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Abstract

The detection and tracking of three-dimensional human

body models has progressed rapidly but successful ap-

proaches typically rely on accurate foreground silhouettes

obtained using background segmentation. There are many

practical applications where such information is imprecise.

Here we develop a new image likelihood function based on

the visual appearance of the subject being tracked. We pro-

pose a robust, adaptive, appearance model based on the

Wandering-Stable-Lost framework extended to the case of

articulated body parts. The method models appearance us-

ing a mixture model that includes an adaptive template,

frame-to-frame matching and an outlier process. We em-

ploy an annealed particle filtering algorithm for inference

and take advantage of the 3D body model to predict self-

occlusion and improve pose estimation accuracy. Quanti-

tative tracking results are presented for a walking sequence

with a 180 degree turn, captured with four synchronized and

calibrated cameras and containing significant appearance

changes and self-occlusion in each view.

1. Introduction

The detection and tracking of three-dimensional human

body models (using one or more images) has progressed

rapidly but successful approaches typically rely on accurate

foreground silhouettes obtained using background subtrac-

tion. In many practical applications such information is not

reliable due to the presence of complicated (cluttered and

moving) backgrounds that change in unpredictable ways.

This suggests that a reliable human tracker cannot rely on

high-quality silhouettes obtained from background subtrac-

tion. Instead we need reliable models of image appearance

that enable 3D articulated human tracking without accurate

background subtraction.

∗Portions of this work were performed by AOB at Intel Research in

Santa Clara, CA.
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Figure 1. Exploded person: RoAM body model. The appearance

of the body in a camera view is represented by the appearance

of the individual parts. Stable and wandering appearance com-

ponents extracted by the RoAM tracker are shown for one frame.

The appearance models are initialized based on the first frame and

updated over time using a method that takes into account self oc-

clusion (red regions in the appearance models indicate occluded

parts in the current frame).

Here we develop a new image likelihood function based

on the visual appearance of the subject being tracked. Of

course, this appearance is not known a priori and it changes

over time with viewpoint, clothing deformation, self shad-

owing, etc. To deal with these complexities we propose a

robust, adaptive, appearance model, RoAM, based on the

Wandering-Stable-Lost (WSL) framework [7] extended to

the case of articulated body parts. The method models ap-

pearance using a mixture model that includes an adaptive

template, frame-to-frame matching and an outlier process.

While the WSL method has been shown to be very reliable

for tracking affine or planar image patches with sufficient

texture, its application to 3D human tracking presents novel

challenges.

In particular, we use a collective set of appearance mod-

els for each body part. Self-occlusion however presents a

problem in that, in some views, certain body parts may be

occluded for long periods of time. In the standard WSL
framework the stable appearance template would adapt to

model the appearance of the occluding regions and would



result in tracking failure. To cope with this we take ad-

vantage of the 3D body model to predict self-occlusion and

restrict adaptation to visible pixels.

The original WSL model was developed in the context

of parametric motion estimation/tracking. This is possible

in the case of low-dimensional linear models (e.g. affine)

and small frame-to-frame displacements. Tracking the hu-

man body however is more complex and most successful

approaches rely on some form of stochastic sampling. For

example, we employ an annealed particle filtering algorithm

for inference [5]. Our solution extends WSL to a particle-

based tracker by allowing separate models for each particle;

making this practical is a challenge.

Quantitative tracking results are presented for a walking

sequence with a 180 degree turn, captured with four syn-

chronized and calibrated cameras and containing significant

appearance changes and self-occlusion in each view. We

combine a standard background subtraction likelihood [5]

with the WSL model in a principled way and then per-

form experiments where the background data is periodi-

cally uninformative. We compare a traditional tracker based

on background subtraction to one that includes an adaptive

appearance model and find that the WSL model well im-

proves the stability and accuracy of the tracker.

