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Abstract transformation (Johnson, 1998; Klein and Manning,
2003). Rather than imagining the parser roaming

In this work we learn clusters of contex-  415nd the tree to pick up the information it needs,

tual annotations for non-terminals in the
Penn Treebank. Perhaps the best way
to think about this problem is to contrast
our work with that of Klein and Man-
ning (2003). That research used tree-
transformations to create various gram-

we rather relabel the nodes to directly encode this in-
formation. Thus rather than have the parser “look”
to find out that, say, the parent of sove” is an.S,
we simply relabel theéV P as anN P[S].

This viewpoint is even more compelling if one
does not intend to smooth the probabilities. For ex-

mars with different contextual annotations
on the non-terminals. These grammars
were then used in conjunction with a CKY
parser. The authors explored the space
of different annotation combinations by
hand. Here we try to automate the pro-
cess — to learn the “right” combination
automatically. Our results are not quite
as good as those carefully created by hand
but they are close (84.8 vs 85.7).

ample, considep(NP — PRN | NP[S]) If we
have no intention of backing off this probability to
p(NP — PRN | NP) we can treatVP[S] as

an uninterpreted phrasal category and run all of the
standard PCFG algorithms without change. The re-
sultis a vastly simplified parser. This is exactly what
is done in (Klein and Manning, 2003).

Thus the “phrasal categories” of our title refer to
these new, hybrid categories, suchM®[S]. We
hope to learn which of these categories work best
given that they cannot be made too specific because
that would create sparse data problems.

It is by now commonplace knowledge that accu- The parser from (Klein and Manning, 2003) is an
rate syntactic parsing is not possible given the onlynlexicalized PCFG with various carefully selected
a context-free grammar with standard Penn Tregontext annotations. Their model uses some parent
bank (Marcus et al., 1993) labels (e.gh, NP, annotations, and marks nodes which initiate or in
etc.) (Charniak, 1996). Instead researchers condiertain cases conclude unary productions. They also
tion parsing decisions on many other features, sughopose several linguistically motivated annotations
as parent phrase-marker, and, famously, the lexica)f several tags, including P, IN, CC,N P andS.
head of the phrase (Magerman, 1995; Collins, 1998;his results in a reasonably accurate unlexicalized
Collins, 1997; Johnson, 1998; Charniak, 2000; HerPCFG parser.
derson, 2003; Klein and Manning, 2003; Matsuzaki The downside of this approach is that their fea-
et al., 2005) (and others). tures are very specific, applying different annota-
One particularly perspicuous way to view the uséions to different treebank nonterminals. For in-
of extra conditioning information is that of tree- stance, they mark right-recursivé Ps and not’” Ps
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(e.g., anN P which is the right-most child of another Treebank non-terminal. LeX = u[a] denote the
NP). This is because data sparsity issues precludmn-terminal category annotated with a vector of
annotating the nodes in the treebank too liberallycontext featurea. A PCFG is derived from the trees
The goal of our work is to automate the process i the usual manner, with production rules taken di-
bit, by annotating with more general features thatectly from the annotated trees, and the probability
apply broadly, and by learning clusters of these arof an annotated rulg(\A — p) = Cg&’)p) where
notations. C(\ — p) andC()\) are the number of observations

Coming to this problem from the standpoint ofof the production and its lefthand side, respectively.
tree transformation we naturally view our work as a \We refer to the grammar resulting from extracting
descendent of (Johnson, 1998; Klein and Manninginnotated productions directly out of the treebank as
2003). In retrospect, however, there are perhapie base grammar.

even greater similarities to that of (Magerman, 1995; Our g0a| is to partition the set of annotated non-
Henderson, 2003; Matsuzaki et al., 2005) Considg&rminals into clustersb = {¢;}. Each possible

the approach of (Matsuzaki et al., 2005). They posi|ustering corresponds to a PCFG, with the set of
a series of latent annotations for each nonterminahon-terminals corresponding to the set of clusters.

and learn a grammar using an EM algorithm simiThe probability of a production under this PCFG is
lar to the inside-outside algorithm. Their approach,
C(pi — ¢jb)

however, requires the number of annotations to be
C(¢:)

specified ahead of time, and assigns the same num-
ber of annotations to each treebank nonterminal. We
would like to infer the number of annotations forwhere ¢s € & are clusters of annotated non-
each nonterminal automatically. terminals and where:

However, again in retrospect, it is in (Magerman,
1995) that we see the greatest similarity. Rathér (%1 = @ik --)
than taking about clustering nodes, as we do, Mager-  2-(Ai 0 Ar...)€dixd; x ... C(Ai = AjAg ...
man creates a decision tree, but the differences be- )
tween clustering and decision trees are small. Pef/e refer to the PCFG of some clustering as the clus-
haps a more substantial difference is that by ndgred grammar.
castl_ng his problem as one of learning phrasal ca&—.l Features
egories Magerman looses all of the free PCFG tech-
nology that we can leverage, e.g., Magerman mudfost of the features we use are fairly standard.
use heuristic search to find his parses and incufdiese include the label of the parent and grandpar-
search errors because of it. We use an efficieint of a node, its lexical head, and the part of speech
CKY algorithms to do exhaustive search in reasorPf the head.

