
Learning Phrasal Categories

William P. Headden III
Department of Computer Science

Brown University
Providence, RI 02912

Abstract

In this work we learn clusters of contex-
tual annotations for non-terminals in the
Penn Treebank. Perhaps the best way
to think about this problem is to contrast
our work with that of Klein and Man-
ning (2003). That research used tree-
transformations to create various gram-
mars with different contextual annotations
on the non-terminals. These grammars
were then used in conjunction with a CKY
parser. The authors explored the space
of different annotation combinations by
hand. Here we try to automate the pro-
cess — to learn the “right” combination
automatically. Our results are not quite
as good as those carefully created by hand
but they are close (84.8 vs 85.7).

1 Introduction and Previous Research

It is by now commonplace knowledge that accu-
rate syntactic parsing is not possible given the only
a context-free grammar with standard Penn Tree-
bank (Marcus et al., 1993) labels (e.g.,S, NP ,
etc.) (Charniak, 1996). Instead researchers condi-
tion parsing decisions on many other features, such
as parent phrase-marker, and, famously, the lexical-
head of the phrase (Magerman, 1995; Collins, 1996;
Collins, 1997; Johnson, 1998; Charniak, 2000; Hen-
derson, 2003; Klein and Manning, 2003; Matsuzaki
et al., 2005) (and others).

One particularly perspicuous way to view the use
of extra conditioning information is that of tree-

transformation (Johnson, 1998; Klein and Manning,
2003). Rather than imagining the parser roaming
around the tree to pick up the information it needs,
we rather relabel the nodes to directly encode this in-
formation. Thus rather than have the parser “look”
to find out that, say, the parent of someNP is anS,
we simply relabel theNP as anNP [S].

This viewpoint is even more compelling if one
does not intend to smooth the probabilities. For ex-
ample, considerp(NP → PRN | NP [S]) If we
have no intention of backing off this probability to
p(NP → PRN | NP) we can treatNP [S] as
an uninterpreted phrasal category and run all of the
standard PCFG algorithms without change. The re-
sult is a vastly simplified parser. This is exactly what
is done in (Klein and Manning, 2003).

Thus the “phrasal categories” of our title refer to
these new, hybrid categories, such asNP [S]. We
hope to learn which of these categories work best
given that they cannot be made too specific because
that would create sparse data problems.

The parser from (Klein and Manning, 2003) is an
unlexicalized PCFG with various carefully selected
context annotations. Their model uses some parent
annotations, and marks nodes which initiate or in
certain cases conclude unary productions. They also
propose several linguistically motivated annotations
of several tags, includingV P , IN , CC,NP andS.
This results in a reasonably accurate unlexicalized
PCFG parser.

The downside of this approach is that their fea-
tures are very specific, applying different annota-
tions to different treebank nonterminals. For in-
stance, they mark right-recursiveNPs and notV Ps

(e.g., anNP which is the right-most child of another
NP). This is because data sparsity issues preclude
annotating the nodes in the treebank too liberally.
The goal of our work is to automate the process a
bit, by annotating with more general features that
apply broadly, and by learning clusters of these an-
notations.

Coming to this problem from the standpoint of
tree transformation we naturally view our work as a
descendent of (Johnson, 1998; Klein and Manning,
2003). In retrospect, however, there are perhaps
even greater similarities to that of (Magerman, 1995;
Henderson, 2003; Matsuzaki et al., 2005) Consider
the approach of (Matsuzaki et al., 2005). They posit
a series of latent annotations for each nonterminal,
and learn a grammar using an EM algorithm simi-
lar to the inside-outside algorithm. Their approach,
however, requires the number of annotations to be
specified ahead of time, and assigns the same num-
ber of annotations to each treebank nonterminal. We
would like to infer the number of annotations for
each nonterminal automatically.