1.1. Related Work

A variety of image likelihood models have been em-

ployed for 2D and 3D human tracking including fore-

ground silhouettes [5, 16], edges [5, 9], brightness con-

stancy [3, 8, 15], optical flow and flow discontinuities [16],

image templates [4], color distributions [10, 11], and im-

age filter statistics [13]. In addition there is an enormous

literature on image-based tracking. While the recent WSL
model has not been applied to 3D human tracking, previous

methods have used pieces of it. We use the Wandering-

Stable-Lost idea to categorize previous work.

Wandering. The wandering component corresponds to a

brightness constancy assumption between adjacent frames.

It implies that the image appearance of the limb at the cur-

rent frame looks like the image appearance at the previous

frame – only the pose has changed. Such a model was first

proposed by Ju et al. [8] for 2D tracking with a “cardboard-

person” model. Bregler and Malik [3] and Sidenbladh et al.

[15] use the same idea for 3D tracking. Like any optical

flow tracker, these methods tend to drift over time and once

they do, they have no way of recovering.

Stable. Stable models have appeared in a variety of forms.

In particular we can categorize them as adaptive or fixed.

Stable & Fixed. Cham and Rehg [4], for example, used a

fixed image template extracted by hand in the first frame of

a sequence to track a moving subject. Such an approach is

unable to deal with significant changes in viewpoint. To

cope with changing and more varied appearance, Siden-

bladh et al. [14] extended the idea of EigenTracking [2]

to cylindrical limbs and learned an eigen-appearance model

from multiple training views.

Stable & Adaptive. Howe et al. extended [8] by con-

structing a template for each limb that was the weighted

average of several preceding frames. They also accounted

for self occlusions and used known occlusion relations to

construct support maps. Our RoAM framework extends

both of these ideas and provides a more principled way of

adapting the templates and combining them with 2-frame

tracking. Roberts et al. [11] represented the body as a col-

lection of simple geometric primitives and modeled texture

regions on the surfaces using color histogram distributions

that they adapt over time. In contrast, our model is paramet-

ric, view dependent and non-regional. Numerous authors

have looked recently at tracking using adaptive appearance

models, often based on eigen-representation [12]. Unlike

the RoAM framework, these methods do not typically pro-

vide a framework for combining different sources of infor-

mation in a robust probabilistic way.

2. Method

We work in a Bayesian framework using a generative

approach. The goal is to estimate the posterior probabil-

ity distribution P+
t ≡ p(xt|y1:t) for the state xt of the hu-

man body at time t given a sequence of image observations

y1:t ≡ (y1, . . . ,yt).
Making the common assumptions that the state at time

t is only dependent on the previous state while the obser-
vation is only dependent on the current state, a recursive
Bayes formula can be derived and used for inference:

p(xt|y1:t) ∝ p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1.

The human tracking problem has been shown to be

highly under-constrained and ambiguous [6]. The multi-

modality of the posterior distribution has pushed the state

of the art towards non-parametric approximate methods that

represent distributions by a set of N random samples or par-

ticles with associated normalized weights {x
(i)
t , π

(i)
t }N

i=1.

Particles are sampled from the posterior at time t− 1, prop-

agated over time using the temporal dynamics p(xt|xt−1)
and assigned new weights according to the likelihood func-

tion p(yt|xt) [6].

2.1. Appearance Model

The objective of the Wandering-Stable-Lost model

(WSL) [7] is to track an image region while adapting to

slowly changing appearance and maintaining robustness to

partial occlusions, natural appearance changes and image



deformations. By maintaining a natural measure of the sta-

bility of the observed image structure, appearance proper-

ties for motion estimation can be weighted according to the

corresponding level of stability. Our treatment closely fol-

lows that in [7].

The WSL framework assumes that each dimension of

the appearance model is independent of the other dimen-

sions; this simplifies the mathematical formulation greatly

as the appearance model is defined in a 1D space. When

tracking using a multi-dimensional appearance model, each

1D WSL component casts a weighted vote according to its

level of stability.

