
A Totally Unimodular Description of
the Consistent Value Polytope

for Binary Constraint Programming

Ionuţ D. Aron, Daniel H. Leventhal, Meinolf Sellmann

Brown University, Department of Computer Science
115 Waterman Street, Providence, RI 02912, U.S.A.
{ia,dleventh,sello}@cs.brown.edu

Abstract. We present a theoretical study on the idea of using mathematical pro-
gramming relaxations for filtering binary constraint satisfaction problems. We in-
troduce the consistent value polytope and give a linear programming description
that is provably tighter than a recently studied formulation. We then provide an
experimental study that shows that, despite the theoretical progress, in practice
filtering based on mathematical programming relaxations continues to perform
worse than standard arc-consistency algorithms for binary constraint satisfaction
problems.

Keywords: cost-based filtering, hybrid methods, mathematical programming.

1 Introduction

As a result of the growing interaction between the mathematical programming and con-
straint programming communities, it has now become standard to use mathematical
programming tools to derive information useful both for domain filtering and for guid-
ing the search. On real-world constraint satisfaction problems (CSPs), and especially
optimization problems, hybrid methods have been shown to outperform pure solution
approaches. As a result of a decade long research, a rich tool-box for hybridization
is now available: from the idea of optimization constraints [7, 14, 17] and associated
notions of relaxed or approximated consistency [5, 19], reduced-cost filtering [16], to
sophisticated problem-dependent techniques based on Bender’s decomposition [9], La-
grangian decomposition [6, 18, 20, 21], or column generation [4, 11]. Also, specialized
hybrid approaches have been developed for special problems like computing orthogonal
Latin squares [2] or to solve the social golfer problem [22].

Despite these successes, in the past hybridization on binary constraint satisfaction
problems (BCSPs) has been nothing less than disappointing. Many approaches that
looked very promising on paper have failed to give real benefits. While this is common
knowledge in the research community and has lead to the common belief that math-
ematical programming techniques only pay off when a problem contains constraints
that contain large numbers of variables where constraint programming (CP) propaga-
tion is weak, we are not aware of any paper that would state such a negative result.

Consequently, we frequently see that, despite prior experience that developing hybrid
methods for BCSPs is not a promising research avenue, the undoubtedly tempting idea
lures researchers into developing new hybrid filtering approaches for BCSPs.

A recent approach regarding hybrid filtering for BCSPs is presented in [12]. The
authors of that paper suggest to use a relaxation of an equivalent integer programming
(IP) formulation of a given BCSP for domain filtering. Two ideas were novel in that
contribution: first, the idea to use a Lagrangian relaxation instead of the commonly
used linear relaxations for filtering. And second, to use a formulation that specifically
targets individual assignments.

We were intrigued by those two ideas and decided to investigate them further. We
address two questions: First, can the Lagrangian relaxation suggested in [12] yield to
more effective filtering than standard linear programming (LP) relaxations? And sec-
ond, does it pay off to focus on individual assignments for filtering in a tree search
where what matters is the trade-off between filtering effectiveness and filtering time?

In order to answer those two questions, we start out in Section 2 by discussing
different models for BCSPs and how they can be translated into integer programs. Based
on those models, in Section 3, we develop an LP relaxation that is provably tighter
than the Lagrangian relaxation developed in [12]. While offering the prospect of more
effective filtering, that LP relaxation can also be computed much faster than Lagrangian
relaxations when using standard LP software like Cplex.

In Section 4, we then present numerical results on various CSP and BCSP bench-
mark classes. The experiments show that, once again, mathematical programming tech-
niques are inferior to standard arc-consistency on feasibility problems.

2 CSP and IP Models

2.1 Positive and Negative Representations of BCSPs

A binary constraint satisfaction problem (BCSP) consists of a finite set of variables
V = {V1, . . . , Vn}, a finite domain Di = {vi

1, v
i
2, . . . , v

i
li
} for each variable Vi, and

a finite collection of constraints C = {C1, . . . , Cm}. Each constraint C is a constraint
over two variables Vars(C) ⊆ V . Every constraint C can be viewed as a subset of the
Cartesian product of the domains of the variables in Vars(C) (i.e. the set of tuples that
satisfy the constraint). Alternatively, C could also be viewed as the complement of this
product (i.e. the set of tuples that do not satisfy the constraint, which are commonly
referred to as no-goods). As we will see later, although equivalent, these two views of
constraints lead to very different linear models.

