
Online Stochastic and Robust Optimization

Russell Bent and Pascal Van Hentenryck

Brown University, Box 1910, Providence, RI 02912

Abstract. This paper considers online stochastic optimization problems where
uncertainties are characterized by a distribution that can be sampled and where
time constraints severely limit the number of offline optimizations which can
be performed at decision time and/or in between decisions. It reviews our re-
cent progress in this area, proposes some new algorithms, and reports some new
experimental results on two problems of fundamentally different nature: packet
scheduling and multiple vehicle routing (MVR). In particular, the paper general-
izes our earlier generic online algorithm with precomputation, least-commitment,
service guarantees, and multiple decisions, all which are present in the MVR
applications. Robustness results are also presented for multiple vehicle routing.

1 Introduction

Online scheduling and routing problems arise naturally in many application areas and
have received increasing attention in recent years. Contrary to offline optimization, the
data is not available a priori in online optimization. Rather it is incrementally revealed
during algorithm execution. In many online optimization problems, the data is a set of
requests (e.g., packets in network scheduling or customers in vehicle routing) which are
revealed over time and the algorithm must decide which request to process next.

This research considers an online stochastic optimization framework which assumes
the distribution of future requests, or an approximation thereof, is a black-box available
for sampling. This is typically the case in many applications, where either historical data
and predictive models are available. The framework assumes that the uncertaintly does
not depend on decisions, an assumption which holds in a great variety of applications
and has significant computational advantages. Indeed, there is no need to explore trees
of scenarios and/or sequences of decisions. In addition, this research focus primarily on
online stochastic optimization under time constraints, which assumes that the time to
make a decision is severely constrained, so that only a few offline optimizations can be
performed at decision time and/or in between decisions. Online problems of this kind
arise in many applications, including vehicle routing, taxi dispaching, packet scheduling,
and online deliveries.

The paper reviews our recent progress in that area, proposes some new algorithms,
generalizes existing ones to accommodate a variety of significant functionalities, and
reports some new experimental results. All results are presented in a unified frame-
work, abstracting the contributions spread accross multiple papers and crystallizing the
intuition beyond the algorithmic design decisions.

The starting point is the generic online algorithm, initially proposed in [4], which
can be instantiated to a variety of oblivious and stochastic approaches. When no time

M.J. Maher (Ed.): ASIAN 2004, LNCS 3321, pp. 286–300, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Online Stochastic and Robust Optimization 287

constraints are present, the generic algorithm naturally leads to the “traditional” expec-
tation algorithm and to a novel hedging algorithm that provides an online counterpart to
robust optimization [10]. When time constraints are present, the critical issues faced by
the online algorithms is how to use their time wisely, since only a few scenarios can be
optimized within the time constraints. The generic algorithm can then be instantiated to
produce consensus [4] and regret [5], two algorithms which approximate expectation.

The generic online algorithm can be elegantly generalized to accommodate many
features that are critical in practical applications. In particular, the paper shows how it
can incorporate precomputation (to make immediate decisions), least-commitment (to
avoid suboptimal decisions), service guarantees (to serve all accepted requests), and
agregate decisions (to serve several requests simultaneously).

Various instantiations of the generic online algorithm are evaluated experimentally on
two fundamentally different applications: packet scheduling and multiple vehicle rout-
ing. These two applications represent two extremes in the landscape of online stochastic
optimization. Packet scheduling is of interest because of its simplicity: its offline prob-
lem is polynomial and the number of possible actions at each time step is small. As a
consequence, it is possible to study how consensus and regret approximate expectation
and hedging, as well as how all these algorithms behave under severe and less severe
time constraints. Multiple vehicle routing is of interest because of its complexity: its of-
fline problem is NP-hard and it features many of the modeling complexities of practical
applications.

The rest of this paper is organized as follows. Sections 2 and 3 present the online
stochastic framework and the generic online algorithm. Section 4 presents stochastic
algorithms for loose time constraints and Section 5 shows how these algorithms can be
approximated by consensus and regret under strict time constraints. Section 6 compares
the algorithms on packet scheduling under various time constraints. Section 7 gener-
alizes the online algorithm to incorporate precomputation, service guarantees, least-
commitment and pointwise consensus/regret. Finally, Section 8 presents experimental
results of the generalized algorithm to a complex multiple vehicle routing applications.