Consider a single real-valued data observation dt at each

time t. The method models appearance using a mixture

model that includes an adaptive template (stable compo-

nent S), frame-to-frame matching (wandering component

W) and an outlier process (lost component L).
The mixture probability density for a new data observa-

tion dt conditioned on the past observations is given by

p(dt|µs,t−1, σ
2

s,t−1, dt−1,mt−1) = mw,t−1pw(dt|dt−1) +

+ ms,t−1ps(dt|µs,t−1, σ
2

s,t−1) + ml,t−1pl(dt).

The stable component ps(dt|µs,t−1, σ
2
s,t−1) is intended

to identify appearance properties that remain relatively sta-

ble over long time frames. It is modeled as a Gaus-

sian density function with parameters µs,t−1, σ
2
s,t−1 which

adapt slowly over time. The wandering component

pw(dt|dt−1; σ
2
w) supports frame-to-frame tracking when

the appearance changes rapidly compared with the slow

adaptation of the stable component, or for initialization

when there is no history with which to identify stable prop-

erties. This term is modeled as a Gaussian density function

relative to the previous data observation, and its variance

σ2
w is fixed. An outlier process accounting for tracking fail-

ures, occlusion and noise is given by the lost component

pl(dt), which is modeled with a uniform distribution. The

mixing probabilities of the three components are given by

mt = (mw,t, ms,t, ml,t).
The parameters µs,t, σ

2
s,t of the appearance model and

mixing probabilities mt = (mw,t, ms,t, ml,t) are updated

over time using an online Expectation-Maximization (EM)

algorithm. During the E-step, the ownership probabilities

of each component i ∈ {w, s, l} for each observation dt are

computed by

oi,t(dt) =
mi,t−1pi(dt|µs,t−1, σ

2
s,t−1, dt−1)

p(dt|µs,t−1, σ2
s,t−1, dt−1, mt−1)

. (1)

The impact of previous observations on predicting cur-

rent observations is assumed to fall exponentially with the

time difference between them, making the recent past more

relevant than the distant past. An exponential envelope is

used to define the weight St(k) = αe−(t−k)/τ of an ob-

servation at time k with respect to an observation at time t.

Here α is a normalizing constant to make the weights in-

tegrate to 1, τ = ns/ log(2), and ns is the half-life of the

exponential envelope.

During the M-step, the maximum likelihood estimates

of the mean and variance of the stable component are com-

puted using the moments of the past observations, weighted

by the stable ownership probability. If M
(j)
t is the jth-order

data moment weighted by the current ownership probability

M
(j)
t =

−∞∑
k=t

St(k)dj
kos,t(dt), (2)

then the stable mean and variance can be updated using the

standard formulas

µs,t =
M

(1)
t

M
(0)
t

, σ2
s,t =

M
(2)
t

M
(0)
t

− µ2
s,t. (3)

A recursive expression for the moments can be derived

from (2) which allows for the moments to be updated with-

out the need to retain past information:

M
(j)
t = αdj

tos,t(dt) + (1 − α)M
(j)
t−1. (4)

Here α acts as an adaptation factor. The higher the α value,

the faster the model adapts to the new observations. Simi-

larly, the mixing probabilities are updated using

mi,t = αoi,t(dt) + (1 − α)mi,t−1, i ∈ {w, s, l}. (5)

For a complete derivation and justification, please refer to

[7].

2.2. Body Model

The skeleton of the body is represented as a kinematic

tree having tapered cylinders with elliptical cross-sections

around the limbs (Figure 2 Left). We consider 15 body

parts: pelvis area, torso, upper and lower arms and legs,

hands, feet and the head. A given pose configuration is

given by the relative joint angles between connected limbs

and the position and orientation of the pelvis in the global

coordinate system, for a total of 40 dimensions. The intrin-

sic parameters such as the length and width of the limbs are

provided and we do not optimize over them.

2.3. Likelihood Formulation

The success of any tracking method depends very much

on the ability of the image likelihood function to discrim-

inate between poses that fit the image well and those that

do not. Ideally a wealth of image cues would be used to

make this evaluation. While foreground silhouettes have

been shown [1, 5] to be a powerful feature to use, they may

not always be available. For these cases object appearance

may prove a useful component of the likelihood.