Let yiu ∈ {true, false} represent the truth value of assignment Vi = u (i.e. yiu =
true iff Vi = u). The two representations of Cij , as described above, become:

1. Positive Representation: Tuples that satisfy Cij .

(PCSP) Cij ::= Rij = {(u, v) ∈ Di × Dj : (u, v) satisfies Cij}

For any value u ∈ Di, the set of tuples {(u, v) : (u, v) ∈ Rij} can be seen as the
logical implication:

yiu →
∨

v:(u,v)∈Rij

yjv (1)

This states that once we have assigned value u to variable Vi, we must also assign
(at least) one of the values v to variable Vj . For this reason, we will call this repre-
sentation the positive representation of BCSPs.

2. Negative Representation: Tuples that violate Cij .

(DCSP) Cij ::= Rij = {(u, v) ∈ Di × Dj : (u, v) violates Cij}

In this case, for any value u ∈ Di, the set of tuples {(u, v) : (u, v) ∈ Rij} can be
seen as the logical implication:

yiu →
∧

v:(u,v)∈Rij

¬yjv (2)

This states that once we have assigned value u to variable Vi, we cannot assign
to variable Vj any of the values v. We therefore refer to this representation as the
negative representation of BCSPs.

Note that, when written as logical implications, there is nothing in the positive rep-
resentation that prevents us from assigning multiple values to a variable (i.e. y iu =
yiv = true for u �= v), just as there is nothing in the negative representation that says
that we must assign values to variables (i.e. yiu = true for some u ∈ Di). However,
once we enforce the implicit constraints that each variable V i must take one and only
one value u ∈ Di, it is not hard to see that:

Lemma 1. In a BCSP, positive and negative constraint representations are equivalent.

Proof. Let s(PCSP) = (yiu | 1 ≤ i ≤ n, u ∈ Di) denote a solution of the positive
BCSP. If yiu = true in s(PCSP), then by (1) for any j there exists a value v such that
(u, v) ∈ Rij and yjv = true. Since Vj can only take one value, it means that for any
other value vk ∈ Dj , yjvk

= false. In particular, for all vk such that (u, vk) /∈ Rij , we
have yjvk

= false, which means that (2) also holds. If on the other hand y iu = false
in s(PCSP) then obviously (2) holds as well. Thus, s(PCSP) is also a solution for the
negative BCSP. Conversely, let s(DCSP) = (yiu | 1 ≤ i ≤ n, u ∈ Di) denote a
solution of the negative BCSP. If yiu = true in s(DCSP), then for any j, by (2), there
exists no value v such that (u, v) ∈ Rij and yjv = true. Since Vj must take at least
one value, it means that there exists a value vk ∈ Dj , with (u, vk) /∈ Rij such that
yjvk

= true. In other words, (1) also holds. If y iu = false in s(DCSP), then (1) holds
as well. Thus, s(DCSP) is also a solution for the positive BCSP. ��

2.2 Linear Models of BCSPs

Our discussion of the two representations for BCSPs in Section 2.1, and in particular the
formulation of constraints as logical implications provides the basis to model BCSPs
as 0-1 integer linear programs: A logical formula written in conjunctive normal form
(CNF) can be easily modeled as a set of inequalities involving 0-1 variables. Using the
fact that a → b ≡ ¬a∨ b, and that a∨ (b∧ c) ≡ (a∨ b)∧ (a∨ c), we can write (1) and
(2) in CNF in the following way:

yiu →
_

v:(u,v)∈Rij

yjv ≡ ¬yiu

_
0
@ _

v:(u,v)∈Rij

yjv

1
A (3)

and

yiu →
^

v:(u,v)∈Rij

¬yjv ≡ ¬yiu

_
0
@ ^

v:(u,v)∈Rij

¬yjv

1
A ≡

^
v:(u,v)∈Rij

(¬yiu ∨ ¬yjv) (4)

