
Shorter Path Constraints for the
Resource Constrained Shortest Path Problem

Thorsten Gellermann Meinolf Sellmann Robert Wright
University of Paderborn Brown University Air Force Research Lab

Computer Science Computer Science Inform. Directorate
Fuerstenallee 11 115 Waterman St 525 Brooks Road
33098 Paderborn Providence, RI 02912 Rome, NY 13441

Abstract. Recently, new cost-based filtering algorithms for shorter-path con-
straints have been developed. However, so far only the theoretical properties of
shorter-path constraint filtering have been studied. We provide the first extensive
experimental evaluation of the new algorithms in the context of the resource con-
strained shortest path problem. We show how reasoning about path-substructures
in combination with CP-based Lagrangian relaxation can help to improve signifi-
cantly over previously developed problem-tailored filtering algorithms and inves-
tigate the impact of required-edge detection, undirected versus directed filtering,
and the choice of the algorithm optimizing the Lagrangian dual.

1 Introduction

Path constraints play a key role in many applications. Examples range from airline crew
scheduling [8, 14] and vehicle routing [20] to the traveling salesman [2] and the resource
constrained shortest path problem [1, 4, 6, 7, 12]. Of special interest in the context of
combinatorial optimization are path constraints that incorporate the objective function.
Shorter path constraints do exactly that by stating that a set of binary variables that are
semantically linked to the edges of a graph must form a path from some designated
source to a designated sink, whereby the length of this path must not exceed a given
threshold value. Unfortunately, in [17] it was shown that achieving generalized arc-
consistency for shorter path constraints is NP-hard. Consequently, filtering algorithms
were developed that achieve weaker, so called relaxed consistency in the same time
that it takes to solve the shortest path problem itself. This work was purely theoreti-
cal, though. Therefore, we consider it of interest to evaluate the performance of these
filtering algorithms in practical experiments.

For this purpose, we focus on the resource constrained shortest path problem (RC-
SPP) that consists in finding a shortest route from some given source to a designated
sink such that some given resources that are consumed while traversing the edges are
not exhausted. While the RCSPP is of interest in itself, for example in the context of
traffic guiding systems and route planners for cars and trucks, the problem also evolves
as a natural subproblem in the context of even more complex problems like vehicle
routing [20].

Based on the new filtering algorithms presented in [17], we provide an evaluation
of relaxed consistency for shorter path constraints in the context of the resource con-
strained shortest problem. In the following section, we briefly review the filtering al-
gorithms developed in [17]. In Section 3 we define the resource constrained shortest
path problem formally and present a filtering approach that considerably outperforms
previous filtering algorithms for this problem, as we will then see in Section 4.



2 Relaxed Consistency for Shorter Path Constraints

Before we review the filtering algorithms that we are going to use for the RCSPP later,
let us start out by defining what shorter path constraints are. In words, they express
our wish to search for paths in a (directed or undirected) graph such that the length is
smaller than some given threshold value. Formally, we define:

Definition 1. Denote with G = (V, E, c) a weighted (directed or undirected) graph
with ||c||∞ ∈ O(poly(|E|, |V |))1, and let h ∈ IN.

– A sequence of nodes P = (i1, . . . , ih) ∈ V h with (if , if+1) ∈ E for all 1 ≤ f < h
is called a path from i1 to ih in G.

– A path P is called simple iff P visits every node at most once. For all i, j ∈ V ,
denote with π(i, j) the set of all simple paths from i to j.

– For all paths P , nodes i ∈ V and edges (i, j) ∈ E, we write i ∈ P or (i, j) ∈ P
iff P visits node i or the edge (i, j), respectively. For a set of nodes or edges S, we
write S ⊆ P , iff s ∈ P for all s ∈ S. Correspondingly, we write P ⊆ S iff s ∈ S
for all s ∈ P .

– The cost of a path P = (i1, . . . , ih) is defined as cost(P ) :=
∑

1≤j<h cij ij+1 .
Accordingly, for any set S ⊆ E we define cost(S) :=

∑
(i,j)∈S cij .

Definition 2. Let G = (V, E, c) denote a (directed or undirected) graph with n = |V |
and m = |E|, a designated source v1 ∈ V and sink vn ∈ V , and arc costs cij ∈ Z.
Further, assume we are given binary variables X1, . . . , Xm, and an objective bound
B ∈ Z.