(i — djo) =

able time. Klein and Manning (Klein and Manning, 2003)
find marking nonterminals which have unary
2 Background rewrites to be helpful. They also find useful anno-

tating two preterminalsl{7T, R B) with whether they

A PCFG is a tuple(V, M, po,R,q : R — [0,1]), are the product of a unary production. We general-
whereV is a set of terminal symbolg/ = {y;} isa ize this via two width features: the first marking a
set of nonterminal symbolg; is a start or root sym- node with the number of nonterminals to which it
bol; R is a set of productions of the form, — p, rewrites; the second marking each preterminal with
where p is a sequence of terminals and nontermithe width of its parent. Another feature is the span
nals; andg is a family of probability distributions of a nonterminal, or the number of terminals it domi-
over rules conditioned on the rules’ left-hand side. nates, which we normalize by dividing by the length

As in (Johnson, 1998) and (Klein and Manningof the sentence. Hence preterminals have normal-
2003), we annotate the Penn treebank non-terminatsed spans of 1/(length of the sentence), while the
with various context information. Suppogeis a root has a normalized span of 1.



Extending on the notion of a Base NP, introducedhank nonterminal and one additional for intermedi-
by Collins (1996), we mark any nonterminal thatate nodes, which are described in section 3.2.
dominates only preterminals as Base. Collins inserts The clustering method has two interleaved parts:
a unary NP over any base NPs without NP parentene in which candidate splits are generated, and one
However, (Klein and Manning, 2003) find that thisin which we choose a candidate split to enact.
hurts performance relative to just marking the NPs, For each of the initial clusters, we generate a can-
and so our Base feature does not insert. didate split, and place that split in a priority queue.

We have two features describing a node’s positioiihe priority queue is ordered by the Bayesian Infor-
in the expansion of its parent. The first, which wemation Criterion (BIC), e.g.(Hastie et al., 2003).
call the inside position, specifies whether the non- The BIC of a modelM is defined as -2*(log like-
terminal’s position relative to the heir of its parent’slihood of the data according @/) +d,*(log num-
head, (to the left or right) or whether the nontermiber of observations)d,, is the number of degrees
nal is the heir. (By “heir” we mean the constituentof freedom in the model, which for a PCFG is the
donates it's head. So the heir of &his typically number of productions minus the number of nonter-
the V P under theS.) The second, outside position, minals. Thus in this context BIC can be thought of as
specifies the nonterminal’s position relative to theptimizing the likelihood, but with a penalty against
boundary of the constituent: it is the leftmost child grammars with many rules.
the rightmost child, or neither. While the queue is nonempty, we remove a can-

Related to this, we further noticed that severallidate split to reevaluate. Reevaluation is necessary
of Klein & Manning’s features, such as markingbecause, if there is a delay between when a split is
N Ps as right recursive or possesive have the proproposed and when a split is enacted, the grammar
erty of annotating with the label of the rightmostused to score the split will have changed. However,
child (when they are NP and POS respectively). We/e suppose that the old score is close enough to be a
generalize this by marking all nodes both with theireasonable ordering measure for the priority queue.
rightmost child and (an analogous feature) leftmodf the reevaluated candidate is no longer better than
child. the second candidate on the queue, we reinsert it,

We also mark whether or not a node borders thénd continue. However, if it is still the best on the
end of a sentence, save for ending punctuation. (Fekeue, and itimproves the model, we enact the split;
instance, in this sentence, all the constituents witBtherwise it is discarded.
the second "marked” rightmost in their span would When a splitis enacted, the old cluster is removed
be marked). from the set of nonterminals, and is replaced with

Another (Klein and Manning, 2003) feature wethe two new nonterminals of the split. A candidate
try includes the temporal NP feature, where TMPSPIit for each of the two new clusters is generated,
markings in the treebank are retained, and prop&nd placed on the priority queue.
gated down the head inheritance path of the tree. ~ This process of reevaluation, enacting splits, and

It is worth mentioning that all the features hered€nerating new candidates continues until the prior-
come directly from the treebank. For instance, thY dueue is empty of potential splits.
part of speech of the head feature has values only W€ Select a candidate split of a particular cluster
from the raw treebank tagset. When a pretermin&S follows. For each context feature we generate a

cluster is split, this assignment does not change ifhotential nominee split. First we partition randomly
value of this feature. the values for the feature into two buckets. We then

repeatedly try to move values from one bucket to the
3 Clustering other. If doing so results in an improvement to the
likelihood of the training data, we keep the change,
The input to the clusterer is a set of annotated granotherwise we reject it. The swapping continues until
mar productions and counts. Our clustering algomoving no individual value results in an improve-
rithm is a divisive one reminiscent of (Martin et al.,ment in likelihood.
1995). We start with a single cluster for each Tree- Suppose we have a grammar derived from a cor-



S"ROOT The process of swapping continues until no im-
provement can be made by swapping a single value.

