contribution

The main contribution of this paper is to take a fresh look at the solving of ODE systems
using interval analysis and to show that consistency techniques can play a prominent role
in solving these systems in the future. It presents a generic framework consisting of a
forward phase (typical in interval analysis) and a backward phase to prune the enclosure
(one of the main contributions of this paper). The paper also shows how consistency
techniques can help both of these phases to reduce the accuracy problem.

This paper is a framework paper that pioneers some new directions. It is a revised
and extended version of [8] where the idea of applying consistency techniques for the

292 Y. DEVILLE, M. JANSSEN AND P. VAN HENTENRYCK

generation and for the reduction of enclosures was first described. Since the publication
of its conference version, several results have indicated the potential of these extensions
[12, 16]. Reference [12] proposes filtering operators based on enclosures of interpolation
polynomials to reduce the enclosures, while reference [16] proposes a filtering operator
based on a Hermite theorem. As mentioned, these results seem to indicate that the
combination of interval analysis and consistency techniques is an interesting avenue
for further research.

Organization

The rest of this paper is organized as follows. Section 2 provides the necessary back-
ground and notations. Section 3 presents the generic algorithm that can be instantiated to
produce the various methods. Section 4 describes how to find bounding boxes. Section 5
describes the forward phase. Section 6 discusses the backward phase, i.e., the pruning
component. Section 7 presents some experimental results. Section 8 concludes the paper.

2. Background and Definitions

This paper uses rather standard notations of interval programming. � denotes the set of
� -numbers, � the set of boxes ⊆�n whose bounds are in � , � the set of intervals ⊆�
whose bounds are in � , and D (possibly subscripted) denotes a box in �. Given a
real r and a subset A of �n, r̄ denotes the smallest interval in � containing r and �A
the smallest box in � containing A. If a is an � -number, a+ and a− denote the next
and the previous � -numbers. A canonical interval is an interval of the form �a�a� or
�a�a+�, where a is an � -number. A canonical box is a tuple of canonical intervals. If
g is a function, ĝ and G denote interval extensions of g. We also use gi�x� and Gi�D�
to denote the ith component of g�x� and G�D�. As usual, the interval relation ≈ is an
interval extension of equality, i.e., D1 ≈ D2 if D1 ∩D2 �=
. For vectors, we use the
notations uk = �u0� � � � � uk�, Dk = �D0� � � � �Dk�, and tk = �t0� � � � � tk�.

Because the techniques proposed in this paper use multistep solutions (which are
partial functions), it is necessary to define interval extensions of partial functions.

Definition 1 (Interval extension of a partial function). Let g be a (total) function, and
h be a partial function. We denote

g�D�= �g�x� � x ∈D�
h�D�= �h�x� � x ∈D and x is in the domain of h��

The interval function G (resp. H) is an interval extension of g (resp. h), if for all D :
g�D�⊆G�D� (resp. h�D�⊆H�D��.

CONSISTENCY TECHNIQUES 293

The solution of an ODE system can be formalized mathematically as follows.

Definition 2 (Solution of an ODE system with initial value). A solution of an ODE
system � with initial value u�t0�= u0 is a function s∗�t�
 �→ �n satisfying � and the
initial conditions s∗�t0�= u0.

In this paper, we restrict attention to ODE systems that have a unique solution for a
given initial value. Techniques to verify this hypothesis numerically are given in the
paper. Moreover, as mentioned, the objective is to produce (an approximation of) the
values of the solution function s∗ of the system � at different points t0� t1� � � � � tm. It is
thus useful to adapt the definition of a solution to account for this practical motivation.

Definition 3 (Solution of an ODE system). The solution of an ODE system � is the
function

s�t0� u0� t1�
 �×�n×�→ �n

such that s�t0� u0� t1� = s∗�t1�, where s∗ is the solution of � with initial conditions
u�t0�= u0.

The solution of an ODE system � can be used to obtain the solution of � at any point
for any initial value.

Some methods for solving ODEs are multistep methods that compute the value at
point tk from values at point tj−k� � � � � tj−1 (for some k > 1). Obviously, the values at
points t1� � � � � tk−1 must be computed by some other method. We extend our definition
of solution to account for these methods.

Definition 4 (Multistep solution of an ODE). The multistep solution of an ODE system
� is the partial function ms
 A⊆ ��k× ��n�k×��→ �n defined by

ms�tk−1�uk−1� t�= s�t0� u0� t� if ui = s�t0� u0� ti� for 1 ≤ i ≤ k−1

undefined otherwise,

where s is the solution of �.

Note that the multistep solution is only defined when �t0� u0�� � � � � �tk−1� uk−1� are on
the same solution function.

The next definition introduces the concept of bounding box that is fundamental to
prove the existence and the uniqueness of a solution to an ODE system over a box and
to bound the errors.

Definition 5 (Bounding box). Let s be the solution of an ODE system �. A box B is a
bounding box of s in �t0� t1� wrt D if, for all t ∈ �t0� t1�, s�t0�D� t�⊆ B.

Informally speaking, a bounding box is thus an enclosure of the solution on the
whole interval �t0� t1�. The following proposition is an interesting topological property
of solutions.

294 Y. DEVILLE, M. JANSSEN AND P. VAN HENTENRYCK

Theorem 1 Let � be an ODE system u′ = f �t� u� with f ∈ � (i.e., f is continuous),
let s be the solution of � (i.e., existence and uniqueness), and let Fr�D� be the frontier
of D. Then,

1. s�t0�D� t1� is a compact and connected set;

2. s�t0�Fr�D�� t1� is the frontier of s�t0�D� t1�.

Proof: Particular case of Theorem 3 (see Appendix). �

As a consequence, s�tj−1�Dj−1� tj� can be computed by considering the frontier of
Dj−1 only.

3. The Generic Algorithm

The interval methods described in this paper can be viewed as instantiations of a generic
algorithm. It is useful to present the generic algorithm first and to describe its compo-
nents in detail in the rest of the paper. The generic algorithm, presented in Figure 2, is
parametrized by three procedures: a procedure to compute a bounding box, since bound-
ing boxes are fundamental in obtaining enclosures, a step procedure to compute forward,
and a procedure to prune the enclosures. Procedure BoundingBox computes a bounding
box of an ODE system in an interval for a given box. Procedure Step computes a box
approximating the value of s∗�tj� given the approximations of s∗�tk� �0 ≤ k ≤ j − 1�
and the bounding boxes B0� � � � �Bj−1. Procedure Prune prunes the box Dj at tj using
the previous boxes. The intuition underlying the basic steps of the generic algorithm is
illustrated in Figure 3. The fundamental novelty in this generic algorithm is the Prune
(or backward) component that is a natural place to integrate consistency techniques in
traditional interval techniques as recent results have shown [12]. The next three sec-
tions review these three components. Note however that it is possible to use several step
procedures, in which case the intersection of their results is also an enclosure.