However, again in retrospect, it is in (Magerman,
1995) that we see the greatest similarity. Rather
than taking about clustering nodes, as we do, Mager-
man creates a decision tree, but the differences be-
tween clustering and decision trees are small. Per-
haps a more substantial difference is that by not
casting his problem as one of learning phrasal cat-
egories Magerman looses all of the free PCFG tech-
nology that we can leverage, e.g., Magerman must
use heuristic search to find his parses and incurs
search errors because of it. We use an efficient
CKY algorithms to do exhaustive search in reason-
able time.

2 Background

A PCFG is a tuple(V,M,µ0, R, q : R → [0, 1]),
whereV is a set of terminal symbols;M = {µi} is a
set of nonterminal symbols;µ0 is a start or root sym-
bol; R is a set of productions of the formµi → ρ,
whereρ is a sequence of terminals and nontermi-
nals; andq is a family of probability distributions
over rules conditioned on the rules’ left-hand side.

As in (Johnson, 1998) and (Klein and Manning,
2003), we annotate the Penn treebank non-terminals
with various context information. Supposeµ is a

Treebank non-terminal. Letλ = µ[α] denote the
non-terminal category annotated with a vector of
context featuresα. A PCFG is derived from the trees
in the usual manner, with production rules taken di-
rectly from the annotated trees, and the probability
of an annotated ruleq(λ → ρ) = C(λ→ρ)

C(λ) where
C(λ → ρ) andC(λ) are the number of observations
of the production and its lefthand side, respectively.

We refer to the grammar resulting from extracting
annotated productions directly out of the treebank as
the base grammar.

Our goal is to partition the set of annotated non-
terminals into clustersΦ = {φi}. Each possible
clustering corresponds to a PCFG, with the set of
non-terminals corresponding to the set of clusters.
The probability of a production under this PCFG is

p(φi → φjφk) =
C(φi → φjφk)

C(φi)

where φs ∈ Φ are clusters of annotated non-
terminals and where:

C(φi → φjφk . . .) =
∑

(λi,λj ,λk...)∈φi×φj×φk... C(λi → λjλk . . .)

We refer to the PCFG of some clustering as the clus-
tered grammar.

2.1 Features

Most of the features we use are fairly standard.
These include the label of the parent and grandpar-
ent of a node, its lexical head, and the part of speech
of the head.

Klein and Manning (Klein and Manning, 2003)
find marking nonterminals which have unary
rewrites to be helpful. They also find useful anno-
tating two preterminals (DT ,RB) with whether they
are the product of a unary production. We general-
ize this via two width features: the first marking a
node with the number of nonterminals to which it
rewrites; the second marking each preterminal with
the width of its parent. Another feature is the span
of a nonterminal, or the number of terminals it domi-
nates, which we normalize by dividing by the length
of the sentence. Hence preterminals have normal-
ized spans of 1/(length of the sentence), while the
root has a normalized span of 1.

Extending on the notion of a Base NP, introduced
by Collins (1996), we mark any nonterminal that
dominates only preterminals as Base. Collins inserts
a unary NP over any base NPs without NP parents.
However, (Klein and Manning, 2003) find that this
hurts performance relative to just marking the NPs,
and so our Base feature does not insert.

We have two features describing a node’s position
in the expansion of its parent. The first, which we
call the inside position, specifies whether the non-
terminal’s position relative to the heir of its parent’s
head, (to the left or right) or whether the nontermi-
nal is the heir. (By “heir” we mean the constituent
donates it’s head. So the heir of anS is typically
theV P under theS.) The second, outside position,
specifies the nonterminal’s position relative to the
boundary of the constituent: it is the leftmost child,
the rightmost child, or neither.

Related to this, we further noticed that several
of Klein & Manning’s features, such as marking
NPs as right recursive or possesive have the prop-
erty of annotating with the label of the rightmost
child (when they are NP and POS respectively). We
generalize this by marking all nodes both with their
rightmost child and (an analogous feature) leftmost
child.

We also mark whether or not a node borders the
end of a sentence, save for ending punctuation. (For
instance, in this sentence, all the constituents with
the second ”marked” rightmost in their span would
be marked).