Let xiu ∈ {0, 1}, xiu = 1 iff yiu = true. This allows us to rewrite (3) and (4) as
linear inequalities in terms of x:

(1 − xiu) +
X

v:(u,v)∈Rij

xjv ≥ 1 (5)

and
(1 − xiu) + (1 − xjv) ≥ 1, ∀v : (u, v) ∈ Rij (6)

Based on these formula, we are now ready to give the two IP formulations resulting
from the positive and negative representations of a BCSP.

Positive IP model (PIP)

max 0

s.t. xiu ≤
X

v:(u,v)∈Rij

xjv ∀i, ∀j, ∀u : (u, v) ∈ Rij (7)

X
u∈Di

xiu = 1 ∀i ∈ {1, . . . , n} (8)

xiu ∈ {0, 1} ∀i ∈ {1, . . . , n},∀u ∈ Di (9)

Negative IP model (NIP)

max 0

s.t. xiu + xjv ≤ 1 ∀i, ∀j, ∀(u, v) ∈ Rij (10)X
u∈Di

xiu = 1 ∀i ∈ {1, . . . , n} (11)

xiu ∈ {0, 1} ∀i ∈ {1, . . . , n}, ∀u ∈ Di (12)

The first set of constraints, (7) and (10) encode the constraints of the positive and
negative BCSP and are equivalent to the inequalities (5) and (6), respectively. Con-
straints (8) and (11) state that each variable Vi must take one and only one value from
its corresponding domain Di. They are the same as the implicit constraints we dis-
cussed in Section 2.1 and recall that they are the ones that ensure the equivalence of
the two models. The last set of constraints (9) and (12) forbid solutions in which x iu

take fractional values. These are of course the constraints that make solving both these
IPs difficult and are commonly the ones that are relaxed first to solve such problems
in operations research. The purpose of the following study is to show that the linear
relaxation derived from the positive formulation is strictly stronger than the weakened
Lagrangian relaxation of the negative formulation which is used in [12].

3 Integer Programming Relaxations and Filtering

Based on the positive and negative IP models developed in the previous section, we
now investigate how they could be used for filtering. In [12] the research is based on
the (NIP) model. Two relaxation steps are taken: First, constraints (10) are aggregated
and thereby weakened since new fractional solutions are introduced. This was done
because the authors felt that the number of constraints in (10) were too many. Then, for
a given potential assignment Vp = q, a Lagrangian relaxation is considered where all
constraints in (10) that do not affect xpq are softened by penalizing a violation rather
than enforcing the constraints.

Without the first aggregation step, let us study the polytope of feasible solutions
to the Lagrangian subproblem that evolves when we relax all constraints in (10) that
do not affect xpq . We call the LP relaxation of the following IP the consistent value
polytope. Since it can be viewed as derived from the negative formulation, we denote it
with (CV − N):

(CV − N) : (1)
∑

k:vk∈Di
xik = 1 ∀ 1 ≤ i ≤ n

(2) xpq + xjl ≤ 1 ∀ 1 ≤ j ≤ n, l ∈ Dj , (q, l) ∈ Rpj

(3) x ∈ {0, 1}n

In [12], a large number of aggregated versions of these IPs with changing objectives
need to be solved in order to compute the Lagrangian relaxation value. In (CV-N) we
did not aggregate any constraints, therefore we achieve a tighter relaxation. What is
even more important, there exists a reformulation of (CV-N) that is totally unimodular
which allows us to solve these IPs by means of linear programming. Consider

(CV − P) : (1)
∑

k:vk∈Di
xik = 1 ∀ 1 ≤ i ≤ n

(2)
∑

l:(q,l)∈Rpj
xjl ≥ xpq ∀ 1 ≤ j ≤ n, Rpj ∈ C

(3) x ∈ {0, 1}n

Of course, the reformulation of (CV-N) above was motivated by what we called the
positive formulation of BCSPs earlier. Formally, we can show:

Lemma 2. The integer programs (CV-N) and (CV-P) are equivalent.