Figure 2. Left: Body Model. Kinematic tree with fifteen body

parts consisting of 40 degrees of freedom. Six degrees of freedom

are given to the pelvis consisting of global positioning and orien-

tation. Torso, shoulders, hips and neck have all 3 freedoms, while

the elbows and knees have 2 degrees of freedom. Wrists and an-

kles have 1 degree of freedom. Right: Appearance Extraction.

A regular rectangular grid is used to extract pixel values for each

body part in each camera view. Usually a dense grid is used that

covers every pixel.

We introduce a new image likelihood function for artic-

ulated objects based on the visual appearance of the subject

being tracked. We use a robust, adaptive, appearance model

RoAM based on the Wandering-Stable-Lost framework, ex-

tended to the case of articulated body parts. The likelihood

function p(yt|xt) computes a measure of how well a pose

hypothesis xt fits the image observations. By projecting the

body model into the images, we can uniformly extract pixel

information for each body part as shown in Figure 2 Right.

We assign a 1D WSL model to each pixel on each limb of

interest on each camera view.

In fact, for a given pixel we can assign multiple 1D WSL
models corresponding to different image filter responses. A

wide variety of image properties can be used for learning

an appearance model including: image brightness, steer-

able derivative filters, image gradients, color components in

various color spaces, wavelet phases, image statistics, filter

pyramids at different scales, etc.

The RoAM appearance model At at time t consists of all

1D WSL model parameters indexed by r

At = {(µs,t, σs,t, dt−1, mt, M
(0)
t , M

(1)
t , M

(2)
t )r}, (6)

assigned to each pixel in a grid belonging to each body part

in each view for every type of image filter response.

One advantage for using a kinematic tree model is the

ability to determine, for a body configuration, which re-

gions of the limbs are not visible in each view due to self-

occlusion. A ray-tracer approach can generate the desired

visibility map shown in Figure 3 by computing the depth of

the visible surface at each pixel. This can be avoided how-

ever and a faster procedure can be employed making the

observation that, since the cylinders are convex, there is a

guarantee that no two cylinders can occlude each other. This

means that there always exists a topological order of the

Figure 3. Visibility Map. Left: A label is assigned to each pixel

in the map, denoting the body part visible at that location or the

background. Right: Even if the red cylinder is occluded by the

blue one, it is still possible however that its center is closer to the

camera eye if the two cylinders are disproportionate.

limbs such that rendering the cylinders in this order yields

the correct visibility map. We try to obtain such a topolog-

ical order by sorting the body parts in decreasing distance

from the camera. The distance is taken to be between the

camera eye and the center of the limb. Figure 3 shows an

example were this heuristic could fail, but such failures are

unlikely in the case of proportionate body parts.

The goal is to use stable properties of the body appear-

ance to align coherent structures over extended durations,

identified by high stable ownership probability. We rely on

a good history of stable observations (os) to make predic-

tions and we expect the current observation to be consistent

with the stable component (ps). This suggests an aggregate

energy function based on the log likelihood of the stable

components weighted by the stable ownership probability:

Es(dt(xt)) =
∑

v

os(dv,t) logps(dv,t|µv,s,t−1, σ
2
v,s,t−1).

Here v indexes the WSL models corresponding to pixels

on visible body parts during both the current and previous

frames, and dt(xt) is the entire set of image observations

induced by pose xt.

Sometimes there are not enough stable components to

reliably estimate the matching between a body pose and the

learned appearance model. This is true during initializa-

tion when there is no history of stable structure, or during

rapid changes of appearance. In this case the tracker should

gracefully degrade to frame-to-frame matching. We there-

fore need to incorporate W constraints into the log likeli-

hood estimation. We use a similar energy function corre-

sponding to the wandering component for visible pixels:

Ew(dt(xt)) =
∑

v

ow(dv,t) logpw(dv,t|dv,t−1). (7)

The Es and Ew energy functions can be combined into

an objective function which we seek to maximize. We de-

fine the log likelihood of the image observations condi-

tioned on a given pose as

log p
RoAM

(yt|xt) ∝
1

|{v}|
(Es + εEw), (8)



where ε is a sub-unitary scaling factor to favor stable struc-

ture over transient structure.