– A constraint SPC(X1, . . . , Xm, G, v1, vn, B) that is true, iff
1. the set {ei | Xi = 1} ⊆ E determines a simple path in the graph G from the

source v1 to the sink vn, and
2. the cost of the path defined by the instantiation of X is lower than B

is called a shorter path constraint.
– We call every simple path in G from source to sink with costs less than B admissi-

ble.
– A path P is called a k-simple path in G iff for all j ∈ V the path P visits j at most

k times. Note that a 1-simple path is a simple path in G.
– Given a shorter path constraint, a k-simple path P from v1 to vn is called a k-

admissible path iff cost(P ) < B.

As mentioned before, it can be shown that achieving generalized arc consistency
for shorter path constraints is an NP-hard task. Therefore, in [17] filtering algorithms
for shorter path constraints on arbitrary undirected and directed graphs were developed
that achieve relaxed consistency. With that term we denote filtering algorithms for min-
imization constraints [9] that only guarantee that those variable assignments are iden-
tified that would cause a bound rather than the optimal solution in the current subtree
itself to exceed the current best known upper bound.

The formal relaxations considered in [17] are very technical and do not give a par-
ticularly useful insight into the task of filtering shorter path constraints. Therefore, we
do not to repeat them here but just outline the filtering algorithms that we will use later.

1 This is the common similarity assumption that states that the largest cost is bounded by some
polynomial in |E| and |V |.



1. On both directed and undirected graphs, the filtering algorithm starts with two
shortest path computations once from the source and the other starting at the sink
node whereby, in the directed case, the computation is performed in the reverse
graph.

2. As a result, we get the shortest path value from source to sink. If this value exceeds
the objective bound B, the constraint fails.

3. Otherwise, as a byproduct of the shortest path computations we get the shortest
path distances from the source and to the sink of every node for free. We use this
information to identify those nodes and arcs of the graph for which the shortest
2-simple path that visits them is above the threshold B. For the nodes, we get this
value by adding the shortest path distance from the source and that to the sink, for
edges, we add the weight of the edge to that value.

2.1 Exploiting Bridges in Undirected Graphs

After having shrunk the graph in step 3, as a last step of our filtering algorithm we
try to identify those edges that must be visited by all paths having a length below the
given threshold. This step will be different for undirected and directed graphs. In the
undirected case, there exists a simple exact classification of the edges that must be
visited. In [17], it was shown that the edges to be required are exactly the bridges 2 in
the reduced graph that fall onto the shortest path:

4a. We compute the set of bridges in the reduced graph. The bridges that are also on
the shortest path from source to sink must be visited by all admissible paths, and
we mark them as required.

On top of this last step of the filtering procedure that was proposed in [17], we
add one more idea: We observe that bridges that are not on the shortest path cannot be
visited by any simple path from source to sink. Therefore, we can remove those bridges
and the entire part of the graph behind them as well:

5a. Remove all bridges from the graph that are not on the shortest path.

2.2 Required Arcs in Directed Graphs

Unfortunately, we do not know a similar classification of required arcs as we have it for
undirected graphs where the edges to be required are exactly the bridges in the reduced
graph that we get after step 3. The algorithm in [17] tries to bound the shortest path
distance when having to detour around an arc on the shortest path. When implementing
this algorithm, we realized that actually we do not need to compute this bound after
having reduced the graph in step 3 of the algorithm. While preserving the same filtering
effectiveness of the original algorithm, we can save the overhead of using a heap data
structure, because it is completely sufficient to know whether such a detour still exists;
since the arc that we use in our detour has not been deleted, we know already that the
value of the detour will not exceed the given path-length threshold.

In order to state the last step of our filtering algorithm for directed graphs, we briefly
repeat some of the terminology introduced in [17]. Let T ⊆ E denote a shortest-path

2 A bridge is an edge whose removal disconnects the graph.
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Fig. 1. The figure schematically shows a shortest-path tree T rooted at v 1. Solid lines
denote arcs in G, dashed lines mark parts of the shortest path P (v1, vn) from v1 to vn.
The triangles symbolize shortest-path subtrees. For an edge e = (r, s) ∈ P (v1, vn), the
nodes in V are partitioned into two non-empty sets Se and SC

e . If e is removed from the
graph, the shortest path from v1 to vn must visit an edge (i, j) ∈ (Se × SC

e ) \ T .