Figure 2. The generic Solve algorithm.

CONSISTENCY TECHNIQUES 295

Figure 3. Computing correct enclosures of the solution.

4. The Bounding Box

This section considers how to obtain a bounding box for an ODE system. As will become
clear later on, bounding boxes are fundamental to obtain reliable solutions to ODE
systems. Bounding boxes will be used to bound the error terms, or more precisely to
compute interval extensions of these error terms. The traditional interval techniques to
obtain bounding boxes are based on the Picard operator [9, 15].

Theorem 2 (Picard operator). Let D0 and B be two boxes such that D0 ⊆B, let �t0� t1�
∈ � , and let h = t1 − t0. Let � be an ODE system u′ = f �t� u�, where f is continuous
and has a continuous Jacobian (i.e first-order partial derivatives) over �t0� t1�. Let be
the transformation (Picard Operator)

 �B�=D0 + �0� h�F��t0� t1��B�
where F is an interval extension of f .

If �B�⊆ B, then

1. The ODE system � with initial value u�t0� ∈D0 has a unique solution s over �t0� t1�;

2. �B� is a bounding box of s in �t0� t1� wrt D0.

Theorem 2 can be used for proving existence and uniqueness of a solution and for
providing a bounding box [4, 13]. The specification and a typical algorithm for Bound-
ingBox are given in Figure 4. Notice that D0 is always included in the bounding box,
and that a bounding box is also a first (rough) enclosure of the solution at t1. If B is a

296 Y. DEVILLE, M. JANSSEN AND P. VAN HENTENRYCK

Figure 4. A BoundingBox specification and a possible algorithm.

bounding box, �B� is also a bounding box, included in B. The Widen function pro-
vides a (strictly) larger box. The algorithm does not necessarily terminate successfully.
This occurs when BB becomes too large as we only work with finite intervals and �
is finite. In that case, the step size should be reduced. The existence of the Jacobian of
f , not handled in this algorithm, can be checked numerically by evaluating its interval
extension over the box. Note also that the Picard operator uses a Taylor expansion of
order 1. It can be generalized for higher orders, which may allow the step size to be
increased, at the cost of more computation per step.

5. The Step Component

This section describes the Step component. Step methods are presented in isolation.
However, as mentioned previously, they can be used together, since the intersection of
their results is also a step method. We concentrate here on one-step methods. Exten-
sions to multistep methods and the treatment of the wrapping effect are described in the
Appendix.

In a one-step method, an enclosure Dj is obtained from the enclosure Dj−1 and a
bounding box. It is thus a simplified version of our Step component, and it is specified
in Figure 5. The Step function computes an interval extension of the solution s. Such
an interval extension will be called an interval solution.1

Definition 6 (Interval solution of an ODE system). Let s be the solution of an ODE
system �. An interval solution of � is an interval extension S of s, i.e.,

∀ t0� t1 ∈ � �D0 ∈�
 s�t0�D0� t1�⊆ S�t0�D0� t1�

Figure 5. Specification of the Step component for one-step methods.

CONSISTENCY TECHNIQUES 297

There exist different families of interval solutions depending on the underlying numer-
ical method (explicit or implicit) and on the computation approach (direct or piecewise).

5.1. Explicit One-Step Methods

We first describe traditional numerical methods, move to traditional interval methods,
and propose improvements which can be obtained from consistency techniques.

Traditional Numerical Methods

To understand traditional interval methods, it is useful to review traditional numerical
methods. In explicit one-step methods, the solution s of an ODE system � is viewed as
the summation of two functions.

Definition 7 (Explicit one-step solution). An explicit one-step solution of an ODE sys-
tem � is the solution s of �, expressed in the form

s�t0� u0� t1�= sc�t0� u0� t1�+ e�t0� u0� t1��

where the function sc is computable while the function e is not.

As a consequence, a traditional numerical method based on an explicit one-step method
is an algorithm of the form

forall �i in 1��m�

ui
= sc�ti−1� ui−1� ti�$

This algorithm tries to approximate the solution s∗�t� for an initial value u�t0�= u0.

Example 2 (Taylor method). The Taylor method is one of the best known explicit one-
step methods where the functions sc and e are given by the Taylor expansion of a given
order p, i.e.,

scT �t0� u0� t1�= u0 +hf �0��t0� u0�+
h2

2
f �1��t0� u0�+· · ·+ h

p

p! f
�p−1��t0� u0�

eTi �t0� u0� t1�=
hp+1

�p+1�!f
�p�
i �&i� s�t0� u0� &i��

where, for a given u0, we have t0 < &i < t1, 1 ≤ i ≤ n.
In the Taylor method, only scT is computed as the error function eT is uncomputable.

298 Y. DEVILLE, M. JANSSEN AND P. VAN HENTENRYCK

Direct Interval Extensions

Traditionally, interval solutions are often constructed by considering an explicit one-step
solution s�t0� u0� t1�= sc�t0� u0� t1�+ e�t0� u0� t1�, by taking an interval extension SC of
sc and by using a bounding box to bound the error function e to obtain a function of
the form S�t0�D0� t1�= SC�t0�D0� t1�+E�t0�D0� t1�.

Definition 8 (Direct explicit one-step interval solution). Let s�t0� u0� t1�= sc�t0� u0� t1�+
e�t0� u0� t1� be an explicit one-step solution of an ODE system �. A direct explicit one-
step interval solution of s is an interval solution S of the form

S�t0�D0� t1�= SC�t0�D0� t1�+E�t0�D0� t1��

where SC is an interval extension of sc, and E is an interval extension of e.