Another (Klein and Manning, 2003) feature we
try includes the temporal NP feature, where TMP
markings in the treebank are retained, and propa-
gated down the head inheritance path of the tree.

It is worth mentioning that all the features here
come directly from the treebank. For instance, the
part of speech of the head feature has values only
from the raw treebank tagset. When a preterminal
cluster is split, this assignment does not change the
value of this feature.

3 Clustering

The input to the clusterer is a set of annotated gram-
mar productions and counts. Our clustering algo-
rithm is a divisive one reminiscent of (Martin et al.,
1995). We start with a single cluster for each Tree-

bank nonterminal and one additional for intermedi-
ate nodes, which are described in section 3.2.

The clustering method has two interleaved parts:
one in which candidate splits are generated, and one
in which we choose a candidate split to enact.

For each of the initial clusters, we generate a can-
didate split, and place that split in a priority queue.
The priority queue is ordered by the Bayesian Infor-
mation Criterion (BIC), e.g.(Hastie et al., 2003).

The BIC of a modelM is defined as -2*(log like-
lihood of the data according toM) +dM *(log num-
ber of observations).dM is the number of degrees
of freedom in the model, which for a PCFG is the
number of productions minus the number of nonter-
minals. Thus in this context BIC can be thought of as
optimizing the likelihood, but with a penalty against
grammars with many rules.

While the queue is nonempty, we remove a can-
didate split to reevaluate. Reevaluation is necessary
because, if there is a delay between when a split is
proposed and when a split is enacted, the grammar
used to score the split will have changed. However,
we suppose that the old score is close enough to be a
reasonable ordering measure for the priority queue.
If the reevaluated candidate is no longer better than
the second candidate on the queue, we reinsert it,
and continue. However, if it is still the best on the
queue, and it improves the model, we enact the split;
otherwise it is discarded.

When a split is enacted, the old cluster is removed
from the set of nonterminals, and is replaced with
the two new nonterminals of the split. A candidate
split for each of the two new clusters is generated,
and placed on the priority queue.

This process of reevaluation, enacting splits, and
generating new candidates continues until the prior-
ity queue is empty of potential splits.

We select a candidate split of a particular cluster
as follows. For each context feature we generate a
potential nominee split. First we partition randomly
the values for the feature into two buckets. We then
repeatedly try to move values from one bucket to the
other. If doing so results in an improvement to the
likelihood of the training data, we keep the change,
otherwise we reject it. The swapping continues until
moving no individual value results in an improve-
ment in likelihood.

Suppose we have a grammar derived from a cor-

S^ROOT

NP^S

NNP^NP

Rex

CC^NP

and

NNP^NP

Ginger

VP^S

VBD^VP

ran

NP^VP

NN

home

Figure 1: A Parent annotated tree.

pus of a single tree, whose nodes have been anno-
tated with their parent as in Figure 1. The base pro-
ductions for this corpus are:

S[ROOT] → NP [S] V P [S] 1/1
V P [S] → V BD[V P] NP [V P] 1/1
NP [S] → NP [NP] CC[NP] NP [NP] 1/1
NP [V P] → NN [NP] 1/1
NP [NP] → NNP [NP] 2/2

Suppose we are in the initial state, with a single clus-
ter for each treebank nonterminal. Consider a po-
tential split of theNP cluster on the parent feature,
which in this example has three values:S, V P , and
NP . If the S andV P values are grouped together
in the left bucket, and theNP value is alone in the
right bucket, we get cluster nonterminalsNPL =
{NP [S], NP [V P]} andNPR = {NP [NP]}. The
resulting grammar rules and their probabilities are:

S → NPL V P 1/1
V P → V BD NPL 1/1

NPL → NPR CC NPR 1/2
NPL → NN 1/2
NPR → NNP 2/2

If however,V P is swapped to the right bucket with
NP , the rules become:

S → NPL V P 1/1
V P → V BD NPR 1/1

NPL → NPR CC NPR 1/1
NPR → NN 1/3
NPR → NNP 2/3

The likelihood of the tree in Figure 1 is1/4 under
the first grammar, but only4/27 under the second.
Hence in this case we would reject the swap ofV P
from the right to the left buckets.