tree in G rooted at v1. Without loss of generality, we may assume that every node in the
graph G = (V, E) can be reached from the source node v 1. Obviously, when e ∈ E is
removed from T , the nodes in V are partitioned into two sets: the set v 1 ∈ Se ⊂ V of
nodes that are still connected with v1 in T \ {e}, and the complement of Se in V , SC

e

(see Fig. 1). Using these naming conventions, the last step of our filtering algorithm for
directed graphs reads:

4b. Denote with ER the reduced arc set after step 3. For all arcs e = (r, s) on the
shortest path from v1 to vn, check whether there exists any other arcs e �= f =
(i, j) ∈ (Se × SC

e ) ∩ ER. If not, then e must be visited by all paths from source to
sink and it is therefore required.

Note that this last step can be implemented with the help of a simple set data structure
for an asymptotic cost of O(m + n).

3 A Filtering Approach for Resource Constrained Shortest Paths

In order to evaluate the filtering algorithms for directed and undirected graphs as de-
scribed in the previous section, we apply them in the context of resource constrained
shortest path:

Definition 3. Given a (directed or undirected) graph G = (V, E), n = |V |, m = |E|,
with R+1 edge-weight functions lk : E → IN, 0 ≤ k ≤ R, R resource limits L1, ..LR,
and two designated source- and sink-nodes v1, vn ∈ V , the resource constrained short-
est path problem (RCSPP) consists in the computation of a path P ⊆ E such that∑

e∈P lke ≤ Lk for all 1 ≤ k ≤ R and
∑

e∈P l0e is minimal.

When we denote the best known solution value found with B and set L 0 := B,
any RCSPP-instance can be modeled as a conjunction of R + 1 shorter path constraints
SPC(X1, . . . , Xm, (V, E, lk), v1, vn, Lk) for 0 ≤ k ≤ R.

Of course, we could use these constraints to perform an ordinary tree search. How-
ever, for the RCSPP it was found that tree search approaches perform rather poorly.



Instead, to solve the RCSPP, state-of-the-art solvers compute lower and upper bounds
on the problem first and then close the duality gap. The latter task is carried out by an
enumeration procedure such as dynamic programming [15] or labeling approaches [6].
The tightening of the initial problem is vital for an effective gap closing procedure and
is therefore essential for the overall performance and the practical success of the entire
approach.

Following this framework, we assume that an initial upper bound B has been com-
puted before the filtering phase that will, as a byproduct, also provide a lower bound on
the problem. Instead of having the shorter path constraints communicate via variable do-
mains only, we use the CP-based Lagrangian relaxation framework as published in [16,
18, 19]. Precisely, we relax all linear constraints

∑
1≤i≤m lki Xi ≤ Lk, 1 ≤ k ≤ R,

and penalize their violation in the objective function. Given any vector of Lagrangian
multipliers 0 ≤ λ ∈ QR, we consider the constraint

SPC(X1, . . . , Xm, (V, E, l0 +
∑

1≤k≤R

λklk), v1, vn, L0 +
∑

1≤k≤R

λkLk).

As usual, the question arises how to compute good Lagrangian multipliers that will
yield a good lower bound on the problem and allow us to filter effectively. In general,
we can use any subgradient, bundle, or volume algorithm for this purpose [3, 5, 10, 11].
Since most benchmark sets for the RCSPP contain only one resource (i.e., R = 1), we
use a specialized algorithm for the optimization of the Lagrangian dual with only one
multiplier.

3.1 Maximizing One-Parameter Piecewise Linear Concave Functions

A schematic view on the Lagrangian dual for RCSPP-instances with R = 1 is given in
Figure 2. Assume that we know an interval [A, B] in which the function (let us denote
it with f ) must take its maximum.

Interval Partitioning One way to find the function’s maximum in the given interval
is to trisect the interval by introducing two interior points A < X < Y < B. When
we evaluate the function at X and Y and find that f(X) > f(Y ) (f(X) < f(Y )), due
to its concaveness we can deduce that f must take its maximum in the interval [A, Y ]
([X, B]). Thus, we have found a smaller interval in which the function must take its
maximum. We can repeat this process until the width of the interval has become small
enough. Of course, in every iteration we could choose new interior points in the current
interval. However, in order to save some evaluations of the function f we should try to
reuse one of the former inner points. If we partition the current interval according to the
golden section, we know that the interval length will decrease geometrically and that
one inner point can always be reused, which means that we need to perform only one
evaluation of f in each iteration. The procedure is sketched graphically in Figure 2.