Example 3 (Taylor interval solution). The Taylor Interval Solution of order p of an
ODE system � is defined as

ST �t0�D0� t1�=D0 +hF �0��t0�D0�+
h2

2
F �1��t0�D0�+· · ·+ h

p

p! F
�p−1��t0�D0�

+ET �t0�D0� t1�

ET �t0�D0� t1�=
hp+1

�p+1�!F
�p���t0� t1��B0�

where h= t1 − t0, B0 is a bounding box of s in �t0� t1� wrt D0, and the interval functions
F �j� are interval extensions of functions f �j� inductively defined as follows [14] (f �j� is
the “total jth derivative of f wrt t”)

fi
�0��t� u�t���= fi�t� u�t��

fi
�j��t� u�t��= *fi

�j−1��t� u�t��

*t
+ ∑

1≤m≤n

*fi
�j−1��t� u�t��

*um
fm

�0��t� u�t��

More information on automatic generation of the value of these functions can be found
in [1, 5, 15, 17, 18].

It is worth noticing that a bounding box B0 is used here to obtain an interval extension
ET of the error function eT . The Taylor interval method, based on the Taylor interval
solution, is the classical interval method for solving ODE [14].

Other classical methods such as Runge-Kutta can be turned into interval solutions.
However, as the error term contains the Taylor error term, these interval methods do not
usually provide better enclosures.

CONSISTENCY TECHNIQUES 299

Mean Value Form

In an explicit interval solution, intervals are growing as D0 ⊆ S�t0�D0� t1�. Mean value
forms have been proposed to use contraction characteristics of functions and may (and
usually do) return smaller intervals. From an explicit one-step solution

s�t0� u0� t1�= sc�t0� u0� t1�+ e�t0� u0� t1�

we may apply the mean value theorem on sc�t0� u� t1� (on variable u) to obtain

si�t0� u� t1�= sci�t0�m� t1�+
n∑
j=1

(
*sci
*�u�j

)
�t0� &i� t1��uj−mj�+ ei�t0� u� t1�

for some &i between u and m (1 ≤ i ≤ n). As a consequence, any interval solution of s
may serve as a basis to define a new interval solution.

Definition 9 (MVF solution of an ODE system). Let D be a box �I1� � � � � In�, mi be
the center of Ii, and SM = SCM +EM be an interval solution of an ODE system �. The
MVF solution of � in D wrt SM , denoted by -M�t0�D� t1�, is the interval solution

SCM�t0� �m1� � � � �mn�� t1�+
n∑
i=1

̂(
*sc

*�u�i

)
�t0�D� t1��Ii−mi�+EM�t0�D0� t1�

In the above definition, the interval function ̂(*sc
*�u�i

)
can be evaluated by automatic dif-

ferentiation, during the evaluation of SC�t0�D� t1�.
Mean value form of Taylor expression has already been used in [13].

Piecewise Interval Solution

Direct interval techniques propagate entire boxes through interval solutions. As a conse-
quence, errors may tend to accumulate as computations proceed. This section investigates
a new variety of techniques inspired by, and using, consistency techniques that can be
proposed to reduce the accumulation of errors. The main idea, which is used several
times in this paper and was inspired by box-consistency, is to propagate small boxes as
illustrated in Figure 6.

Definition 10 (Piecewise explicit one-step interval solution). Let s�t0� u0� t1�= sc�t0� u0,
t1�+ e�t0� u0� t1� be an explicit one-step solution to an ODE system �. A piecewise
explicit one-step interval solution of s is a function S�t0�D� t1� defined as

S�t0�D0� t1�=��SC�t0� u0� t1� � u0 ∈D0�+E�t0�D0� t1�

where SC is an interval extension of sc, and E is an interval extension of e.

Piecewise interval solutions of an ODE system are not only a theoretical concept: they
can in fact also be computed. The basic idea here is to express piecewise interval solution
as unconstrained optimization problems.

300 Y. DEVILLE, M. JANSSEN AND P. VAN HENTENRYCK

Figure 6. A piecewise interval solution.

Proposition 1 Let s�t0� u0� t1�= sc�t0� u0� t1�+e�t0� u0� t1� be an explicit one-step solu-
tion to an ODE system �. A piecewise explicit one-step interval extension of s is a
function S�t0�D� t1� defined as

Si�t0�D0� t1�=
[
min
u∈D0

SCi�t0� u� t1��max
u∈D0

SCi�t0� u� t1�
]
+Ei�t0�D0� t1� �1 ≤ i ≤ n�

where SC is an interval extension of sc, and E is an interval extension of e.

Note that these minimization problems must be solved globally to guarantee reliable
solutions. In [8], we discuss how a system like Numerica may be generalized to solve
these problems. The efficiency of the system of course depends on the step size, on the
size of D0, and on the desired accuracy. It is interesting to observe that the function
SC does not depend on the error term and hence methods that are not normally con-
sidered in the interval community (e.g., Runge-Kutta method) may turn beneficial from
a computational standpoint. It is of course possible to sacrifice accuracy for computa-
tion time by using projections, the fundamental idea behind consistency techniques. For
instance, interval methods are generally very fast on one-dimensional problems, which
partly explains why consistency techniques have been used successfully to solve systems
of nonlinear equations.

Definition 11 (Box-piecewise explicit one-step interval solution). Let s�t0� u0� t1� =
sc�t0� u0� t1�+ e�t0� u0� t1� be an explicit one-step solution to an ODE system �. A
box-piecewise explicit one-step interval solution of s wrt dimension i is a function
Si�t0�D� t1� defined as

Si�t0� �I1� � � � � In�� t1�=��SC�t0� �I1� � � � � Ii−1� r̄� Ii+1� � � � � In�� t1� � r ∈ Ii�
+E�t0�D0� t1�

CONSISTENCY TECHNIQUES 301

where SC is an interval extension of sc, and E is an interval extension of e. The box-
piecewise explicit one-step interval solution of s wrt E and B0 is the function

S�t0�D0� t1�=
⋂
i∈1��n

Si�t0�D0� t1�

Each of the interval solutions reduces to a one-dimensional (interval) unconstrained opti-
mization problem. The following property is a direct consequence of the use of interval
extensions in the (box-)piecewise approaches.

Proposition 2 ((Box-)piecewise explicit one-step interval solution). The piecewise and
box-piecewise one-step interval solutions are interval solutions.

In essence, box-piecewise solutions safely approximate a multi-dimensional problem by
the intersection of many one-dimensional problems. Of course, it is possible, and prob-
ably desirable, to define notions such as box(k)-piecewise interval solutions where pro-
jections are performed on several variables. Finally, notice that in the above definitions,
an interval extension E�t0�D0� t1� of the error function e is needed. Such an extension
will use a bounding box over the whole box D0. More precise interval solutions could
be obtained if local error functions using local bounding boxes were considered in the
above definitions. It is easy to generalize our definitions to integrate this idea.