2.4. Foreground Silhouettes Likelihood

Our results will show that likelihood functions using

foreground silhouettes generate better tracking results than

our appearance likelihood when the silhouettes are accurate

enough. Indeed this was expected; when good edge and

silhouette data is available it should be used and has been

shown to yield reliable tracking [1, 5]. Our intent is to pro-

vide an alternative to foreground silhouettes when they are

unreliable, and to supplement them when they are. Fore-

ground silhouettes can be obtained by employing a sim-

ple background subtraction method or any other foreground

segmentation algorithm. They are represented as binary

maps F , with 1 denoting foreground and 0 background.

The negative log-likelihood of a pose is estimated by

taking a number of points uniformly distributed inside the

cylinders of the model, projecting them into each image

view, and computing the mean square error (MSE) of the

foreground map responses:

− log p
FG

(yt|xt) ∝
1

|{ξ}|

∑
ξ

(1 − F (ξ))2, (9)

where ξ denotes points on the grid.

We combine the appearance likelihood in (8) with a fore-

ground silhouette likelihood in (9) using a weighted formu-

lation

log p(yt|xt) ∝ λ logp
RoAM

(yt|xt) +

+ (1 − λ) log p
F G

(yt|xt), (10)

where λ is a parameter to be determined empirically.

2.5. Inference

Inference is achieve using an annealed particle filter [5].

This approach searches for peaks in the posterior distribu-

tion using simulated annealing, and tends to concentrate the

particles into one mode. It has been shown to be very pre-

cise when multiple cameras are considered and a likelihood

based on foreground silhouettes is used [1]. Its major draw-

back is it will often fail to represent multiple hypotheses.

The annealing process consists of several iterations (lay-

ers) of the filtering procedure which assumes the posterior

distribution is represented by weighted particles. During

the filtering procedure, particles are sampled with replace-

ment from the posterior, and temporal-dynamics are used

to propagate the particle from one frame to the next. We

use the simplest model to make predictions from the pos-

terior, which assumes a Gaussian distribution around the

previous time estimates: xt ∼ N (xt−1, Σ), where Σ is a

covariance matrix which can be learned from training exam-

ples. To reduce the search space, we apply a hard prior that

eliminates any particle that corresponds to implausible body

poses such as having angles exceeding anatomical joint lim-

its or inter-penetrating limbs. Predicted particles are then

re-weighted according to an annealed version of the like-

lihood function. The likelihood distribution is intended to

be very broad in the first layer and gradually become more

peaked. This is achieved by exponentiating the likelihood

responses from (10) according to an annealing schedule.

The weighted particles obtained during the last layer

of annealing represent the estimated posterior at the next

frame. To extend WSL to the particle filtering framework,

each particle is connected through a genealogical chain to

one particle in the previous posterior. The RoAM appear-

ance of each particle can then be updated based on the ap-

pearance model of the corresponding particle at previous

time instance using (3), (4) and (5). In this way every parti-

cle carries its own WSL model through time.

3. Experiments and Results

We consider a test sequence of grey-value images from

the Brown database [1] consisting of walking motion with

a 180◦ turn captured from 4 calibrated cameras. The back-

ground is stationary, but cluttered; shadows are also present.

The person’s appearance changes significantly due to the

full rotation of the body and also due to temporary self-

occlusions. Often there is not enough contrast to differen-

tiate the limbs from the background. All these make the

sequence challenging.

Ground truth data obtained with a marker-based motion

capture system is available for this sequence. We quantita-

tively evaluate our results with respect to ground truth data

using a measure based on 3D Euclidian average distances

at joint locations. We define the frame error as the mini-

mum error of any particle in the posterior distribution or for

the expected pose [1]. For an entire sequence we report the

average frame error; errors above 200mm are considered

failures.