For the optimization of the Lagrangian dual this means that we can ε-approximate
the best Lagrangian multiplier λ in O(log L

ε ) iterations, whereby L denotes the width of
the initial interval. Each iteration involves the solution of only one Lagrangian subprob-
lem. In the context of the RCSPP, the subproblem is a shortest-path problem. Moreover,
assuming that there exists a path that obeys the resource restriction (i.e., when a primal
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Fig. 2. Maximizing a piece-wise linear concave function by interval partitioning (left)
or by cutting planes (right).

solution exists at all and consequently the dual is not unbounded), it is easy to show
that the optimal Lagrangian multiplier cannot be greater than n||l 0||∞. Consequently,

we can solve the Lagrangian dual in time O(log n||l0||∞
ε (m + n logn)).

With this method, the proposed filtering algorithm for the RCSPP with one resource
works as follows: We choose an initial interval [0, n||l0||∞]. Denote with L the length
of the current interval with left end-point l. Then, we solve the Lagrangian shortest-
path subproblem for interior points X = l +

√
5−1
2 L and Y = l +

√
5+1
2 L. While

solving the shortest-path problem, we also apply our filtering algorithm as described in
the previous section. Depending on the point that achieves a larger shortest-path value,
we cut off either the right or the left part of the interval and proceed by solving one
more Lagrangian dual and filtering in each successive iteration of the algorithm.

Cutting Planes Another way of computing the function’s maximum in the given in-
terval is to use a cutting plane algorithm [13]. Clearly, if the function has a negative
slope on the left end point of the interval, then this is the point where the function takes
its maximum in the given interval. Analogous reasoning holds for the right end point
of the interval if the slope there is positive. Now, if the left end point has a positive
slope and the right end point a negative one, then the two lines intersect for some point
in the middle of the interval. We evaluate the function at that point and check whether
the slope is positive or negative (if it is horizontal then we are obviously done). If it is
positive (negative), then this point becomes the new left (right) end point of our search
interval, and we continue until the computed inner point does not change anymore.

With this method, the proposed filtering algorithm for the RCSPP with one resource
works as follows: We choose an initial interval [0, n||l0||∞]. We solve the Lagrangian
subproblem at the two end points and perform cost-based filtering. Then we repeatedly
intersect the slopes at the end points of our interval to determine inner points for which
we process the Lagrangian subproblem again. Depending on whether the solution to the
subproblem exceeds the resource limit or not, the corresponding Lagrange multiplier
becomes the new left or right end point of our search interval (see Figure 2).



Note that our filtering routine is actually changing the problem while we are solv-
ing the Lagrangian dual. In general, this is problematic since really both algorithms
designed for maximizing concave functions over convex polytopes are not designed to
cope with changes in the problem during the optimization. Instead, one could just mark
the changes to be made. However, we found that both our algorithms for maximizing
the Lagrangian dual were very robust and yielded good results even when incorporating
the changes “on the fly”. As a matter of fact, this was very beneficial since the succes-
sive calls to the shortest path algorithm become cheaper and cheaper, since the graph
size reduces considerably during filtering, as we will see in the following section.

4 Numerical Results

We have outlined the shorter-path filtering algorithms and described how CP-based La-
grangian relaxation can be applied for two-shorter-path-constraint problems. The latter
correspond to resource constrained shortest path problems (RCSPPs). We have cho-
sen to base our experimentation on the RCSPP for various reasons. Of course, when
evaluating the practical efficiency of shorter-path constraint filtering, we would like
to eliminate all possible side effects caused by other constraints of the problem under
consideration. Therefore, the purest evaluation would be to consider the shortest path
problem. However, since all filtering algorithms for shorter-path constraints are actually
based on efficient shortest-path algorithms, this is not a feasible choice.

Note also that the application of filtering algorithms usually only makes sense for
NP-hard problems. So the natural idea is to consider a problem that consists in the con-
junction of two shorter-path constraints, which corresponds to the search of improving
solutions for the RCSPP with one resource. This problem is NP-hard and filtering meth-
ods for it have been studied a long time before the idea of constraint programming was
developed [1, 4]. Therefore, it is of particular interest to investigate how CP performs
in comparison with those problem-tailored filtering algorithms.