5.2. Implicit One-Step Methods

This section considers implicit one-step methods. It first reviews traditional numerical
methods and shows how they can be generalized to obtain interval methods. The presen-
tation essentially follows the same lines as the previous section.

Traditional Numerical Methods

In implicit one-step methods, the solution of ODE � is viewed as the solution of an
equation.

Definition 12 (Implicit one-step solution). An implicit one-step solution to an ODE
system � is the solution s of �, expressed in the form s�t0� u0� t1�= u1 where u1 is the
solution of an equation u1 = sc�t0� u0� t1� u1�+ e�t0� u0� t1�.

Since the error term cannot be computed in general, the above equation is replaced
in practice by its approximation u1 = sc�t0� u0� t1� u1�. As a result, an implicit one-step
method is an algorithm of the form

forall�i in 1��m�

ui
= solve�ui = sc �ti−1� ui−1� ti� ui��$

where solve(S) returns an element x in Solution(S), the set of solutions of S.

Example 4 (Trapezoid method). The trapezoid method is an implicit one-step method
that consists of solving, at each step, an equation of the form u1 = u0 + h

2 �f �t0� u0�+
f �t1� u1��.

302 Y. DEVILLE, M. JANSSEN AND P. VAN HENTENRYCK

Interval Methods

We now show how to generalize implicit one-step methods to intervals. The basic idea is
to replace the search for a solution to a system of equations by a search for the solutions
of a set of interval equations. The resulting interval solution can then be used as in
explicit methods.

Definition 13 (Direct implicit one-step interval solution). Let s�t0� u0� t1�= u1 where u1

is the solution of the equation u1 = sc�t0� u0� t1� u1�+e�t0� u0� t1� be an implicit one-step
solution of an ODE system �. Let SC be an interval extension of sc and E be an interval
extension of e. A direct implicit one-step interval solution of s is an interval function
S�t0�D0� t1�=D1 where

D1 =��D ⊆ B0 �D is canonical & D ≈ SC�t0�D0� t1�D�+E�t0�D0� t1��

and B0 is a bounding box of s in �t0� t1� wrt D0. As defined in Section 2, canonical boxes
are the smallest representable boxes.

Note that this definition amounts to finding all solutions of an “interval equation” in a
box. The definition uses the bounding box as the initial search space. However, any step
method can be used instead to provide a smaller search space.

Example 5 (Trapezoid interval method). The trapezoid interval solution of the trapezoid
method requires the solving of the interval-valued equation

D ≈ SC�t0�D0� t1�D�+E�t0�D0� t1�

with

SC�t0�D0� t1�D�=D0 +
h

2
�F�t0�D0�+F�t1�D��

E�t0�D0� t1�=
h3

12
F �2���t0� t1��B0�

where h = t1 − t0, F is an interval extension of f , and B0 is a bounding box of s in
�t0� t1� wrt D0.

It is possible to improve this result by incorporating the idea of piecewise interval
solution proposed earlier. Coarser extensions can be defined in a similar way as well.

Implicit methods based on Taylor expression have already been developed in [19].

Definition 14 (Piecewise implicit one-step interval solution). Let s�t0� u0� t1�= u1 where
u1 is the solution of the equation u1 = sc�t0� u0� t1� u1�+e�t0� u0� t1� be an implicit one-
step interval solution of an ODE system �. Let SC be an interval extension of sc and E
be an interval extension of e. A piecewise implicit one-step interval solution of s is an
interval function S�t0�D0� t1�=D1 where

D1 =��D ∈ B0 �D ≈ SC�t0�Dc� t1�D�+E�t0�D0� t1�

& Dc ⊆D0 & D�Dc are canonical�

and B0 is a bounding box of s in �t0� t1� wrt D0.

CONSISTENCY TECHNIQUES 303

6. The Pruning Component

As mentioned earlier, the major problem of interval methods for solving ODE systems
is the explosion of the size of the enclosures at points t0� t1� � � � � tm. One of the main
reasons for this explosion is that step methods have a tendency to accumulate errors from
point to point. Basically, applying a step method at tj to a canonical box produces a box
at tj+1 which is not necessarily canonical. Finding pruning methods for reducing the size
of enclosures is thus essential for practical applications of interval-based methods for
solving ODE.

This section describes how to use consistency techniques to prune the enclosures.
Section 6.1. recalls how pruning takes place in nonlinear programming and shows that
the main difficulty in ODE systems is in finding ways of determining that a box cannot
contain a solution. Algorithms to do so are called filters in this paper and are defined
formally in Section 6.2. Section 6.3. then defines box-consistency for ODE systems in
terms of filters. The remaining sections presents various possible filters.

6.1. Pruning in Nonlinear Programming

In nonlinear programming, a constraint c�x1� � � � � xn� can be used almost directly for
pruning the search space (i.e., the cartesian products of the intervals Ii associated with
the variables xi). It suffices to take an interval extension C�X1� � � � �Xn� of the constraint.
Now if C�I ′1� � � � � I

′
n� does not hold, it follows, by definition of interval extensions, that

no solution of c lies in I ′1× � � �×I ′n. This basic property can be seen as a filtering operator
that can be used for pruning the search space in many ways, including box(k)-consistency
as in Numerica [23, 24]. Recall that a constraint C is box(1)-consistent wrt I1� � � � � In
and xi if the condition

C�I1� � � � � Ii−1� �li� l
+
i �� Ii+1� � � � � In�∧C�I1� � � � � Ii−1� �u

−
i � ui�� Ii+1� � � � � In�

holds where Ii = �li� ui�. The pruning algorithm based on box(1)-consistency reduces the
interval of the variables without removing any solution until the constraint is box(1)-
consistent wrt the intervals and all variables. Stronger consistency notions, e.g., box(2)-
consistency, are also useful for especially difficult problems [22]. It is interesting here
to distinguish the filtering operator, i.e., the technique used to determine if a box cannot
contain a solution, from the pruning algorithm that uses the filtering operator in a specific
way to prune the search space.

6.2. Filters in ODE

Let us now define what a filter is in the context of ODE systems.

Definition 15 (Filter of an ODE system). A filter or filtering operator of an ODE system
� is an interval constraint FL such that if ∀1 ≤ i ≤ k
 s�t0� u0� ti� ∈Di then FL�tk�Dk�
holds.