2 The Online Stochastic Framework

The Offline Problem. The framework assumes a discrete model of time. The offline
problem considers a time horizon H = [H,H] and a number of requests R. Each
request r is associated with a weight w(r) which represents the gain if the request is
served. A solution to the offline problem serves a request r at each time t ∈ H and can
be viewed as a function H → R. Solutions must satisfy the problem-specific constraints
which are left unspecified in the framework. The goal is to find a feasible solution σ
maximizing

∑
t∈H w(σ(t)). In the online version, the requests are not available initially

and become progressively available at each time step.

The Online Problem. The online algorithms have at their disposal a procedure to solve,
or approximate, the offline problem. They have also access to the distribution of future
requests. The distribution is seen as a black-box and is available for sampling. In practice,
it may not be practical to sample the distribution for the entire time horizon and hence
the sizes of the samples is an implementation parameter.

288 R. Bent and P. Van Hentenryck

onlineOptimization(H)
1 R← ∅;
2 w ← 0;
3 for t ∈ H
4 do R← availableRequests(R, t) ∪ newRequests(t);
5 r ← chooseRequest(R, t);
6 serveRequest(r, t);
7 w ← w + w(r);
8 R← R \ {r};

Fig. 1. The Generic Online Algorithm

Time Constraints. Practical applications often include severe time constraints on the
decision time and/or on the time between decisions. To model this requirements, the
algorithms may only use the offline procedure O times at each time step.

Properties of the Framework. The framework is general enough to model a variety of
practical applications, yet it has some fundamental computational advantages compared
to other models. The key observation is that, in many practical applications, the un-
certainty does not depend on the decisions. There is no need to explore sequences of
decisions and/or trees of scenarios: the distribution can be sampled to provide scenar-
ios of the future without considering the decisions. As a consequence, the framework
provides significant computational advantages over more general models such as multi-
stage stochastic programming [6] and partially observable Markov decision processes
(POMDPs) [9]. The simplicity of the framework also allows us to prove some nice
theoretical properties of the algorithms. These will be described in a forthcoming paper.

3 The Generic Online Algorithm

The algorithms in this paper share the same online optimization schema depicted in
Figure 1. They differ only in the way they implement function chooseRequest. The
online optimization schema simply considers the set of available and new requests at
each time step and chooses a request r which is then served and removed from the
set of available requests. Function availableRequest(R, t) returns the set of requests
available for service at time t and function serveRequest(r, t) simply serves r at time
t (σ(t) ← r). To implement function chooseRequest, the algorithms have at their
disposal two black-boxes:

1. a function optimalSolution(R, t, ∆) that, given a set R of requests, a time t, and
a number ∆, returns an optimal solution for R over [t, t + ∆];

2. a function getSample([ts, te]) that returns a set of requests over the interval [ts, te]
by sampling the arrival distribution.

To illustrate the framework, we specify two oblivious algorithms as instantiations of
the generic algorithm. These algorithms will serve as a basis for comparison.

Greedy (G): This algorithm serves the available request with highest weight. It can be
specified formally as

Online Stochastic and Robust Optimization 289

chooseRequest-G(R, t)
1 A← ready(R, t);
2 return argmax(r ∈ A) w(r);

Local Optimal (LO): This algorithm chooses the next request to serve at time t by find-
ing the optimal solution for the available requests at t. It can be specified as

chooseRequest-LO(R, t)
1 σ ← optimalSolution(R, t);
2 return σ(t);

4 Online Stochastic Algorithms Without Time Constraints

This section reviews two algorithms exploiting stochastic information. The first algo-
rithm optimizes expectation, while the second one hedges against the worst-case sce-
nario. These algorithms are appropriate when time constraints are loose (i.e., whenO is
large enough to produce high-quality results).

Expectation (E): Algorithm E chooses the action maximizing expectation at each time
step. Informally speaking, the method generates future requests by sampling and evalu-
ates each available request against that sample.A simple implementation can be specified
as follows:

chooseRequest-E(R, t)
1 A← ready(R, t);
2 for r ∈ A
3 do f(r)← 0;
4 for i← 1 . . .O/|A|
5 do S ← R ∪ getSample([t + 1, t + ∆]);
6 for r ∈ A
7 do f(r)← f(r) + (w(r) + w(optimalSolution(S \ {r}, t + 1)));
8 return argmax(r ∈ A) f(r);

Line 1 computes the requests which can be served at time t. Lines 2-3 initialize the
evaluation function f(j) for each request r. The algorithm then generates a number of
samples for future requests (line 4). For each such sample, it computes the set R of
all available and sampled requests at time t (line 5). The algorithm then considers each
available request r successively (line 6), it implicitly schedules r at time t, and applies the
optimal offline algorithm using S \{r} and the time horizon. The evaluation of request r
is updated in line 7 by incrementing it with its weight and the score of the corresponding
optimal offline solution. All scenarios are evaluated for all available requests and the
algorithm then returns the request r ∈ A with the highest evaluation. Observe Line 4
of Algorithm E which distributes the available offline optimizations across all available
requests.