This being said, it is important to note here that we do not aim at providing a com-
plete state-of-the-art algorithm for the RCSPP itself. Our goal is instead to evaluate the
practical performance of shorter-path constraint filtering, and the RCSPP appears as a
very reasonable benchmark for such an evaluation. There exist very efficient algorithms
for the optimization of the RCSPP [1, 4, 6, 7, 12]. Most of them incorporate a filtering
component, but it could be interweaved with the specific algorithm. Note also that an
upper bound is required to perform filtering. Now, in order to avoid that we are actu-
ally measuring the performance of an upper bounding procedure and not the quality
of shorter-path filtering, we do not provide a primal heuristic for the RCSPP. Instead,
we base our experimentation on upper bounds of predefined and controlled accuracy,
so that we are able to evaluate the performance of the existing and the new filtering
algorithms when the quality of the primal heuristic varies.

Thus, when interpreting the following experimental results, keep in mind that shorter-
path filtering is just one component in an RCSPP solver, and that we do not provide a
complete solver for this problem here. Especially, we do not provide algorithms for the
computation of good upper bounds.



Austria S Austria B Scotland S Scotland B Road S Road B

Undirected 46160 165584 65024 252432 50826 171536
LSA 7.589 252.590 7.784 - 0.651 3.472
MZ 0.492 2.186 0.891 12.378 0.791 3.273

Directed 46160 165584 65024 252432 50826 171536
LSA 6.489 257.361 7.581 - 0.651 3.461
MZ 0.474 2.339 2.914 11.053 0.792 3.283

Curve 1 Curve 2 Curve 3 Curve 4 Curve 5 Curve 6

Undirected 19890 39580 99890 199580 199890 399580
LSA 5.607 18.603 155.749 - - -
MZ 0.055 1.436 2.438 0.596 0.797 -

Directed 9945 19790 49945 99790 99945 199790
LSA 3.537 12.286 29.939 - - -
MZ 0.039 1.128 2.078 0.394 0.594 183.034

Table 1. The table shows the initial number of edges in the undirected and directed ver-
sions of the test files and the time needed by LSA and MZ to solve them. A ’-’ indicates
a solver was unable to compute a solution due to exhaustive memory consumption.

4.1 Overview of Experiments and Benchmark Sets Used

In our experiments, we run tests to determine under which parameters our algorithms,
that combine shorter-path filtering with CP-based Lagrangian relaxation (SPFCP), per-
form best. The performance of the algorithms is measured by the number of edges
filtered and the CPU time taken. We seek to answer the following questions. Is there
any advantage towards using the undirected version (marked by SPFCP-U) over the di-
rected version (SPFCP-D) of our filtering method? Does using required-arc (-RE) and
bridge detection (-BD) as part of the filtering have any benefit? And, which method
for optimizing the Lagrangian dual is better, interval partitioning (-IP) or cutting plane
(-CP)? Finally, we add a comparison of the SPFCP algorithm with two existing filtering
algorithms when used for the RCSPP.

For the optimization of the RCSPP after the initial filtering phase, we use our own
implementation of a standard RCSPP label setting algorithm (LSA) or our implementa-
tion of the RCSPP algorithm by Mehlhorn and Ziegelmann (MZ) [15]. The experiments
measure CPU time in seconds and were performed on an Intel Pentium 4 2.5GHz, 1Gb
RAM machine running Red Hat Linux 9. The filtering programs, LSA, and MZ were
compiled using gcc version 3.2.2 with the optimizing flag.

We use the RCSPP benchmark files provided by Mehlhorn and Ziegelmann [15] 3.
All input graphs specify a designated source and a sink, edge cost and resource, and a
resource limit. We use two variants of the benchmark files: the original directed files
and converted undirected versions. The latter were generated by viewing the arcs as
undirected and flipping a coin in case of multi-edges. Files that were generated in that
way are marked with an extra ’*’. Note that an undirected graph can be viewed as
a bi-directed graph where resource and cost coefficient for all edges are the same in