304 Y. DEVILLE, M. JANSSEN AND P. VAN HENTENRYCK

Given boxes Dk at tk, the objective of a filter is thus to test the existence of a solution
of � that goes through all the boxes. The number k of boxes has to be defined in actual
instances of the filtering operator. How can we use a filter to obtain tighter enclosures
of the solution? A simple technique consists of pruning the last enclosure produced by
the forward process. A subbox D ⊆Dk can be pruned away if the condition

FL�tk� �D0� � � � �Dk−1�D��
does not hold.

6.3. Box-Consistency for ODE

We are now in position to define box consistency for ODE, aiming at pruning the enclo-
sures without losing any solution.

Definition 16 (Interval projection of an ODE system). An interval projection ODE
��� i� is the association of an ODE � and of an index i (1 ≤ i ≤ n).

Definition 17 (Box consistency of an ODE system). Let FL be a filter of ODE. An
interval projection ODE ��� i� is box-consistent at tj�Dj wrt �t0� � � � � tj−1� tj+1� � � � � tk�
and �D0� � � � �Dj−1�Dj+1� � � � �Dk� if

Ii =�� pi ∈ Ii � FL�tk� �D0� � � � �Dj−1�DP
i
j�Dj+1� � � � �Dk���

where Dj = �I1� � � � � In��
DPij = �I1� � � � � Ii−1� pi� Ii+1� � � � � In��

An ODE system � is box-consistent if its projections are box-consistent.

A specification of the Prune procedure for our generic Solve algorithm, based on
box consistency, is given in Figure 7. In the above definition, box consistency can be
achieved for the different enclosures Dj . In the context of ODE with initial value, one can
show that in our generic Solve algorithm, it is sufficient to achieve the box consistency
of the current enclosure. For other classes of problems (such as problems where enclo-
sures are initially given at different points [6]), pruning realized at the current enclosure
must be propagated through all the enclosures to achieve the box consistency. Stronger
consistency notions, such as box(k)-consistency, could also be defined easily. Notice that

Figure 7. Specification of the Prune component based on box consistency.

CONSISTENCY TECHNIQUES 305

different filters can also be combined. Finally, it is also important to mention that the
filtering operator can be used in many different ways, even if only the last enclosure is
considered for pruning. For instance, once a box D ⊆ Dk is selected, it is possible to
prune the boxes D0� � � � �Dk−1 using, say, the forward process run backwards as already
suggested in [8]. This makes it possible to obtain tighter enclosures, thus obtaining a
more effective filtering algorithm for D.

As usual, box consistency can be defined in a more procedural form that can be used
in practical consistency algorithms.

Proposition 3 Let FL be a filter of ODE, Dj = �I1� � � � � In�, and Ii = �li� ri�. An inter-
val projection ODE ��� i� is box-consistent at tj�Dj wrt �t0� � � � � tj−1� tj+1� � � � � tk� and
�D0� � � � �Dj−1�Dj+1� � � � �Dk�� iff, when li �= ri,

FL�tk� �D0� � � � �Dj−1�DL
+i
j �Dj+1� � � � �Dk��

∧FL�tk� �D0� � � � �Dj−1�DR
−i
j �Dj+1� � � � �Dk��

and, when li = ri,
FL�tk� �D0� � � � �Dj−1�DL

i
j�Dj+1� � � � �Dk��

where DL+i
j = �I1� � � � � Ii−1� �li� l

+
i �� Ii+1� � � � � In��

DR−i
j = �I1� � � � � Ii−1� �r

−
i � ri�� Ii+1� � � � � In��

DLij = �I1� � � � � Ii−1� �li� li�� Ii+1� � � � � In��
Traditional propagation algorithms can now be defined to enforce box-consistency of
ODE systems.

6.4. Filters Based on Backward Computation

The fundamental intuition in this filter is illustrated in Figure 8. We know that all the
solutions at t0 are in D0. If, in D1, there is some box H such that S�t1�H� t0�∩D0 =
,

Figure 8. Pruning based on backward computation.

306 Y. DEVILLE, M. JANSSEN AND P. VAN HENTENRYCK

then we know that the box H is not part of the solution at t1. In other words, it is
possible to use the step methods backwards as a filter to determine whether pieces of
the box D1 can be pruned away.

Proposition 4 (Backward Filter). Let S be a one-step interval solution of an ODE
system �.

FL�t0� t1�D0�D1�≡D0 ∩S�t1�D1� t0� �=

is a filtering operator.

We thus have different filters for the different one-step interval methods. Notice that
using the same interval method in the Step component and in the filter does not preclude
some pruning.

6.5. Filters Based on Implicit Methods

We already showed how traditional implicit numerical methods can be turned into
implicit interval methods. These interval methods amount to finding all solutions D
of an interval constraint of the form

D ≈ SC�t0�D0� t1�D�+E�t0�D0� t1��

Instead of solving this constraint, it can also be used as a filter.

Proposition 5 (Implicit filter). Let s�t0� u0� t1� = u1, where u1 is the solution of the
equation u1 = sc�t0� u0� t1� u1�+e�t0� u0� t1�, be an implicit one-step solution of an ODE
system �. Let SC be an interval extension of sc and E be an interval extension of e.

FL�t0� t1�D0�D1�≡D1 ∩ �SC�t0�D0� t1�D1�+E�t0�D0� t1�� �=

is a filtering operator.

6.6. Filters Based on Polynomial Interpolation

A second approach that we developed in [12] aims at using the equation u′ = f �t� u�
as a filter. This equation cannot be used directly since u and u′ are unknown functions.
Assuming that we have at our disposal the multistep solution ms, the equation u′ = f �t� u�
can be rewritten into

*ms

*t
�tk�uk� t�= f �t�ms�tk�uk� t���

At first sight, of course, this equation may not appear useful since ms is still an unknown
function. However, it is possible to obtain interval extensions of ms and *ms

*t
by using,

CONSISTENCY TECHNIQUES 307

say, polynomial interpolations together with their error terms. If MS and DMS are such
interval extensions, then we obtain an interval equation

DMS�tk�Dk� t�= F�t̄�MS�tk�Dk� t��
that can be used as a filtering operator

FL�tk�Dk��

A complete description of these filters as well as experimental results can be found
in [12].