Hedging (H): Algorithm H is an online adaptation of robust optimization, whose key
idea is to hedge against the worst-case scenario. In other words, the goal is to find, at

290 R. Bent and P. Van Hentenryck

each time step, a solution whose deviation with respect to the optimal solution is minimal
over all scenarios.

Definition 1 (Deviation). Let R be the set of requests at time t and r ∈ R. The deviation
of r wrt R and t, denoted by deviation(r,R, t), is defined as

| w(optimalSolution(R, t))− (w(r) + w(optimalSolution(R \ {r}, t + 1))) | .
The differences between algorithms E and H are Line 7 which computes the maxi-

mum deviation for the action and Line 8 which selects the action with minimum devia-
tion.

chooseRequest-H(R, t)
1 A← ready(R, t);
2 for r ∈ A
3 do f(r)← 0;
4 for i← 1 . . .O/|A|
5 do S ← R ∪ getSample([t + 1, t + ∆]);
6 for r ∈ A
7 do f(r)← max(f(r), deviation(r, R, t));
8 return argmin(r ∈ A) f(r);

Observe that algorithm E can be obtained from algorithm H by replacing line 7 with

f(r)← f(r) + deviation(r, R, t);

since E can be viewed as minimizing the average deviation.

5 Online Stochastic Algorithms Under Time Constraints

This section studies online optimization under time constraints, i.e., when the number
of optimizations at each time step t is small. As mentioned earlier, algorithms E and H
distribute the available optimizationsO across all requests (line 4). WhenO is small (due
to the time constraints), each request is only evaluated with respect to a small number of
samples and the algorithms do not yield much information. This is precisely why online
vehicle routing algorithms [2] cannot use E and H, since the number of requests is very
large (about 50 to 100), the time between decisions is relatively short, and optimization
is computationally demanding. The section shows how algorithm E can be approximated
and presents two approximation algorithms, consensus and regret. The regret algorithm
can also be adaped to approximate algorithm H.

Consensus (C): The consensus algorithm C was introduced in [4] as an abstraction of
the sampling method used in online vehicle routing [2]. Its key idea is to solve each sce-
nario once and thus to examine O scenarios instead of O/|A|. More precisely, instead
of evaluating each possible request at time t with respect to each sample, algorithm C
executes the offline algorithm on the available and sampled requests once per sample.
The request scheduled at time t in optimal solution σ is credited w(σ) and all other
requests receive no credit. Algorithm C can be specified as follows:

Online Stochastic and Robust Optimization 291

chooseRequest-C(R, t)
1 for r ∈ R
2 do f(r)← 0;
3 for i← 1 . . .O
4 do S ← R ∪ getSample([t + 1, t + ∆]);
5 σ ← optimalSolution(S, t);
6 f(σ(t))← f(σ(t)) + w(σ);
7 return argmax(r ∈ R) f(r);

Observe line 5 which calls the offline algorithm with all available and sampled
requests and a time horizon starting at t and line 6 which increments the number of
times request σ(t) is scheduled first. Line 7 simply returns the request with the largest
score. The main appeal of Algorithm C is its ability to avoid partitioning the available
samples between the requests, which is a significant advantage when the number of
samples is small and/or when the number of requests is large. Its main limitation is
its elitism. Only the best request is given some credit for a given sample, while other
requests are simply ignored. It ignores the fact that several requests may be essentially
similar with respect to a given sample. Moreover, it does not recognize that a request
may never be the best for any sample, but may still be extremely robust overall. The
regret algorithm shows how to gather that kind of information from the sample solutions
without solving additional optimization problems.1

Regret (R): The key insight in Algorithm R is the recognition that, in many applications,
it is possible to estimate the deviation of a request r at time t quickly. In other words,
once the optimal solution σ of a scenario is computed, it is easy to compute the deviation
of all the requests, thus approximating E with one optimization. This intuition can be
formalized using the concept of regret.

Definition 2 (Regret). A regret is a function that, given a request r, a set R (r ∈ R),
a time t, and an optimal solution σ = optimalSolution(R, t), over-approximates the
deviation of r wrt R and t, i.e.,

regret(r, R, t, σ) ≥ deviation(r,R, t).