3 Data files are available at http://www.mpi-sb.mpg.de/˜mark/cnop/.



both directions. This interpretation allows us to use the directed version of our filtering
algorithm on this benchmark set as well, so that we can compare the undirected and
the directed filtering variants on this benchmark set. Table 1 shows information on the
size of the graphs as well as the time needed to solve them using MZ and LSA. The
following is a description of the types of RCSPP problems the input graphs represent.
Digital elevation models (DEM): These graphs are grid graphs representative of ele-
vation data over areas of Austria and Scotland. The problem is to find the path with the
minimum total height difference while satisfying a constraint on distance.
Road graphs: This benchmark set contains US road graphs. Edges in these graphs
are weighted by distance and congestion. The problem is to find the route that takes
minimal time while satisfying constraints on fuel consumption.
Curve approximation: In some applications, such as computer graphics programs,
it is necessary to represent infinitely detailed curves with less complex functions. In
this benchmark set, curves are estimated by many straight lines/edges joined at break-
points/nodes which lay on the original curve. It is desirable to reduce the number of
breakpoints used to estimate the curve while satisfying a constraint on the amount of
error introduced. Modeled as an RCSPP, solutions to these instances minimize the num-
ber of sampling points when approximating a curve by a piecewise linear function.

4.2 Undirected and Directed SPFCP

In Section 2, we proposed two implementations of the SPFCP algorithm, one that filters
on directed graphs and one that filters on undirected graphs. We explained how the
undirected version has the advantage of being able to reason via the detection of bridges.
We now want to compare the two variants by using the bi-directed benchmark set. We
varied the upper bound on the objective from optimal to +5% optimal to examine how
the performance of the SPFCP algorithms degrade. Table 2 shows the results of the
comparison using both the directed and undirected versions of SPFCP with required-
arc and bridge detection used.

When comparing the raw numbers, the directed version is capable of filtering more
edges than the undirected version on the same graphs. However, on most of the tests
where the algorithms were given an optimal bound on the objective the filtered graphs
from the directed algorithm has exactly half as many edges as the graphs from the undi-
rected algorithm. This is because the undirected algorithm must meet the constraint of
leaving a bi-directed graph after filtering whereas the directed version does not. So,
the filtered graphs from both algorithms when given an optimal bound on the objective
are relatively the same, the directed version just additionally filters out return edges on
the shortest path. The undirected version runs faster though, by 53% on average when
given an optimal upper bound. When the value of the upper bound is 5% above the op-
timal value, the directed version filters on average 20% more edges than the undirected.
However, the undirected version is still 45% faster on average.

In general, the time taken by the SPFCP algorithms to perform the filtering increases
as the quality of the upper bound decreases. This phenomenon can easily be explained
in that successive iterations of the filtering algorithm during the optimization of the
Lagrangian dual require more time when previous iterations were not as effective at
removing edges. While the undirected version works twice as fast as the directed variant



Optimal +5%
Graph SPFCP-D-RE SPFCP-U-BD SPFCP-D-RE SPFCP-U-BD

# Edges Time # Edges Time # Edges Time # Edges Time

Austria Small* 213 0.367 426 0.153 3667 0.443 6882 0.260
Austria Big* 436 1.650 872 1.017 8903 1.860 14742 1.243

Scotland Small* 652 0.547 1304 0.287 6879 0.613 11258 0.347
Scotland Big* 494 2.793 988 1.927 24155 3.170 30584 2.377
Road Small* 899 0.610 1596 0.320 1559 0.627 2180 0.340
Road Big* 1278 1.807 2476 0.997 2755 1.870 3904 1.000
Curve 1* 301 0.107 602 0.040 13555 0.127 15896 0.053
Curve 2* 300 0.193 600 0.063 15824 0.247 20138 0.110
Curve 3* 811 0.660 1622 0.287 99865 0.837 99886 0.430
Curve 4* 810 1.150 1620 0.423 188321 1.293 191684 0.577
Curve 5* 2018 1.380 4036 0.647 199890 1.820 199890 0.990
Curve 6* 2091 2.387 4182 0.953 392448 3.243 393974 1.697

Table 2. The table shows the number of remaining edges and the CPU-time in seconds
taken to filter the bi-directed graphs using both the directed and undirected versions of
the SPFCP algorithm with bridge and required-arc detection. We vary the quality of
the upper bounds between optimal and 5%. The Lagrangian dual is optimized using the
cutting plane algorithm.

of the SPFCP, the directed version is more effective and more general since it can filter
both directed and undirected graphs.