7. Experimental Results

This section compares some standard interval techniques with piecewise interval solu-
tions, and the use of filtering operators. The goal is to show that consistency techniques
in the Step component and in the Prune component can bring substantial gain in preci-
sion. The results were computed with Numerica with a precision of 1e-8, using optimal
bounding boxes.

Consider the ODE u′�t�=−u�t� for an initial box �−1�1� at t0 = 0. Figure 9 compares
the results obtained by an interval Taylor method of order 4 with step size 0.5, the results
obtained by the piecewise interval extension of the same method, and the exact solutions.
Relative errors on the size of the boxes are also given. As can be seen, the intervals of
the traditional Taylor method grow quickly, although this function is actually contracting.
The piecewise interval extension, on the other hand, is close to the exact solutions and
is able to exploit the contraction characteristics of the function.

Consider now the ODE u′�t�=−u2�t� for an initial box [0.1, 0.4] at t0 = 0. Figure 10
compares the results obtained by a mean value form of a Taylor method of order 4, the
results obtained by the piecewise interval extension of the Taylor method of order 4,
and the exact solutions. Once again, it can be seen that the standard method leads to

Figure 9. ODE u′�t�=−u�t�.

308 Y. DEVILLE, M. JANSSEN AND P. VAN HENTENRYCK

Figure 10. ODE u′�t�=−u2�t�.

an explosion of the size of the intervals, while the piecewise interval extension is close
to the exact results. Note that the Taylor method of order 4 also behaves badly on this
ODE.

Our final example is the ODE u′�t� = −10�u�t�− sin�t��+ cos�t�, which is a stiff
problem. Figure 11 compares the piecewise interval extension of the Taylor method
(order 4), and the result obtained by an interval Taylor method (order 4) with a Prune
step, using box consistency, with a filter based on polynomial interpolation. It shows
an explosion of the piecewise Taylor method, although it is the best forward method
possible. The pruning step, although applied on a classical interval Taylor forward step,
substantially reduces the explosion in this case. This clearly shows that the pruning step
is orthogonal to the forward step (since it improves the best possible forward step). Other
experiments are presented in [8, 12].

Figure 11. ODE u′�t�=−10�u�t�− sin�t��+ cos�t�.

CONSISTENCY TECHNIQUES 309

8. Conclusion

This paper studied the application of interval analysis and consistency techniques to
ordinary differential equations. Its main contribution is to take a fresh look at the solving
of ODE systems using interval analysis and to show that consistency techniques may play
a prominent role in solving these systems in the future. It presented a generic framework
consisting of a forward phase (typical in interval analysis) and a backward phase to
prune the enclosures produced by the forward phase (one of the main contributions of
this paper). The paper also shows how consistency techniques can help both of these
phases to reduce the accuracy problem. In particular, it presented various approaches
to prune the enclosures that seem to produce significant improvement in accuracy in
practice.

This paper is a revised and extended version of [8] where the idea of applying con-
sistency techniques for the generation and for the reduction of enclosures was first
described. Since the publication of its conference version, several results [12, 16] have
appeared, which are natural instantiations of the framework proposed herein. Reference
[12] proposes filtering operators based on enclosures of interpolation polynomials to
reduce the enclosures, while reference [16] proposes a filtering operator based on a Her-
mite theorem. These results seem to indicate that the combination of interval analysis
and consistency techniques is indeed an interesting avenue for further research. Extensive
experimental evaluation of these ideas is the next natural step to validate this belief and
will be our main research topic in the near future.

Acknowledgment

Many thanks to Philippe Delsarte for fruitful discussions. We would also thank review-
ers for their helpful and constructive comments. This research is partially supported
by the Actions de recherche concertées (ARC/95/00-187) of the Direction générale de
la Recherche Scientifique – Communauté Française de Belgique, the Belgian Fonds
National de la Recherche Scientifique, and by an NSF NYI award.

Appendix

A.1. Proofs of the Results
We prove here Theorem 3, a general version of Proposition 1. We begin with two lemmas. The first one is

classical; the proof of the second one is straightforward.

Lemma 1 Let A ⊆ �n and g
 A→ �m be continuous on A. If A is a compact (resp. connected) set, then
g�A� is a compact (resp. connected) set.

Lemma 2 A is a closed set iff Fr�A�⊆ A.

The following proposition guarantees continuity of the solution s of ODE u′ = f �t� u� under the (weak)
condition that f be a continuous function [9].

310 Y. DEVILLE, M. JANSSEN AND P. VAN HENTENRYCK

Proposition 6 (Continuity of the solution s of an ODE). Let f be continuous on an open �t� u�-set E⊆�×�n

with the property that for every �t0� u0� ∈ E, the initial value problem �u′ = f �t� u��u�t0�= u0� has a unique
solution u�t� ≡ s�t0� u0� t�. Let T�t0� u0� be the maximal interval of existence of u�t� = s�t0� u0� t�. Then s is
continuous on ��t0� u0� t���t0� u0� ∈ E� t ∈ T�t0� u0��.

The following proposition states sufficient conditions of a function such that the image of the frontier of a
compact set is the frontier of the image of this set. Two proofs will be given. The first one, based on elementary
analysis, is longer but is self-contained. The second proof, provided by a reviewer, is elegant and much shorter;
it reduces the property into an isomorphism on topologies.

Proposition 7 Let U ⊆ �n be an open set. Let D ⊆ U be a compact set. If the function g
 U → �m is
continuous on U , and if the inverse function g−1 exists and is continuous on an open set V ⊇ g�D�, then
g�Fr�D��= Fr�g�D��.
Proof (Version 1): By Lemma 1, g�D� is a closed set. Thus, by Lemma 2, Fr�g�D��⊆ g�D�. As a conse-
quence, we have to show that:

�a� x ∈ Int�D�⇒ y = g�x� ∈ Int�g�D��$

�b� y ∈ Int�g�D��⇒ x = g−1�y� ∈ Int�D��

(a) Assume that x ∈ Int�D� and y = g�x�. Let us choose 6 > 0 such that

B�x�6�⊆D� (1)

There exists such an 6 since, by hypothesis, x ∈ Int�D�. As V is an open set and y ∈ g�D�⊆ V , we can
find 71 > 0 satisfying:

B�y�71�⊆ V �

Function g−1 is continuous on V , so there exists 72 such that 0< 72 < 71 and verifying

g−1�B�y�72��⊆ B�x�6��

By (1), we obtain

g−1�B�y�72��⊆D�

Thus, we have

B�y�72�⊆ g�D��

which means that y ∈ Int�g�D��.