Moreover, there exists two functions fo and fr such that

– optimalSolution(R, t) runs in time O(fo(R, ∆));
– regret(r, R, t, σ) runs in time O(fr(R, ∆));
– |A|fr(R, ∆) is O(fo(R, ∆)).

Intuitively, the complexity requirement states that the computation of the |A| regrets
does not take more time than the optimization. Regrets typically exist in practical appli-
cations. In an online facility location problem, the regret of opening a facility f can be

1 The consensus algorithms behaves very well on many vehicle routing applications because,
on these applications, the objective function is first to serve as many customers as possible.
As a consequence, at a time step t, the difference between the optimal solution and a non-
optimal solution is rarely greater than 1. It is over time that significant differences between the
algorithms accumulate.

292 R. Bent and P. Van Hentenryck

estimated by evaluating the cost of closing the selected facility σ(t) and opening f . In
vehicle routing, the regret of serving a customer c next can evaluated by swapping c with
the first customer on the vehicle serving c. In packet scheduling, the regret of serving a
packet p can be estimated by swapping and/or serving a constant number of packets. In
all cases, the cost of computing the regret is small compared to the cost of the offline opti-
mization and satisfy the above requirements. Note that there is an interesting connection
to local search, since computing the regret may be viewed as evaluating the cost of a lo-
cal move for the application at hand. We are now ready to present the regret algorithm R:

chooseRequest-R(R, t)
1 for r ∈ R
2 do f(r)← 0;
3 for i← 1 . . .O
4 do S ← R ∪ getSample([t + 1, t + ∆]);
5 σ ← optimalSolution(S, t);
6 f(σ(t))← f(σ(t)) + w(σ);
7 for r ∈ ready(R, t) \ {σ(t)}
8 do f(r)← f(r) + (w(σ)− regret(σ, r, R, t));
9 return argmax(r ∈ R) f(r);

Its basic organization follows algorithm C. However, instead of assigning some credit
only to the request selected at time t for a given sample s, algorithm R (lines 7-8) uses the
regrets to compute, for each available request r, an approximation of the best solution
of s serving r at time t, i.e., w(σ)− regret(σ, r,R, t). Hence every available request is
given an evaluation for every sample at time t for the cost of a single offline optimization
(asymptotically). Observe that algorithm R performs O offline optimizations at time t
and that it is easy to adapt algorithm R to approximate algorithm H.

6 Packet Scheduling

This section reports experimental results on the online packet scheduling problem studied
in [8]. This networking application is of interest experimentally since (1) the number of
requests to consider at each time t is small and (2) the offline algorithm can be solved in
polynomial time. As a result, it is possible to evaluate all the algorithms experimentally,
contrary to vehicle routing applications where this is not practical. The packet scheduling
is also interesting as it features a complex arrival distribution for the packets based on
Markov Models (MMs).

The Offline Problem. We are given a set Jobs of jobs partitioned into a set of classes
C. Each job j is chararacterized by its weight w(j), its arrival date a(j), and its class
c(j). Jobs in the same class have the same weight (but different arrival times). We are
also given a schedule horizon H = [H,H] during which jobs must be scheduled. Each
job j requires a single time unit to process and must be scheduled in its time window
[a(j), a(j) + d], where d is the same constant for all jobs (i.e., d represents the time
a job remains available to schedule). In addition, no two jobs can be scheduled at the
same time and jobs that cannot be served in their time windows are dropped. The goal
is to find a schedule of maximal weight, i.e., a schedule which maximizes the sum of

Online Stochastic and Robust Optimization 293

5 10 15 20 25 30 35 40 45 50
65

70

75

80

85

90

95

100

A
ve

ra
ge

 W
ei

gh
te

d
Lo

ss

Maximum Number of Offline Optimizations

O
G
LO
E
C
R(E)
H

Fig. 2. The Regret Algorithm on Packet Scheduling

the weights of all scheduled jobs. This is equivalent to minimizing weighted packet loss.
More formally, assume, for simplicity and without loss of generality, that there is a job
scheduled at each time step of the schedule horizon. Under this assumption, a schedule
is a function σ : H → Jobs which assigns a job to each time in the schedule horizon. A
schedule σ is feasible if

∀ t1, t2 ∈ H : t1 �= t2 → σ(t1) �= σ(t2)
∀ t ∈ H : a(σ(t)) ≤ t ≤ a(σ(t)) + d.