4.3 Required-Arc and Bridge Detection

Next, we would like to investigate what the benefit of identifying edges that must be
visited by any improving path is. Note that this aspect was one of the main contribu-
tions in [17]. We found that, in the DEM and curve approximation graphs the required-
arc and bridge detection algorithms were ineffective. This is caused by the structure
of these graphs that have many alternate optimal routes. However, on the road graph
test files required-arc and bridge detection turned out to be quite effective and also
caused the filtering of more edges than just using the SPFCP algorithm without the
detection of required arcs. Table 3 shows the results for running both the undirected
and directed versions of the SPFCP algorithm on the bi-directed road graphs with and
without required-arc and bridge detection.

The test results show how required-arc and bridge detection improve the SPFCP al-
gorithm’s ability to filter edges on all of the road graph test files. They also show that, as
the value of the initial upper bound on the objective deviates from optimality required-
arc and bridge detection becomes more valuable. In the case of using the undirected
SPFCP on the Road Small* test file, bridge detection filters 7% more edges with an
optimal upper bound and 13% more with an upper bound of +5% from optimal. Gener-
ally, SPFCP-U-BD takes less time to complete than SPFCP-D-RE and SPFCP-U. This
can be attributed to the bridge detection being most effective in the early iterations of
the filtering algorithm and is illustrated in Figure 3.



Optimal +1% +3% +5%
Graph Algo # Edges Time # Edges Time # Edges Time # Edges Time

-D 1181 1.457 1314 1.460 1597 1.487 2294 1.657
Road Small -D-RE 899 1.570 965 1.560 1171 1.563 1813 1.770

SPFCP- -U 1718 1.357 1812 1.360 2046 1.383 2640 1.583
-U-BD 1596 1.137 1658 1.143 1852 1.153 2332 1.323

-D 1414 2.097 1493 2.093 1717 2.127 2100 2.127
Road Big -D-RE 1278 2.217 1307 2.217 1385 2.243 1672 2.223
SPFCP- -U 2528 1.417 2584 1.423 2724 1.427 3178 1.460

-U-BD 2476 1.360 2506 1.360 2574 1.373 2980 1.407

Table 3. The table shows the number of remaining edges and the CPU-time, in sec-
onds, taken to filter the bi-directed road graphs using both the directed and undirected
versions of the SPFCP algorithm with and without bridge and required-arc detection.
The Lagrangian dual is optimized using the interval partitioning algorithm.

4.4 Interval Partitioning vs Cutting Plane

In the following experiments, we compare the performance of SPFCP-D while using
the two algorithms for closing the duality gap, cutting plane and interval partitioning.
Table 4 summarizes our results. Using the cutting plane algorithm improves the speed
of the SPFCP filtering algorithm dramatically over using interval partitioning: SPFCP-
D-CP is 63% faster on average when given an optimal upper bound and 65% faster
on average when given an upper bound of +5% from optimal. In the optimality proof,
both methods filtered roughly the same amount of edges, while interval partitioning is
slightly more effective than the cutting plane algorithm.

The faster computation times and the slightly diminished effectivity of the cutting
plane algorithm are explained by the fact that the method is able to close the dual-
ity gap in far fewer iterations, which can be seen by comparing Figures 4 and 5. We
can see clearly how the cutting plane algorithm considers more meaningful Lagrangian
multipliers much earlier in the search, which results in a much quicker computation of
the lower bound as well as more filtering at earlier stages of the optimization. Also,
it needs less iterations close to the optimal multipliers where the interval partitioning
algorithm considers quite a few very near optimal multipliers before the desired ap-
proximation quality is achieved. The cutting plane needs just one iteration once that it
is close enough to the optimum. We believe it is for that reason that the algorithm is
slightly less effective in its filtering abilities. Still, we prefer the cutting plane algorithm
over interval partitioning since it is able to filter almost as many edges in a fraction of
the time.

4.5 Filtering for the RCSPP

In this section we compare the performance of the SPFCP algorithm against previously
developed filtering algorithms for the RCSPP. Particularly, we compare against the algo-
rithm from Aneja et al. (AN) and the algorithm from Beasley and Christofides (BC) [1,



Fig. 3. This figure shows the remaining size of the Road Small* instance after each
iteration of the interval partitioning algorithm.