The process of swapping continues until no im-
provement can be made by swapping a single value.

The likelihood of the training data according to
the clustered grammar is

∏

r∈R

p(r)C(r)

for R the set of observed productionsr = φi →
φj . . . in the clustered grammar. Notice that when
we are looking to split a clusterφ, only productions
that contain the nonterminalφ will have probabil-
ities that change. To evaluate whether a change in-
creases the likelihood, we consider the ratio between
the likelihood of the new model, and the likelihood
of the old model.

Furthermore, when we move a value from one
bucket to another, only a fraction of the rules will
have their counts change. Suppose we are moving
valuex from the left bucket to the right when split-
ting φi. Let φx ⊆ φi be the set of base nonterminals
in φi that have valuex for the feature being split
upon. Only clustered rules that contain base gram-
mar rules which use nonterminals inφx will have
their probability change. These observations allow
us to process only a relatively small number of base
grammar rules.

Once we have generated a potential nominee split
for each feature, we select the partitioning which
leads to the greatest improvement in the BIC as
the candidate split of this cluster. This candidate is
placed on the priority queue.

One odd thing about the above is that in the lo-
cal search phase of the clustering we use likelihood,
while in the candidate selection phase we use BIC.
We tried using both measures in each phase, but
found that this hybrid measure outperformed using
only one or the other.

3.1 Model Selection

Unfortunately the grammar that results at the end of
the clustering process seems to overfit the training
data. We resolve this by simply noting periodically
the intermediate state of the grammar, and using this
grammar to parse a small tuning set (we use the first
400 sentences of WSJ section 24, and parse this ev-
ery 50 times we enact a split). At the conclusion of
clustering, we select the grammar with the highest
f-score on this tuning set as the final model.

A

B C <D> E F

A

B [C,<D>,E,F]

C [<D>,E,F]

[<D>,E]

D E

F

Figure 2:
Top: A production.
Bottom: The production, binarized.

3.2 Binarization

Since our experiments make use of a CKY (Kasami,
1965) parser (created by Mark Johnson and used
for the research in (Johnson, 1998), available from
his homepage) we must modify the treebank derived
rules so that a nonterminal expands to at most two la-
bels. We perform this in a manner similar to (Klein
and Manning, 2003) and (Matsuzaki et al., 2005)
through the creation of intermediate nodes, as in Fig-
ure 2. In this example, the nonterminal heir ofA’s
head isD. The square brackets indicate an interme-
diate node, and the labels inside the brackets indicate
that the node will eventually be expanded into those
labels.

Klein & Manning employ Collins’ (Collins, 1999)
horizontal markovization to desparsify their inter-
mediate nodes. This means that given an intermedi-
ate node such as[C 〈D〉EF], we forget those labels
which will not be expanded past a certain horizon.
Klein & Manning use a horizon of two (or less, in
some cases) which means only the next two labels
to be expanded are retained. Thus[C 〈D〉EF] is
markovized to[C 〈D〉 . . . F].

Our mechanism lays out the unmarkovized in-
termediate rules in the same way, but we mostly
use our clustering scheme to reduce sparsity. We
do so by aligning the labels contained in the in-
termediate nodes in the order in which they would
be added when increasing the markovization hori-
zon from zero to three. We also always keep the
heir label as a feature. So for instance,[C 〈D〉EF]
would be represented as having Treebank label ”IN-