(b) Similar to (a), using the continuity of function g. �

Proof (Version 2): By the hypotheses, g induces a homeomorphism between g−1�V � and V (i.e. a 1-1,
bicontinuous map), thus it induces an isomorphism on the topologies (i.e. a 1-1 correspondence between open
sets). Since the frontier is defined entirely in topological terms, g�Fr�D��= Fr�g�D��. �

The main theorem is basically an application of Proposition 7 on the solution of an ODE system. We will
use the following notation. Let g
 �×� → �
 �x� y� �→ g�x� y� and let a ∈ �. Then, g�a�•� denotes the
one-variable function g�a�•�
 �→�
 y �→ g�a� y�. A similar definition holds for g�•� a�. The generalization
to �n → �m (partial) functions is straightforward.

CONSISTENCY TECHNIQUES 311

Theorem 3 (Topological property of the solution s of an ODE). Let f be continuous on an open �t� u�-set
E ⊆ �×�n with the property that for every �t0� u0� ∈ E, the initial value problem �u′ = f �t� u��u�t0� = u0�

has a unique solution u�t�≡ s�t0� u0� t�. Let T be an open interval and t0� t1 ∈ T . Let U ⊆ �n be an open set
such that ��t0� u0��u0 ∈ U�⊆ E. Let D ⊆ U be a compact and connected set. Let V be an open set such that
s�t0�D� t1�⊆ V and ��t1� u1��u1 ∈ V�⊆ E. If s�t0� u0�•� is defined on T for each u0 ∈ U and if s�t1� u1�•� is
defined on T for each u1 ∈ V , then

1. s�t0�D� t1� is a compact and connected set;

2. s�t0�Fr�D�� t1�= Fr�s�t0�D� t1��.
Proof: 1. Lemma 1.

2. By Proposition 6, function s�t0�•� t1� is continuous on U and function s�t1�•� t0� is continuous on V . We
can then apply Proposition 7, by instantiating g← s�t0�•� t1� and g−1 ← s�t1�•� t0�. �

A.2. The Step Component: Multistep Methods
In a multistep method, an enclosure Dj is obtained from enclosures Dj−k� � � � �Dj−1, and the associated

bounding boxes. The number k of enclosures is called the order of the multistep method. The Step function,
specified in Figure A1, computes an interval extension of the multistep solution ms. Such an interval extension
will be called a multistep interval solution.

Definition 18 (Multistep interval solution of an ODE system). Let ms be the multistep solution of an ODE
system �. A multistep interval solution of � is an interval extension S of ms, i.e.,

∀ tk−1� tk�Dk−1ms�tk−1�Dk−1� tk�⊆ S�tk−1�Dk−1� tk�

Explicit Multistep Methods

In explicit multistep methods, the solution s of ODE � is decomposed as follows:

ms�tk−1�uk−1� tk�=msc�tk−1�uk−1� tk�+ e�tk−1�uk−1� tk� (2)

These methods can be generalized to intervals in a way similar to one-step methods. For brevity, we only
give an example of such an interval method.

Example 6 (Adams-Bashforth interval solution (order 4)). Let h be ti − ti−1 for 1 ≤ i ≤ 4. The Adams-
Bashforth multistep interval solution of order 4 is the multistep interval solution

SAB��t0� t1� t2� t3�� �D0�D1�D2�D3�� t4�B�=D4

where

D4 =D3 +
h

24
�55F�t3�D3�−59F�t2�D2�+37F�t1�D1�−9F�t0�D0��+

251h5

720
F �4���t0� t4��B�

and B is a bounding box of s in �t0� t4� wrt D0. Notice that F �4���t0� t4��B� can be approximated by ��∪0≤i<4

F �4���ti� ti+1��Bi�� where Bi is a bounding box of s in �ti� ti+1� wrt Di .

Figure A1. Specification of the Step component for multistep methods (of order k).

312 Y. DEVILLE, M. JANSSEN AND P. VAN HENTENRYCK

Implicit Multistep Methods

Implicit multistep methods can be defined in a similar fashion. Let uk =ms�tk−1�uk−1� tk�. The value of uk is
the solution of the equation

uk = msc�tk−1�uk−1� tk� uk�+ e�tk−1�uk−1� tk�

Example 7 (Adams-Moulton implicit interval solution (order 3)). Let h= ti− ti−1 for 1 ≤ i ≤ 3. The Adams-
Moulton implicit multistep interval solution is the function defined as

SAM��t0� t1� t2�� �D0�D1�D2�� t3�B�=D3

where

D3 =��D ∈ B �D ≈D2 +
h

24
�9F�t3�D�+19F�t2�D2�−5F�t1�D1�+F�t0�D0��

+ −19h5

720
F �4���t0� t3��B�

& D is canonical

& B is a bounding box of s in �t0� t3� wrt D0��

A.3. Wrapping Effect
The wrapping effect is the name given to the error resulting from the enclosure of a region (which is

not a box) by a box. It only occurs for multidimensional functions. In one dimension, a perfect interval
extension of a continuous function g always yields the correct interval. However, a perfect interval extension
of a multidimensional function g introduces overestimations in the resulting box, because the set g�D� =
�g�d� � d ∈D� is not necessarily a box. This effect is especially important when the enclosure is used for
finding a new region which is also enclosed by a box. The wrapping effect is thus central in interval methods
for ODE. The following classical example, due to Moore [14] and explained in [4], illustrates this problem:

u′ =
(

0 1
1 0

)
u with u0 ∈

(−0�1 0�1
0�9 1�1

)

The trajectories of individual point-valued solutions of this ODE are circles in the ��u�1� �u�2�-phase space.
The set of solution values is a rotated rectangle. Figure A2(a) shows that the resulting boxes at tj−1, tj , tj+1.

Figure A2. (a) The wrapping effect (b) Reducing the overestimation by coordinate transformation.

CONSISTENCY TECHNIQUES 313

Figure A3. Coordinate transformation on 9-boxes.

Moore shows that the width of the enclosures grow exponentially even if the stepwise (tj − tj−1) converges to
zero. The wrapping effect can be reduced by changing the coordinate system at each step of the computation
process. The idea is to choose a coordinate system more appropriate to the shape of s�tj−1�Dj−1� tj �, hence
reducing the overestimation of the box representation of this set, as illustrated in Figure A2(b).