The weight of a schedule σ, denoted by w(σ), is given by w(σ) =
∑

t∈H w(σ(t)).
The goal is to find a feasible schedule σ maximizing w(σ). This offline problem can be
solved in quadratic time O(|J ||H|).

The Online Problem. The experimental evaluation is based on the problems of [8, 4],
where all the details can be found. In these problems, the arrival distributions are specified
by independent MMs, one for each job class. The results are given for the reference 7-
class problems and for an online schedule consisting of 200,000 time steps. Because
it is unpractical to sample the future for so many steps, the algorithms use a sampling
horizon of 50, which seems to be an excellent compromise between time and quality.
The regret function is given in [5] and consists of swapping a constant number of packets
in the optimal schedule.

Experimental Results. Figure 2 depicts the average packet loss as a function of the
number of available optimizations O for the various algorithms on a variety of 7-class
problems. It also gives the optimal, a posteriori, packet loss (O). The results indicate
the value of stochastic information as algorithms E and H significantly outperform the
oblivious algoritms G and LO and bridge much of the gap between these algorithms
and the optimal solution. Note that LO is worse than LO, illustrating the (frequent)
pathological behavior of over-optimizing. Hedging slightly outperforms expectation,
although the results are probably not statistically significant.

294 R. Bent and P. Van Hentenryck

The results also indicate that consensus outperforms E and H whenever few opti-
mizations are available (e.g., ≤ 15). The improvement is particularly significant when
there are very few available optimizations. Consensus is dominated by E and H when
the number of available optimizations increases, although it still produces significant
improvements over the oblivious algorithms. This is of course pertinent, since E and H
are not practical for many problems with time constraints.

Finally, the benefits of the regret algorithm are clearly apparent. Algorithm R indeed
dominates all the other algorithms, including consensus when there are very few offline
optimizations (strong time constraints) and expectation/hedging even when there are a
reasonably large number of them, (weak time constraints). Reference [5] also shows this
to be the case for complex online vehicle routing with time windows.

7 The Online Stochastic Algorithm Revisited

This section considers four important generalizations to the framework: precomputation,
service guarantees, least-commitment, and multiple decisions.

Precomputation. Some applications are characterized by very short decision times, ei-
ther because of problem requirements or to produce solutions of higher quality. These
applications however allow for some limited number of optimizations in between de-
cisions. For instance, online vehicle routing and deliveries are applications exhibiting
these features. The generic online algorithm can generalized to provide these functional-
ities. The key idea is to maintain a set of scenario solutions during execution. At decision
time, these solutions can then be used to choose an appropriate request to serve. The
set of solutions can then be updated to remove solutions that are incompatible with the
selected decisions and to include newly generated solutions.

Figure 3 depicts the generalized online algorithm and shows how to instantiate it
with consensus. The set of solutions Σ is initialized in Line 2. The request is selected in
line 5 by function chooseRequest which now receives Σ as input as well. Lines 9 and
10 remove the infeasible solutions and generates new ones. The function generateS-
olutions is also depicted in Figure 3. It is essentially the core of the chooseRequest
implementation in algorithms C and R with the logic to make decisions abtracted away.
The decision code is what is left in the instantiations of function chooseRequest. The
figure also gives the implementation of chooseRequest for algorithm C to illustrate
the instantiations.

Service Guarantees. Many applications require service guarantees. The algorithm may
decide to accept or reject a new request but, whenever a request is accepted, the request
must be served. The online algorithm can be enhanced to include service guarantees.
It suffices to introduce a new function to accept/request new requests and to keep only
those solutions which can accommodate the requests. Of course, to accept a request, at
least one solution must be able to serve it in addition to the current requests. The new
online generic algorithm with service guarantees is depicted in Figure 4. The changes
are in lines 4-6. Function acceptRequests (line 4) selects the new requests to serve
using the existing solutions Σ and function removeInfeasibleSolutions removes
those solutions which cannot accommodate the new requests.