Proof. When removing all constraints in the corresponding BCSP that do not involve
Vp, then (CV-N) and (CV-P) are exactly the IPs that evolve from the negative and pos-
itive formulations of the resulting BCSP. Therefore, the proof of Lemma 1 shows that
both IPs are indeed equivalent.

Even though the reformulation from a negative representation of constraints to their
positive formulation appears academic at first, it has a very important consequence
when the IP model is considered:

Theorem 1. The integer program (CV-P) is totally unimodular.

Proof. After eliminating all duplicate and all unit-vector columns from the constraint
matrix, neither of which affect total unimodularity, we get the following structure:

1 0 0
(1) | | |

0 0 1
-1 1 0 . . . 0

(2) | | |
-1 0 . . . 0 1

We note that part (1) is now an identity matrix, so it does not affect total unimodularity
and can also be eliminated. Then, in part (2), we can eliminate all unit vectors again and
we are left with just one column where all entries are -1, i.e., every square submatrix of
this column matrix is -1.1 ��

As a consequence of Lemma 2 and Theorem 1, the linear relaxation of (CV-P) de-
scribes exactly the convex hull of feasible solutions to (CV-N). Consequently, the La-
grangian subproblem can be solved in polynomial time. This is hardly surprising from
a CP perspective: the Lagrangian relaxation rids ourselves of all constraints that do not
incorporate variable Vp. Consequently, polynomial arc-consistency methods perform
perfectly in terms of filtering effectiveness on the relaxed BCSP.

From an IP perspective, the fact that we found a totally unimodular description
of the polytope of the Lagrangian subproblems enables us now to solve a tighter La-
grangian relaxation than the one proposed in [12] simply by means of linear program-
ming: It is a well-known fact that if the Lagrangian subproblem is totally unimodular
(it is then sometimes also referred to as exhibiting the integrality property), then the
Lagrangian relaxation and the linear continuous relaxation have the same value [1]. To
make this point very clear: Theorem 1 states that the Lagrangian subproblem is TU. We
can therefore solve the Lagrangian relaxation by means of linear programming. Then,
the overall linear relaxation is of course not TU (which would indeed come as a big
surprise as then the NP-hard BCSP was solvable in P).

In summary, we have shown that the linear relaxation on (P IP), while much easier
to solve, is equivalent to the Lagrangian relaxation of (N IP). Consequently, it is strictly
better than a Lagrangian relaxation on an aggregated version of (N IP). Therefore, the

1 We owe the idea to this simplified proof to an anonymous referee.

filtering algorithms that we derive from the relaxation based on the positive model are
more effective and faster than the one that is considered in [12]. Note that this improve-
ment does not restrict the choice of objective function. We can, as it was suggested
in [12], investigate specific assignments by maximizing different specific variables x pq

in turn, or we could choose a more global objective function and perform reduced cost
filtering.

What we view as even more important here is that in the positive model we have
found a way to formulate binary constraints as collection of integer constraints with
tighter linear programming relaxations. Consequently, we have found an improved for-
mulation that we can use when binary constraints constitute a part of the constraint
structure of an optimization problem, where it is well-known that it is essential to ex-
ploit tight global bounds on the objective.

4 Experimental Evaluation

In our experimental study, we focus purely on feasibility problems and the idea pre-
sented in [12] to base an efficient filtering algorithm for BCSPs on mathematical pro-
gramming methods. In order to base a filtering algorithm on the relaxations that we
studied in the previous section, first we follow the second main contribution that was
made in [12]. It consists in the introduction of an objective function that is assignment
specific. In [12], the authors compute upper bounds on (N IP) augmented by an objec-
tive that tries to maximize the value of one single variable xpq . Clearly, if that upper
bound drops below 1, then this implies that Vp cannot consistently take value q, and the
value is removed from Dp.