TERMEDIATE”, and would have feature vector
(D,C,F,E,D),while [〈D〉EF] would have feature
vector (D,F,E,D,−), where the first item is the
heir of the parent’s head. The clusterer would con-
sider each of these five features as for a single pos-
sible split. We also incorporate our other features
into the intermediate nodes in two ways. Some fea-
tures, such as the parent or grandparent, will be the
same for all the labels in the intermediate node, and
hence only need to be included once. Others, such
as the part of speech of the head, may be different
for each label. These features we align with those of
corresponding label in the markov ordering. In our
running example, suppose each child nodeN has
part of speech of its headPN , and we have a par-
ent feature. Our aligned intermediate feature vectors
then become(A,D,C, PC , F, PF , E, PE ,D, PD)
and (A,D,F, PF , E, PE ,D, PD,−,−). As these
are somewhat complicated, let us explain them by
unpacking the first, the vector for[C 〈D〉EF]. Con-
sulting Figure 2 we see that it’s parent isA. We
have chosen to put parents first in the vector, thus
explaining(A, ...). Next comes the heir of the con-
stituent,D. This is followed by the first constituent
that is to be unpacked from the binarized version,C,
which in turn is followed by its head part-of-speech
PC , giving us(A,D,C, PC , ...). We follow with the
next non-terminal to be unpacked from the binarized
node and it’s head part-of-speech, etc.

It might be fairly objected that this formulation
of binarization loses the information of whether a
label is to the left, right, or is the heir of the parent’s
head. This is solved by the inside position feature,
described in Section 2.1 which contains exactly this
information.

3.3 Smoothing

In order to make the PCFG we infer compara-
ble to that of Klein & Manning, we follow their
lead in smoothing no production probabilities save
those going from preterminal to nonterminal. Our
smoothing mechanism runs roughly along the lines
of theirs.

Preterminal rules are smoothed as follows. We
consider several classes of unknown words, based
on capitalization, the presence of digits or hyphens,
and the suffix. We estimate the probability of a tag
T given a word (or unknown class)W , as p(T |

LP LR F1 CB 0CB
Klein & Manning 86.3 85.1 85.7 1.31 57.2
Matsuzaki et al. 86.1 86.0 86.1 1.39 58.3

This paper 84.8 84.8 84.8 1.47 57.1

Table 1: Parsing results

W) = C(T,W)+hp(T |unk)
C(W)+h

, wherep(T | unk) =

C(T, unk)/C(unk) is the probability of the tag
given any unknown word class. In order to estimate
probabilities given unknown classes, and the proba-
bility given an unknown word in general, we let the
clusterer see every tree twice, once unmodified, and
once with the unknown class replacing each word
seen less than five times. The production probabil-
ity p(W | T) is thenp(T | W)p(W)/p(T) where
p(W) andp(T) are the respective empirical distri-
butions.

The clusterer does not use smoothed probabilities
in allocating annotated preterminals to clusters, but
simply the maximum likelihood estimates as it does
elsewhere. Smoothing is only used in the parser.

4 Experiments

We trained our model on sections 2-21 of the Penn
Wall Street Journal Treebank. We used the first 400
sentences of section 24 for model selection. Section
22 was used for testing during development, while
section 23 was used for the final evaluation.

5 Discussion

Our results are shown in Table 5. Unfortunately, our
model does not perform quite as well as that of Klein
& Manning’s or Matsuzaki’s parsers. It is worth not-
ing that Matsuzaki’s grammar uses a different parse
evaluation scheme than Klein & Manning or we do.

We select the parse with the highest probability
according to the annotated grammar. Matsuzaki, on
the other hand, argues that the proper thing to do is to
find the most likely unannotated parse. The proba-
bility of this parse is the sum over the probabilities of
all annotated parses that reduce to that unannotated
parse. Since calculating the parse that maximizes
this quantity is NP hard, they try several approxi-
mations. One is what Klein & Manning and we do.
However, they have a better performing approxima-
tion which is used in their reported score. They do
not report their score on section 23 using the most-

probable-annotated-parse method. They do however
compare the performance of different methods using
development data, and find that their better approxi-
mation gives an absolute improvement in f-measure
in the .5-1 percent range. Hence it is probable that
even with their better method our grammar would
not outperform theirs.

One interesting thing our method allows is for us
to examine which features turn out to be useful in
which contexts. We noted for each treebank non-
terminal, and for each feature, how many times that
nonterminal was split on that feature, for the gram-
mar selected in the model selection stage. We ran
the clustering with four different random seeds.