An appropriate coordinate system has to be chosen at each step. Assuming that such coordinate systems
are given by mean of (invertible) matrices Mj , a naive approach, based on an explicit one-step method, would
consist of computing

Dj
= S�tj−1�Mj−1�D
′
j−1� tj �$

D′
j
=M−1

j Dj

where D′
j and D′

j−1 are the boxes at tj and tj−1 in their local coordinate system. This approach is naive since it
introduces three wrapping effects: in Mj−1D

′
j−1 to restore the original coordinate system needed to compute S,

in the computation of S, and in the computation of M−1
j Dj to produce the result in the new coordinate system.

To remedy this limitation, more advanced techniques (see, for instance, [13, 21, 7]) have been proposed but
they are all bound to a specific step procedure. For instance, Lohner merges the two naive steps together using
a mean value form and use associativity in the matrix products to try eliminating the wrapping effect. More
precisely, the key term to be evaluated in his step method is of the form �M−1

j JMj−1�D
′
j−1 and the goal is to

choose M−1
j so that M−1

j JMj−1 is close to an identity matrix.
Piecewise interval solutions, however, reduce the wrapping effect in the naive method substantially, as

illustrated in Figure A3. The overestimations of Mj−1 ·D′
j−1 and M−1

j Dj on 9-boxes introduce wrapping effects
that are small compared to the overall size of the box and to the benefits of using piecewise interval extensions.
In addition, this reduction of the wrapping effect is not tailored to a specific step method. The basic idea is
thus (1) to find a linear approximation of s�tj−1�Mj−1 ·D′

j−1� tj �; (2) to compute the matrix M−1
j from the linear

relaxation; (3) to apply the naive method on 9-boxes. Step (1) can be obtained by using, for instance, a Taylor
extension, while Step (2) can use Lohner’s method that consists of obtaining a QR factorization of the linear
relaxation. Lohner’s method has the benefit of being numerically stable.

Note

1. As usual, interval solutions could also be defined on particular subsets of � and �.

314 Y. DEVILLE, M. JANSSEN AND P. VAN HENTENRYCK

References

1. Aberth, O. (1988). Precise Numerical Analysis. William Brown, Dubuque, IA.

2. Berz, M., Bischof, C., Corliss, G., & Griewank, A., eds. (1996). Computational Differentiation: Techniques,
Applications, and Tools. Philadelphia, Penn.: SIAM.

3. Bohlender, G. (1996). Literature on enclosure methods and related topics. Technical Report, www.uni-
karlsruhe.de/ Gred.Bohlender, Institut für Angewandte Mathematik, Universität Karlsruhe.

4. Corliss, G. (1995). Theory of Numerics in Ordinary and Partial Differential Equations, Light, W. A.,
Machetta, M. eds., Vol. IV, Chapt. Guaranteed Error Bounds for Ordinary Differential Equations,
pages 1–75. Oxford University Press.

5. Corliss, G. F. (1988). Applications of differentiation arithmetic. In Moore, R. E., ed., Reliability in Com-
puting. pages 127–148, Academic Press, London.

6. Cruz, J., & Barahona, P. (1999). An Interval constraint approach to handle parametric ordinary differential
equations for decision support. In Jaffar, J., ed., Principles and Practice of Constraint Programming
(CP99). pages 478–479.

7. Davey, D., & Stewart, N. (1976). Guaranteed error bounds for the initial value problem using polytope
arithmetic. BIT 16: 257–268.

8. Deville, Y., Janssen, M., & Van Hentenryck, P. (1998). Consistency techniques in ordinary differential
equations. In Maher, M., & Puget, J.-F. eds., Principles and Practice of Constraint Programming (CP98),
LNCS 1520, pages 162–176. Springer-Verlag.

9. Hartman, P. (1964). Ordinary Differential Equations. Wiley, New York.

10. Henrici, P. (1962). Discrete Variable Methods in Ordinary Differential Equations. John Wiley & Sons,
New York.

11. Hickey, T. (1999). Analytic constraint solving and interval arithmetic. Technical Report Cs-99-203, Mich-
tom School of Computer Science, Brandeis University.

12. Janssen, M., Deville, Y., & Van Hentenryck, P. (1999). Multistep filtering operators for ordinary differential
equations. In Jaffar, J., ed., Principles and Practice of Constraint Programming (CP99). LNCS 1713,
pages 246–260. Springer-Verlag.

13. Lohner, R. J. (1987). Enclosing the solutions of ordinary initial and boundary value problems. In Kaucher,
E. W., Kulisch, U. W., & Ullrich, C. eds., Computer Arithmetic: Scientific Computation and Programming
Languages. pages 255–286. Wiley-Teubner Series in Computer Science, Stuttgart.

14. Moore, R. (1966). Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ.

15. Moore, R. (1979). Methods and Applications of Interval Analysis. SIAM Publ.

16. Nedialkov, N. S. (1999). Computing rigorous bounds on the solution of an initial value problem for an
ordinary differential equation. Ph.D. thesis, University of Toronto.

17. Rall, L. B. (1980). Applications of software for automatic differentiation in numerical computation. In
Alefeld, G., & Grigorieff, R. D., eds., Fundamentals of Numerical Computation (Computer Oriented
Numerical Analysis), Computing Supplement No. 2. pages 141–156. Springer-Verlag, Berlin.

18. Rall, L. B. (1981). Automatic Differentiation: Techniques and Applications, LNCS 120, Springer-
Verlag.

19. Rihm, R. (1999). Implicit methods for enclosing solutions of ODEs. Journal of Universal Computer
Science 4(2): 202–209.

20. Stauning, O. (1996). Enclosing solutions of ordinary differential equations. Technical Report IMM-REP-
1996-18, Technical University of Denmark.

21. Stewart, N. (1971). A heuristic to reduce the wrapping effect in the numerical solution of ODE. BIT 11:
328–337.

CONSISTENCY TECHNIQUES 315

22. Van Hentenryck, P. (1998a). A constraint satisfaction approach to a circuit design problem. Journal of
Global Optimization, 13: 75–93.

23. Van Hentenryck, P. (1998b). A gentle introduction to numerica. Artificial Intelligence 103(1–2):
209–235.

24. Van Hentenryck, P., Laurent, M., & Deville, Y. (1997). Numerica, A Modeling Language for Global
Optimization. MIT Press.