Online Stochastic and Robust Optimization 295

onlineOptimization(H, R)
1 w ← 0;
2 Σ ← generateSolutions(R, 0);
3 for t ∈ H
4 do R← availableRequests(R, t) ∪ newRequests(R, t);
5 r ← chooseRequest(R, t, Σ);
6 serveRequest(r, t);
7 w ← w + w(r);
8 R← R \ {r};
9 Σ ← {σ ∈ Σ | σ(t) = r};

10 Σ ← Σ ∪ generateSolutions(R, t);

generateSolution(R, t)
1 Σ ← ∅;
2 repeat
3 S ← R ∪ getSample([t + 1, t + ∆]);
4 σ ← optimalSolution(S, t);
5 Σ ← Σ ∪ {σ};
6 until until time t + 1
7 return Σ;

chooseRequest-C(R, t, Σ)
1 for r ∈ R
2 do f(r)← 0;
3 for σ ∈ Σ
4 do f(r)← f(r) + w(σ);
5 return argmax(r ∈ R) f(r);

Fig. 3. The Generic Online Algorithm with Precomputation

Least-Commitment. In the packet scheduling application, it is always suboptimal not
to serve a packet at each time step. However, in many online applications, it may be
advisable not to serve a specific request, since this may reduce further choices and/or
make this algorithm less adaptive. The ability to avoid or to delay a decision is critical
in some vehicle routing applications, as shown later in the paper. It is easy to extend
the framework presented so far to accommodate this feature. At every step, the algo-
rithm may select a request ⊥ which has no effect and no profit/cost. It suffices to use
chooseRequest(R ∪ {⊥}, t, Σ) in line 5 of the algorithm.

Multiple Decisions and Pointwise Consensus. Many practical applications have the
ability to serve several requests at the same time, since resources (e.g., machines or
vehicles) are often available in multiple units. The online algorithm naturally gen-
eralizes to multiples decisions. Assume that a solution σ at time t returns a tuple
σ(t) = (r1, . . . , rn) = (σ1(t), . . . , σn(t)). It suffices to replace r in the online al-
gorithm by a tuple (r1, . . . , rn) to obtain a generic algorithm over tuples of decisions.
However, it is important to reconsider how to choose requests in this new context. A
straighforward generalization of consensus would give

296 R. Bent and P. Van Hentenryck

onlineOptimization(H, R)
1 w ← 0;
2 Σ ← generateSolutions(R, 0);
3 for t ∈ H
4 do N ← acceptRequests(R, t, Σ);
5 Σ ← removeInfeasibleSolutions(R, t, N, Σ);
6 R← availableRequests(R, t) ∪N ;
7 r ← chooseRequest(R, t, Σ);
8 serveRequest(r, t);
9 w ← w + w(r);

10 R← R \ {r};
11 Σ ← {σ ∈ Σ | σ(t) = r};
12 Σ ← Σ ∪ generateSolutions(R, t);

Fig. 4. The Generic Online Algorithm with Precomputation and Service Guarantees

chooseRequest-C(R, t)
1 for e ∈ Rn

2 do f(e)← 0;
3 for i← 1 . . .O
4 do S ← R ∪ getSample([t + 1, t + ∆]);
5 σ ← optimalSolution(S, t);
6 f(σ(t))← f(σ(t)) + w(σ);
7 return argmax(e ∈ Rn) f(e);

Unfortunately, this generalized implementation of consensus is not particularly effec-
tive, especially when there are many requests and few scenarios. Indeed, the information
about decisions is now distributed over tuples of requests instead of over individual re-
quests and consensus does not capture the desirability of serving particular requests.
This limitation can be remedied by evaluating the decisions independently accross all
scenarios and by selecting the best coupling available among the solutions. This point-
wise consensus can be formalized as follows:

chooseRequest-PC(R, t)
1 for r ∈ R, i ∈ 1..n
2 do fi(r)← 0;
3 for i← 1 . . .O
4 do S ← R ∪ getSample([t + 1, t + ∆]);
5 σ ← optimalSolution(S, t);
6 for i ∈ 1..n
7 do fi(σi(t))← fi(σi(t)) + w(σ);
8 σ∗ = argmax(σ ∈ Σ)

∑n

i=1 fi(σi(t));
9 return σ∗(t);

Note that pointwise consensus reduces to consensus when n = 1 and that pointwise
regret could be derived in the same fashion.

Online Stochastic and Robust Optimization 297

8 Vehicle Routing

This section describes the applications of the online generic algorithm with precomputa-
tion, service guarantees, and least-commitment to a multiple vehicle routing applications.
Contrary to the applications in [2] where the focus is on feasibility, the difficulty here lies
in the lexicographic objective function, i.e., serving as many customers as possible and
minimizing travel distance. The interesting result is that approximations of expectation
perform remarkably in these two “orthogonal” applications.