Tracking with and without RoAM. In our first experi-

ment, we have performed full body tracking using both the

RoAM appearance model and the foreground silhouettes.

By adjusting the λ parameter in (10), we are able to com-

pare the two likelihoods separately, and evaluate how they

work together. Tracking results as a function of λ are plot-

ted in Figure 4 (thick curve).

We first observe that, due to the small image size of the

limbs and the lack of image texture, tracking using only

the appearance model is significantly worse than using only

foreground silhouettes. However, mixing RoAM appear-

ance with the silhouettes in a 20-to-80 ratio increases track-

ing accuracy with respect to the silhouette likelihood. Fig-

ure 7 illustrates that tracking with only silhouettes permits

the legs to switch starting with frame 120, while the arms

sometimes “stick” to the torso to fit inside the silhouette. In
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Figure 4. Appearance vs. Silhouettes. Tracking using foreground

silhouettes corresponds to λ = 0, while λ = 1 gives full con-

tribution to the appearance model. The best performance for the

RoAM model (thick curve) is obtained when the appearancegives

about 20% to the likelihood estimation and silhouettes 80%. Per-

formance for individual components of the model (static template

– fixed S, frame-to-frame – W) is displayed the same way.

contrast, Figure 8 shows that the combined likelihood func-

tion is able to reasonably address these problems.

We have also looked at how individual pieces of the

model affected performance. We replaced the WSL model

with individual components: a static template appearance

model (fixed S) and a frame-to-frame tracker (W). The

results in Figure 4 suggest that, as the silhouette contribu-

tion to the likelihood is reduced, the frame-to-frame tracker

drifts more easily into the background and effectively be-

comes a penalty for the true pose. On the other hand, the

static template is not subject to drifting and copes very well

on our short sequence (probably because each body part has

the same texture on all sides), nonetheless it would not gen-

eralize to longer sequences due to its inability to adapt to

drastic appearance changes.

Failures of background subtraction. To simulate dras-

tic failures of background subtraction, we artificially made

the silhouette likelihood uniform for 4 frames out of every

5. In these situations the RoAM appearance model reduces

tracking degradation due to poor foreground segmentation

significantly as shown in Figure 5 Left.

Tracking individual parts. To better understand how

the appearance of each body part is represented we have

tracked individual body parts and looked at the behavior of

the WSL models. First we tracked only the head in 3D us-

ing all 4 views. The head has more features and texture than

the arms and legs and can be tracked easily. We show in

Figure 6 how the stable and wandering components evolve

over time. We note that when the head is not tracked in the

conjunction with the torso, the orientation is not retained

very well. The stable component in the top row eventually

replaces the face skin with hair, while the frontal hair has

high stability even when the head turns since the image in-

tensity is the same. The wandering component really shows

the estimated pose at the previous frame.
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Figure 5. Left: Corrupted Silhouettes. The foreground silhou-

ette likelihood is artificially made uniform every 4 frames out of 5

in the sequence. Over 100 frames, the error for using just silhou-

ettes (λ = 0) is 2.5 times larger, while the error for the RoAM

plus silhouette model (λ = 0.2) is increased by only 50%. Right:

WSL Component Preponderance. The mixing probabilities

mt for the head and lower arms are averaged individually over

all WSL models at every frame. The head has more stable struc-

ture in regions with hair, while the arms get lost more easily and

wander in the background.

In contrast, it has been noted that lower arms are one of

the hardest body parts to track. In comparison with legs and

upper arms, they are smaller, they move faster, and their

motion is harder to model [1]. To track only the lower arm

movement, we have localized the torso with the true posi-

tion and orientation at each frame. We have averaged over

all WSL models at every frame the mixing probabilities

mt for the head and lower arms to obtain the bar plot in

Figure 5 Right. The head is quite stable since the hair does

not change appearance even when the head rotates. The

fact that the arms are lost more often explains why its sta-

ble component has lower mixing proportion. Whenever an

arm is mistracked over a relatively uniform background, the

wandering ownership can remain high.