4]. Both AN and BC only remove edges from the graph without detecting those edges
that must be visited by all improving paths. AN considers the pure shorter-path con-
straints on the objective and the resource only, without integrating them in a Lagrangian
fashion. BC performs filtering for the optimal Lagrangian multiplier. It is important
to note here that suboptimal Lagrangian multipliers can have stronger filtering abili-
ties than the optimal ones [16]. Therefore, the idea of CP-based Lagrangian relaxation
makes sense, i.e. it is a reasonable approach to filter even during the optimization of the
Lagrangian dual and not just for optimal multipliers only.

Table 5 shows the results for experiments using the directed input graphs and SPFCP-
D-BD versus AN and BC. Comparing BC and AN first, we find that BC filters much
better, but also takes significantly more time to do so. This is not surprising, since BC
needs to solve the Lagrangian dual whereas AN works by just four shortest-path com-
putations. We observe that SPFCP can increase the filtering effectiveness further (by
40% on average) while using less computation time than BC but still about twice as
much as AN. The fact that SPFCP runs faster than BC has to be attributed to the al-
gorithm’s ability to filter out most of the edges in the first few iterations of solving
the Lagrangian dual, thereby reducing the graph size and making successive iterations
quicker. While SPFCP filtering works slower than AN, from the solution times of the
RCSPP algorithms LSA and MZ on the filtered graphs we see that the additional effort
is very worthwhile in the context of the RCSPP. Since this problem, though NP-hard, is
still relatively easy to solve, we conjecture that the improved filtering power of shorter-
path filtering in combination with CP-based Lagrangian relaxation will probably pay
off even more in the context of more complex problems that incorporate shorter-path
constraints.



Fig. 4. This figure shows the percentage of edges filtered by SPFCP-D at each iteration
of the cutting plane algorithm used to solve the Lagrangian relaxation.

Fig. 5. This figure shows the percentage of edges filtered by SPFCP-D at each iteration
of the interval partitioning algorithm used to solve the Lagrangian relaxation.



interval partitioning cutting plane
Graph Optimal +5% Optimal +5%

# Edges Time # Edges Time # Edges Time # Edges Time

Austria S 229 1.293 3150 1.750 231 0.367 3341 0.430
Austria B 410 7.623 7097 8.160 410 1.607 7323 1.767
Scotland S 304 2.040 3864 2.317 263 0.537 4737 0.607
Scotland B 494 14.113 17220 14.970 494 2.770 21578 3.113

Road S 899 1.563 1813 1.767 899 0.607 1559 0.620
Road B 1278 2.217 1672 2.223 1278 1.793 2755 1.813
Curve 1 306 0.217 7948 0.300 301 0.067 7948 0.090
Curve 2 300 0.270 10067 0.403 300 0.107 10069 0.170
Curve 3 836 1.090 49943 1.797 811 0.447 49943 0.600
Curve 4 803 1.643 95842 2.673 810 0.710 95842 0.847
Curve 5 2018 2.587 99945 4.067 2018 0.953 99945 1.310
Curve 6 2034 3.953 196987 5.947 2091 1.553 196987 2.263

Table 4. The table shows the number of remaining edges and the CPU-time, in seconds,
taken by SPFCP-D-RE using the cutting plane and interval partitioning algorithms for
solving the Lagrangian dual. The quality of the upper bound was varied from optimal
to +5% from optimal.

5 Conclusions

We provided an experimental evaluation of shorter-path filtering by applying it to the
resource constrained shortest path problem. We have compared the undirected and the
directed versions of shorter-path filtering and found that the undirected version, where
applicable, works about twice as fast while the directed version is more effective and
enjoys wider applicability. Regarding the identification of edges that must be visited by
all improving routes, we found that this ability is of use only in rare special cases where
no alternative improving paths exist.

Further, we have seen that, in the context of CP-based Lagrangian relaxation, the
choice of the algorithm solving the Lagrangian dual can have a significant impact on
the overall performance of the filtering algorithm. For one-parameter relaxations, we
have found that a method based on cutting planes can be much more efficient than an
interval partitioning algorithm.

Finally, our experiments showed that, even for this comparably simple problem, an
increase in filtering power can yield to significant performance improvements and that
shorter-path constraint filtering outperforms previously developed filtering algorithms
for the RCSPP.
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