In our first series of experiments, we try to reproduce the results reported in [12]. We
follow their approach and solve a series of linear relaxations of (P IP) with changing
objectives to maximize xpq for the different variables. As a result of Section 3, we know
that this filtering technique is at least as effective as the one presented in [12].

The following first set of experiments was run on a 2.4 GHz Intel Hyperthread-
ing processor with 2 GB RAM. In order to provide a close comparison with [12], we
use randomly generated BCSPs as our benchmark set. The problems were generated
using the random uniform BCSP generator available at [3]. For each experiment, we
generated 200 random instances. The test programs were implemented using ILOG
Concert 2.0 to interface with Solver 6.0 and CPLEX 9.0 [10]. We generated problems
of comparable size and structure: 16 variables, 8 values per domain, and 32 allowed
pairs per constraint. We varied the number of constraints from 10 to 120 in increments
of 10. In order to verify the validity of the observed trends, we also used a second class
of problems, smaller in size, with the following characteristics: 10 variables, 10 values
per domain, 32 allowed pairs. For these problems, we varied the number of constraints
from 5 to 50 in increments of 5.

To assure that our experimentation is correct, first we solved all problems in our
test set to completion using ILOG Solver 6.0 and looked at the distribution of feasible
instances. The results are shown in Figure 1, and it is clear that, as the number of con-
straints approaches 120 for the larger problems and 50 for the smaller ones, the number
of feasible instances drops sharply. This is a typical phase transition phenomenon, and

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50

F
e
a
s
i
b
l
e

i
n
s
t
a
n
c
e
s

(
p
e
r
c
e
n
t
a
g
e
)

Number of constraints

Problem characteristics
Implementation:

’COMPLETE.plot’

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

F
e
a
s
i
b
l
e

i
n
s
t
a
n
c
e
s

(
p
e
r
c
e
n
t
a
g
e
)

Number of constraints

Problem characteristics
Implementation:

’COMPLETE.plot’

Fig. 1. Percent of solvable instances over the number of constraints for the small (left) and large
(right) instances

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100 120

E
x
e
c
u
t
i
o
n

t
i
m
e

Number of constraints

Solution time
Implementation:

’COMPLETE.plot’

Fig. 2. Time (sec) required by a pure CP solver to solve the BCSPs

an easy-hard-less hard partition is visible by the time required by the solution algo-
rithm on these instances. Figure 2 shows the time needed by a standard CP solver for
the large benchmark. It is clearly visible that the hardest instances are those around the
phase transition.

The percentage of values filtered using the relaxation of (P IP) at the root node is
plotted in Figure 3, for both sets of problem instances (small and large). This confirms
the results reported in [12] where it was found that hybrid filtering is far more effective
than standard arc-consistency algorithms at the root node. On our problems, at the root
node arc-consistency is unable to filter any substantial number of values, which is why
the corresponding line runs close to the 0% horizontal.

However, what is not made explicit in [12] is that the high percentage of filtered
values when the number of constraints gets closer to 120 is actually due to the fact that
most problems in that range are infeasible and that relaxation-based filtering is able to
detect that at the root node! On infeasible problems, the filtering algorithm naturally
reports 100% removal of values. It is solely due to this effect that the time per filtered
value decreases so massively as it was reported in [12].

It is also important to mention that this performance is obtained only if we iterate the
filtering process (i.e. solve relaxations of (PIP) as long as we have at least one filtered

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40

P
e
r
c
e
n
t
a
g
e

o
f

f
i
l
t
e
r
e
d

v
a
l
u
e
s

Number of constraints

Effectiveness of IP filtering
Implementation:

’IP.plot’

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

P
e
r
c
e
n
t
a
g
e

o
f

f
i
l
t
e
r
e
d

v
a
l
u
e
s

Number of constraints

Effectiveness of IP filtering
Implementation:

’IP.plot’

Fig. 3. Percentage of filtered values using the relaxation of (PIP) for the small (left) and large
(right) instances

value in a round). If we perform a single round of IP filtering (i.e. solve the relaxation
of (PIP) once for each variable xiu), the number of filtered values grows only to about
30% as we approach 120 constraints. The large difference can be explained by the fact
that, for most problems, the LP relaxation is unable to detect infeasibility in only one
round. It typically does so after 4-5 rounds, and then the percentage of filtered values
reported jumps to 100%. Obviously, an iterated application of the filtering algorithm
increases the effectiveness — but of course it comes at the cost of more cpu time,
which, as we will see shortly, is too much to make this kind of filtering worthwhile in
the context of random BCSPs.