3.1. Limitations

We have observed a number of situations that has made

appearance tracking difficult. We currently employ no mo-

tion prior to guide the tracker when image observations are

ambiguous. Multiple cameras are needed to cope with self-

occlusions. Even so, tracking can fail when the stable ap-

pearance of the limb is very similar to the background; this

is particularly true in low contrast regions. In these situ-

ations, as in any tracker, the model is prone to track the

background.

Finally, in this sequence there is little texture informa-

tion on the subject’s limbs and the poor contrast between

foreground and background permits the appearance model

to slide off. We conclude that appearance-based tracking

alone requires higher quality image data and higher reso-

lution images. Color image data would provide additional

information.
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Figure 6. Head Tracking WS Components. Every 20th frame from camera 3. When every pixel has associated a WSL model, the stable

and wandering components can be visualized in an intuitive way as they evolve over time. The top row shows the mean of the stable

component, while the middle row shows the mean of the wandering component. The input image is shown on the bottom row.

3.2. Implementation Details

In our experiments we used image brightness as the ob-

servation signal, which has been normalized between zero

and one. Inference was performed using 250 particles and

5 layers of annealing. We initialize the tracker with the true

pose in the first frame and the appearance model initializes

based on that pose.

We will now go over the essential parameters for

WSL. The WSL mixing proportions are set to m1 =
(0.35, 0.55, 0.15); the algorithm is not sensitive to the ex-

act choice of mixing values. The moments M
(j)
1 are initial-

ized such that µs,1 equals the initial data observation d1 and

σs,1 = 0.075. We also use this value as a lower threshold

on the variance of S. We make σw = 1.5σs,1 and down-

weigh the Ew term in (8) by ε = 1/20 to give preference to

stable structure. The adaptiveness of the stable component

is influenced by the half-life of the exponential decay, set to

ns = 30 frames.

Occasional restarts of the appearance model are neces-

sary when observations are persistently unstable. These sit-

uations can be detected when the mixing probability of the

stable component ms falls under a specified threshold (0.1

in our experiments). We note that this is done per pixel

and therefore no useful information is lost in stable regions.

Restarts are done by setting the model parameters to the ini-

tial values and centering the stable component at the current

data observation.

The WSL model did not consider the case of missing

data. Attempting to read an image outside of its boundaries

or knowing that the observed data is incorrect (the occlu-

sion case) are pertinent examples. We chose to freeze the

appearance model in this case. Alternatives include restart-

ing the model or assigning full ownership to the lost com-

ponent, since the wandering and stable components cannot

be responsible for generating an imprecise observation.

The size of the overall appearance model can be very

large since the number of 1D WSL models in At equals the

number of grid pixels on a limb times the number of limbs

used times the number of camera views times the number

of filter responses. In our experiments we kept only one

appearance model for the entire posterior at the previous

time based on the appearance of the expected pose in the

particle set.

There is a trade-off between frame rate and accuracy, but

for out setup the processing time is about 6 minutes per

frame using a Matlab implementation on a standard PC.

4. Conclusions and Future Work

To address the problem of potentially inaccurate back-

ground segmentations, we have proposed a robust, adap-

tive, appearance model, RoAM, based on the Wandering-

Stable-Lost (WSL) framework. We have extended WSL
to the case of articulated body parts and to a particle fil-

ter based tracking framework. We have demonstrated the

approach on a challenging sequence and successfully en-

hanced the performance of a silhouette tracker by augment-

ing it with an adaptive appearance model. In particular, the

results suggest that when background subtraction is unreli-

able, an adaptive appearance model for the limbs stabilizes

the tracking results substantially.

Our work suggests a number of future directions. Here

we have only explored appearance based on image bright-

ness which may be sensitive to lighting changes. We have

proposed other possible features but determining which im-

age features are most appropriate requires more research.

We have used no dynamics in our tracker and we expect a

prior model of human motion to likely improve robustness

further.
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