The Problem. The application is based on the model proposed in [11] where customers
are distributed in a 20km×20km region and must be served by vehicles with uniform
speed of 40 km/h. Service times for the customers are generated according to a log-normal
distribution with parameters (.8777, .6647). With this distribution, the mean service
time is 3 min. and the variance is 5 min. The service times were chosen to mimic the
service times of long-distance courier mail services [11]. We use n to denote the expected
number of customers and T to denote the time horizon (8 hours). Problems are generated
with a degree of dynamism (DOD) (i.e, the ratio of known customers over stochastic
customers) in the set {0%, 5%, . . . , 100%}. For a DOD x, there are n(1 − x) known
customers. The remaining customers are generated using an exponential distribution with
parameter λ = nx

T for their inter-arrival times. It follows from the corresponding Poisson
distribution (with parameter λT) that the expected number of unknown customers is nx,
the expected number of customers is n, and the expected DOD is x. The results given here
assume that 4 vehicles amd 160 customers. Each vehicle can serve at most 50 customers
and the vehicle must return to the depot by the time horizon. The customers are generated
using 2-D Gaussians centered at two points in the region. (Similar results are obtained
under other distributions). The objective function consists in minimizing the number
of missed customers and minimizing the travel distance. The experimental results are
based on 15 instances and an average of 5 runs on each instances. See Reference [3] for
a more comprehensive evaluation.

Setting of the Algorithms. The online generic algorithm is run with the following settings.
Initially, 25 different scenarios are created and optimized for 1 minute using large-scale
neighborhood search (LNS) [12, 1]. These initial solutions are used to determine the first
customer for each vehicle. An additional 25 scenarios are created and optimized for 1
minute with the first customers fixed. It was verified experimently that this second step
improves the quality of the final solutions. Subsequent scenarios are optimized for about
10 seconds using LNS. The parameters for LNS are as follows: 30 for the maximum
number of customers to remove at one time, 100 attempts at removing c customers
without improvement before removing c + 1 customers, 15 for the determinism factor
of the relatedness function, and 4 discrepancies. A simple insertion heuristic is used
to decide whether a new request should be accommodated. The online algorithm uses
precomputations to decide whether to accept requests immediately and to avoid delaying
the dispatching of vehicles, service guarantees to serve all accepted requests, least-
commitment to be able to postpone vehicle departures to accommodate future requests
more effectively, and pointwise consensus to gather as much information as possible
from the small number of scenarios available in this application.

298 R. Bent and P. Van Hentenryck

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

A
vg

 U
ns

er
vi

ce
d

C
us

to
m

er
s

Expected Dynamism

NN
C
LO
C(NN)
C−LC
Offline

Fig. 5. Results on the Number of Serviced Customers

0 10 20 30 40 50 60 70 80 90 100
200

300

400

500

600

700

800

900

A
vg

 T
ra

ve
l D

is
ta

nc
e

Expected Dynamism

NN
C
C(NN)
C−LC
Offline

Fig. 6. Results on Travel Distance

Experimental Results. The online generic algorithm is compared with the Nearest Neigh-
bor (NN) heuristic proposed in [11] and generalized to providing guarantees on servicing
customers. Whenever a request arrives, the NN algorithm is simulated to determine if it
can accommodate the new request. If it cannot, the request is rejected. More generally,
the results compare NN and the online algorithm instantiated with local optimization
(LO), consensus (C), consensus with least-commitment (C-LC), and consensus using
NN instead of LNS (C(NN)) to find solutions to the scenarios. The figures will also give
the offline solution found using LNS, which represents the “best” solution the various
online algorithm could hope to achieve.

Figure 5 describes the experimental results concerning the number of serviced cus-
tomers for various degrees of dynamism. The results clearly indicate that the stochastic
approaches are superior to LO which is unable to service as many customers. A detailed
look at the trace of the decisions performed by LO indicate that it waits too long to deploy
some of the vehicles. This is because optimal solutions use as few vehicles as possible
to minimize travel distance and LO believes it can use fewer vehicles than necessary
until late in the simulation. The remaining approaches service a comparable number of

Online Stochastic and Robust Optimization 299

customers. With higher degrees of dynamism, the benefits of using a consensus function
for ranking are clear, as it reduces the number of missed customers significantly com-
pared to using travel distance. The online stochastic algorithm do not bring significant
benefits in terms of serviced customers compared to NN. C(NN) is generally superior
to NN, while C is roughly similar to NN (except for very high degrees of dynamism).
Note that C-LC does not perform as well as C for these very high degrees of dynamism:
It has a tendency to wait too long, which could be addressed easily by building some
slack in C-LC.