We also studied the effect of constraining the problem in a different way: namely
by varying the number of allowed pairs per constraint instead of varying the number of
constraints. For this experiment, we generated problems with 16 variables, 8 values per
domain, 60 constraints and varied the number of valid pairs from 5 to 60 in increments
of 5. The results are shown in Figure 4. Again, we observe the a clear phase transition,
which happens at around 30 pairs per constraint, and that is supported by the problem
characteristics observed in Figure 5.

So far we have been able to confirm the results reported in [12]. Now, we were of
course curious to see whether the idea of iterated LP-based filtering with assignment
specific objectives actually pays off within a tree search. After all, while the improve-
ments in filtering effectiveness at the root node are quite good, what we are ultimately
interested in is of course the time that it takes to complete the search and actually solve
instances. Therefore, we study how fast the LP filtering is compared to that of the con-
straint solver. While for virtually every instance that we studied, the first propagation
step of the constraint solver failed to remove any values from the domains of the vari-
ables, the performance of arc-consistency techniques within a tree search is far better:
When comparing the time the constraint solver took to solve the entire problem with the
time it took the LP approach just to filter at the root node, we see that the difference is
hugely in favor of the constraint solver, by orders of magnitude. While at the phase tran-
sition (where more effective filtering should be of most importance) the time to filter
according to (PIP) only at the root-node peaks at around 150 seconds, standard arc-

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

P
e
r
c
e
n
t
a
g
e

o
f

f
i
l
t
e
r
e
d

v
a
l
u
e
s

Number of allowed pairs per binary constraint

Effectiveness of IP filtering
Implementation:

’IP.plot’

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60

E
x
e
c
u
t
i
o
n

t
i
m
e

Number of allowed pairs per binary constraint

Solution time
Implementation:

’IP.plot’

Fig. 4. Effect of the number of allowed pairs on the performance of PIP1
on the percentage of

solvable instances (left) and the propagation time at the root node for the relaxation based filtering
method (right)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60P
e
r
c
e
n
t
a
g
e

o
f

f
e
a
s
i
b
l
e

p
r
o
b
l
e
m
s

Number of allowed pairs per binary constraint

Problem characteristics
Implementation:

’COMPLETE.plot’

Fig. 5. Characteristics of the instances where we varied the number of pairs per constraint

consistency algorithms complete the entire search in half a second on average (compare
Figures 6 and 2). Consequently, despite the far more effective filtering that they offer,
the algorithms published in [12] are just not worthwhile to solve random BCSPs.

To summarize our findings to this point: filtering binary constraints based on mathe-
matical programming relaxations is more effective than standard arc-consistency meth-
ods, thanks to the global view on the problem that the relaxation provides. However,
even despite our strengthening the relaxation and speeding up its computation time by
showing that an alternative LP relaxation dominates the Lagrangian relaxation intro-
duced in [12], the idea to use an iterated procedure to filter every domain value indi-
vidually is just far too costly to pay off within a tree search — no matter whether we
compare at the under-constrained, over-constrained, or critically constrained region.