We find that in particular, the clusterer only
found the head feature to be useful in very spe-
cific circumstances. It was used quite a bit to
split preterminals; but for phrasals it was only
used to splitADJP ,ADV P ,NP ,PP ,V P ,QP , and
SBAR. The part of speech of the head was only
used to splitNP andV P .

Furthermore, the grandparent tag appears to be of
importance primarily forV P andPP nonterminals,
though it is used once out of the four runs forNPs.

This indicates that lexical parsers might be able
to make do by only using lexical head and grandpar-
ent information in very specific instances, thereby
shrinking the sizes of their models, and speeding
parsing.

6 Conclusion

We have presented a scheme for automatically dis-
covering phrasal categories for parsing with a stan-
dard CKY parser. The parser achieves 84.8%
precision-recall f-measure on the standard test-
section of the Penn WSJ-Treebank (section 23).
While this is not as accurate as the hand-tailored
grammar of (Klein and Manning, 2003) it is close,
and we believe there is room for improvement. For
starters, the particular clustering scheme is only one
of many. Our algorithm splits clusters along particu-
lar features (e.g., parent, head-part-of-speech, etc.).
One alternative would be to cluster simultaneously
on all the features. It is not obvious which scheme
should be better, and they could be quite different.
Decisions like this abound, and are worth exploring.

More radically, it is also possible to grow many

decision trees, and thus many alternative grammars.
We have been impressed by the success of random-
forest methods in language modeling (Xu and Je-
linek, 2004). In these methods many trees (the for-
est) are grown, each trying to predict the next word.
The multiple trees together are much more powerful
than any one individually. The same might be true
for grammars.

References

Eugene Charniak. 1996. Tree-bank grammars. InPro-
ceedings of the Thirteenth National Conference on Ar-
tificial Intelligence, pages 1031–1036, Menlo Park.
AAAI Press/MIT Press.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. InProc. ACL, pages 132–139.

M.J. Collins. 1996. A new statistical parser based on
bigram lexical dependencies. InThe Proceedings of
the 34th Annual Meeting of the Association for Com-
putational Linguistics, pages 184–191, San Francisco.
The Association for Computational Linguistics, Mor-
gan Kaufmann.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. InThe Proceedings of
the 35th Annual Meeting of the Association for Com-
putational Linguistics, San Francisco. Morgan Kauf-
mann.

Michael Collins. 1999.Head-driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, The Uni-
versity of Pennsylvania.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman.
2003.The Elements of Statistical Learning. Springer,
New York.

James Henderson. 2003. Inducing history representa-
tions for broad coverage statistical parsing. InPro-
ceedings of HLT-NAACL 2003, pages 25–31. The As-
sociation for Computational Linguistics.

Mark Johnson. 1998. PCFG models of linguis-
tic tree representations.Computational Linguistics,
24(4):613–632.

T. Kasami. 1965. An efficient recognition and syntax
algorithm for context-free languages. Technical Re-
port AF-CRL-65-758, Air Force Cambridge Research
Laboratory.

Dan Klein and Christopher Manning. 2003. Accurate
unlexicalized parsing. InProceedings of the 41st An-
nual Meeting of the Association for Computational
Linguistics.

David M. Magerman. 1995. Statistical decision-tree
models for parsing. InThe Proceedings of the 33rd
Annual Meeting of the Association for Computational
Linguistics, pages 276–283, San Francisco. The Asso-
ciation for Computational Linguistics, Morgan Kauf-
man.

Michell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank.Computational
Linguistics, 19(2):313–330.

S. Martin, J. Liermann, and H. Ney. 1995. Algorithms
for bigram and trigram word clustering.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic cfg with latent annotations. In
Proceedings of the 2005 Meeting of the Association
for Computational Linguistics.

Peng Xu and Fred Jelinek. 2004. Random forests in lan-
guage modeling. InProceedings of EMNLP’2004.