Figure 6 depicts the results for the travel distance, which are extremely interesting.
No results are given for LO, since it is far from being competitive for customer service.
The results indicate that the stochastic instantiations of the online algorithm significantly
reduce travel distance compared to NN. The results are particularly impressive for C-LC,
whose travel distance is essentially not affected by the degree of dynamism. Observe also
that the comparison between C(NN) and the other stochastic approaches tend to indicate
that it seems beneficial for these problems to use a more sophisticated optimization
algorithms on fewer samples than a weaker method on more samples.

Robustness. It is natural to question how the algorithms behave when the stochastic
information is noisy. This situation could arise from faulty historical data, predictions,
and/or approximations in machine learning algorithms. Figure 7 shows some results

0 50 100 150
0

0.5

1

1.5

2

2.5

3

C
us

to
m

er
s

Estimated Unknown Requests

32 Exp. New Customers

NN
C
C−LC

0 50 100 150
350

400

450

500

550

D
is

ta
nc

e

Estimated Unknown Requests

32 Exp. New Customers

0 50 100 150
0

2

4

6

8

10

C
us

to
m

er
s

Estimated Unknown Requests

80 Exp. New Customers

0 50 100 150
350

400

450

500

550

600

650

700

750

D
is

ta
nc

e

Estimated Unknown Requests

80 Exp. New Customers

Fig. 7. Robustness Results

300 R. Bent and P. Van Hentenryck

when run on the 20% and 50% dynamism instances of M3 (32 and 80 expected new
customers respectively). It is interesting to see that, in both cases, it is better to be
optimistic when estimating the number of dynamic customers. For example, on 20%
dynamism, C-LC is able to service roughly the same number of customers when it
expects between 20 and 100 dynamic customers. However, it performs the best in terms
of travel distance when it expects 50 dynamic customers, slightly more than the 32 of
actual problem sets themselves. In addition, these results show that, even in the presence
of significant noise, stochastic approaches are still able to achieve high-quality results.

Acknowledgments

This paper is dedicated to Jean-Louis Lassez for all these long conservations about
science, scientific communities, and the joy of research. Happy birthday, Jean-Louis,
and thank you for being such an inspiration for so many of us! This research is partially
supported by NSF ITR Award DMI-0121495.

References

1. R. Bent and P. Van Hentenryck. A Two-Stage Hybrid Local Search for the Vehicle Routing
Problem with Time Windows. To appear in Transportation Science.

2. R. Bent and P. Van Hentenryck 2001. Scenario Based Planning for Partially Dynamic Vehicle
Routing Problems with Stochastic Customers. Operations Research. (to appear).

3. R. Bent and P. Van Hentenryck. 2003. Dynamic Vehicle Routing with Stochastic Requests
Technical Report CS-03-10, Brown University.

4. R. Bent and P. Van Hentenryck. 2004. The Value of Consensus in Online Stochastic Schedul-
ing. In ICAPS 2004.

5. R. Bent and P. Van Hentenryck. 2004. Regrets Only! Online Stochastic Optimization under
Time Constraints. In AAAI 2004.

6. J. Birge and F. Louveaux. 1997. Introduction to Stochastic Programming. Springer Verlag.
7. A. Cambell, and M. Savelsbergh. 2002. Decision Support for Consumer Direct Grocery

Initiatives. Report TLI-02-09, Georgia Institute of Technology.
8. H. Chang, R. Givan, and E. Chong. 2000. On-line Scheduling Via Sampling. In AIPS’2000,

62–71.
9. L. Kaelbling, M. Littman, and A. Cassandra. 1998. Planning and Acting in Partially Observ-

able Stochastic Domain. Artificial Intelligence, 101(1-2), 99–124.
10. P. Kouvelis and G.Yu. Robust Discrete Optimization and Its Applications. Kluwer Academic

Publishers, 1997.
11. A. Larsen, O. Madsen, and M. Solomon. Partially Dynamic Vehicle Routing-Models and

Algorithms. Journal of Operational Research Society, 53:637–646, 2002.
12. P. Shaw. 1998. Using Constraint Programming and Local Search Methods to Solve Vehicle

Routing Problems. In CP’98, 417–431.

	Introduction
	The Online Stochastic Framework
	The Generic Online Algorithm
	Online Stochastic AlgorithmsWithout Time Constraints
	Online Stochastic Algorithms Under Time Constraints
	Packet Scheduling
	The Online Stochastic Algorithm Revisited
	Vehicle Routing
	Acknowledgments