In order to improve the efficiency of LP-based filtering, we need to make it less ex-
pensive, even at the cost of losing some of its vast effectiveness. Therefore, we tried out
two different kinds of weakened approaches: The first computes an initial LP-solution
to the problem, then it chooses those assignments Xp = q for which the continuous
value of xpq is lower than some threshold value ε > 0, and finally it sets up a new
objective for each of those variable with one filtering iteration only. We refer to this ap-

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35 40

E
x
e
c
u
t
i
o
n

t
i
m
e

Number of constraints

Solution time
Implementation:

’IP.plot’

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120

E
x
e
c
u
t
i
o
n

t
i
m
e

Number of constraints

Solution time
Implementation:

’IP.plot’

Fig. 6. Time (sec) required by the relaxation of (PIP) to complete filtering

proach as LP-filtering. The second approach sacrifices even more effectiveness by using
the LP-relaxation just for pruning purposes. It just solves the initial LP once and back-
tracks if and only if that LP turns out to be infeasible. We denote this second approach
with LP-pruning.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20 40 60 80 100 120

T
im

e
(i

n
se

co
nd

s)

Constraints

LP filtering
LP pruning

Pure CP

Fig. 7. Comparison of pure CP, LP-pruning, and LP-filtering on random BCSP instances

We performed a second set of experiments to compare the performance of LP-based
BCSP propagation and pure CP. The following test results show the averages 2 over 30
runs per data point on a 2 GHz AMD Athlon processor with 512 MB RAM. Figure 7
visualizes the results of our experiments on the large benchmark of random BCSP in-
stances with 16 variables, 8 domain values per variable, and 32 allowed pairs per binary
constraint. Again, we see a clear easy-hard-less hard pattern. The comparison shows
that a pure CP solver is orders of magnitude faster than LP-filtering and LP-pruning,
whereby the latter, despite its weaker effectiveness, is still about twice as fast.

2 Although we can only visualize averages in our plots, we would like to mention that we also
checked the medians and variances to eliminate the possibility that some extreme outliers
disproportionally bias the comparison.

For our last experiment, we were curious whether the good efficiency of pure arc-
consistency methods was maybe caused by the unstructured character of our benchmark
set. Therefore, we repeated the experiment in Figure 7 on a benchmark set that contains
13-queens instances with additional random binary constraints on the queens. We use
the standard CP model where we add one queen-variable for each column and the values
that they take correspond to the row index that the queen takes. Alldifferent constraints
on rows, columns, and diagonals enforce the 13-queen problem. In Figure 8 we plot
the percentage of feasible instances and the solution time by our three solvers over the
number of (additional) binary constraints added to the problem.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

Pe
rc

en
ta

ge
 o

f
fe

as
ib

le
 p

ro
bl

em
s

Constraints

BCSP with NQUEENS

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80

T
im

e
(i

n
se

co
nd

s)

Constraints

LP filtering
LP pruning

Pure CP

Fig. 8. Comparison of pure CP, LP-pruning, and LP-filtering on random BCSP instances

We see that LP-filtering is able to catch up with LP-pruning, but the comparison
with the pure CP solver is devastating. We conclude that the idea of basing a BCSP
filtering algorithm on mathematical programming just does not pay off within a tree
search.

Of course, it is well-known fact that the use of relaxations is essential for many
optimization problems. For this case, when binary constraints are part of the problem,
we have introduced a linear programming formulation that approximates the convex
hull of feasible integer solutions better than previously studied relaxations. However,
for pure feasibility problems, we find that pure CP is the method of choice.

5 Conclusion

We presented a filtering algorithm based on linear programming (LP) models for BC-
SPs. The LP relaxations that we used are provably stronger than those developed in [12].
At the same time, filtering can now be based on standard linear programming technol-
ogy which reduces the programming effort and speeds up the filtering process consid-
erably. Our numerical results show that LP-based filtering for BCSPs leads to more
effective filtering. In so far, we can confirm the findings in [12]. However, ultimately
we are interested in solving BCSPs by search methods. And in the realm of search,
what matters is not so much the effectiveness of filtering methods, but the trade-off be-
tween effectiveness and time, i.e. efficiency. Our experiments on random instances show

clearly that the additional time for filtering based on mathematical programming does
not pay off for BCSPs when compared with standard CP arc-consistency techniques.
We therefore reconfirm the common (yet to the best of our knowledge unpublished)
belief that hybrid methods perform very poorly on BCSPs: for these problems, leaner
and faster inference continues to be the right way to go.

References

1. R.K. Ahuja, T.L. Magnati, J.B. Orlin. Network Flows. Prentice Hall, 1993.
2. G. Appa, D. Magos, I. Mourtos, An LP-based proof for the non-existence of a pair of Or-

thogonal Latin Squares for n=6. OR Letters, 32(4): 336–344, 2004.
3. C. Bessiere. Random Uniform CSP Generators. http://www.lirmm.fr/∼bessiere/-

generator.html.
4. T. Fahle, U. Junker, S.E. Karisch, N. Kohl, M. Sellmann, B. Vaaben. Constraint programming

based column generation for crew assignment. Journal of Heuristics, 8(1):59-81, 2002.
5. T. Fahle, M. Sellmann. Cost-Based Filtering for the Constrained Knapsack Problem. Annals

of Operations Research, 115:73–93, 2002.
6. F. Focacci, A. Lodi, M. Milano. Cutting Planes in Constraint Programming: An Hybrid Ap-

proach. Proceedings of CP-AI-OR’00, Paderborn Center for Parallel Computing, Technical
Report tr-001-2000:45–51, 2000.

7. F. Focacci, A. Lodi, M. Milano. Cost-Based Domain Filtering. Principles and Practice of
Constraint Programming (CP) Springer LNCS 1713:189–203, 1999.

8. J.N. Hooker. A hybrid method for planning and scheduling. Proceedings of Principles and
Practice of Constraint Programming (CP 2004), Springer LNCS 3258:305–316, 2004.

9. J.N. Hooker and G. Ottosson. Logic-based Benders decomposition. Mathematical Program-
ming, 96:33–60, 2003.

10. ILOG SA. ILOG Concert 2.0. http://www.ilog.com.
11. U. Junker, S.E. Karisch, N. Kohl, B. Vaaben, T. Fahle, M. Sellmann. A Framework for

Constraint programming based column generation. Principles and Practice of Constraint
Programming (CP), Springer LNCS 1713:261–274, 1999.

12. M.O.I. Khemmoudj, H. Bennaceur, A. Nagih. Combining Arc-Consistency and Dual La-
grangean Relaxation for Filtering CSPs. Proceedings of CPAIOR’05, LNCS 3524:258–272,
2005.

13. H-J. Kim and J. N. Hooker. Solving fixed-charge network flow problems with a hybrid
optimization and constraint programming approach. Annals of Operations Research 115:95–
124, 2002.

14. M. Milano. Integration of Mathematical Programming and Constraint Programming for
Combinatorial Optimization Problems, Tutorial at CP2000, 2000.

15. G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley, 1988.
16. G. Ottosson, E.S. Thorsteinsson. Linear Relaxation and Reduced-Cost Based Propagation

of Continuous Variable Subscripts. CP-AI-OR’00, Paderborn Center for Parallel Computing,
Technical Report tr-001-2000:129–138, 2000.

17. J.-C. Régin. Cost-Based Arc Consistency for Global Cardinality Constraints. Constraints,
7(3-4):387–405, 2002.

18. Meinolf Sellmann. Theoretical Foundations of CP-based Lagrangian Relaxation. Proceed-
ings of the 10th intern. Conference on the Principles and Practice of Constraint Program-
ming (CP), Springer LNCS 3258:634-647, 2004.

19. M. Sellmann. Approximated Consistency for Knapsack Constraints. CP, Springer LNCS
2833: 679–693, 2003.

20. M. Sellmann and T. Fahle. Constraint Programming Based Lagrangian Relaxation for the
Automatic Recording Problem. Annals of Operations Research, 118:17-33, 2003.

21. M. Sellmann and T.Fahle. Coupling Variable Fixing Algorithms for the Automatic Recording
Problem. Annual European Symposium on Algorithms (ESA), Springer LNCS 2161: 134–
145, 2001.

22. M. Sellmann and W. Harvey. Heuristic Constraint Propagation. Proceedings of the 8th intern.
Conference on the Principles and Practice of Constraint Programming (CP), Springer LNCS
2470: 738–743, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