NP’S VP'S The likelihood of the training data according to
NNPANP CCANP NNPANP VBDAVP NPAVP the clustered grammar is
Rex and Ginger ran NN H p(T)C(T)
| reR
home

for R the set of observed productioms= ¢; —

¢; ... in the clustered grammar. Notice that when
we are looking to split a clustef, only productions
that contain the nonterminal will have probabil-
pus of a single tree, whose nodes have been annges that change. To evaluate whether a change in-
tated with their parent as in Figure 1. The base prosreases the likelihood, we consider the ratio between
ductions for this corpus are: the likelihood of the new model, and the likelihood

S[ROOT] — NPIS| VP[S] 1/1 of the old model.
Furthermore, when we move a value from one

Figure 1: A Parent annotated tree.

VP[S] — VBD|VP| NPV P] 11 bucket to another, only a fraction of the rules will
NP[S] —»  NP[NP| CC[NP|NP[NP] 1/1 ) » ony .
have their counts change. Suppose we are moving
NPIVP| -  NNINP] Y1 Valuex from the left bucket to the right when split-
NP[NP] - NNP[NP] 2/2 v N P

ting ¢;. Let ¢, C ¢; be the set of base nonterminals

Suppose we are in the initial state, with a single clugh ¢; that have valuer for the feature being split
ter for each treebank nonterminal. Consider a patpon. Only clustered rules that contain base gram-
tential split of theNV P cluster on the parent feature,mar rules which use nonterminals ¢, will have
which in this examp|e has three Va'U@:VP, and their probability Change. These observations allow
NP. Ifthe S andV P values are grouped togetherus to process only a relatively small number of base
in the left bucket, and th&/ P value is alone in the grammar rules.

right bucket, we get cluster nonterminaléP; = Once we have generated a potential nominee split
{NPI[S], NP[VP]} andNPr = {NP[NP]}. The for each feature, we select the partitioning which

resulting grammar rules and their probabilities are:/eads to the greatest improvement in the BIC as
the candidate split of this cluster. This candidate is

S — NPLVP 1/1 placed on the priority queue.

VP — VBDNP 1/1 One odd thing about the above is that in the lo-
NP, — NPrCCNPg 1/2 cal search phase of the clustering we use likelihood,
NP, — NN 1/2 while in the candidate selection phase we use BIC.
NPr — NNP 2/2 We tried using both measures in each phase, but

found that this hybrid measure outperformed using

If however,V P is swapped to the right bucket with only one or the other.

NP, the rules become:
3.1 Model Sdection

S — NP,VP 1/1
VP — VBD NPy 1/1 Unfortunately the grammar that results at the end of
NP, — NPrCC NPy 1/1 the clustering process seems to overfit the training
NP — NN 1/3 data. We resolve this by simply noting periodically
NP, — NNP 2/3 the intermediate state of the grammar, and using this

grammar to parse a small tuning set (we use the first
The likelihood of the tree in Figure 1 is/4 under 400 sentences of WSJ section 24, and parse this ev-
the first grammar, but only/27 under the second. ery 50 times we enact a split). At the conclusion of
Hence in this case we would reject the swag/a?  clustering, we select the grammar with the highest
from the right to the left buckets. f-score on this tuning set as the final model.



A TERMEDIATE”, and would have feature vector
T~ (D,C, F, E, D),while (D) EF] would have feature
vector (D, F, E, D, —), where the first item is the

/A\ heir of the parent’s head. The clusterer would con-
B [C,<D>EF sider each of these five features as for a single pos-

PN sible split. We also incorporate our other features

C [<D>E,F] into the intermediate nodes in two ways. Some fea-
N tures, such as the parent or grandparent, will be the

[<9>\’E] F same for all the labels in the intermediate node, and
D E hence only need to be included once. Others, such
as the part of speech of the head, may be different
Figure 2: for each label. These features we align with those of
Top: A production. corresponding label in the markov ordering. In our
Bottom: The production, binarized. running example, suppose each child naddehas

part of speech of its heaHy, and we have a par-
o ent feature. Our aligned intermediate feature vectors
3.2 Binarization then become(A, D, C, Po, F, Pp, E, P, D, Pp)
Since our experiments make use of a CKY (Kasamand (A, D, F, Pp, E, Py, D, Pp,—,—). As these
1965) parser (created by Mark Johnson and usede somewhat complicated, let us explain them by
for the research in (Johnson, 1998), available froranpacking the first, the vector f@¢' (D) EF]. Con-
his homepage) we must modify the treebank derivesllting Figure 2 we see that it's parentis We
rules so that a nonterminal expands to at most two l&tave chosen to put parents first in the vector, thus
bels. We perform this in a manner similar to (Kleinexplaining(A4, ...). Next comes the heir of the con-
and Manning, 2003) and (Matsuzaki et al., 2005%tituent,D. This is followed by the first constituent
through the creation of intermediate nodes, as in Fighat is to be unpacked from the binarized versian,
ure 2. In this example, the nonterminal heir4% which in turn is followed by its head part-of-speech
head isD. The square brackets indicate an intermeP., giving us(A, D, C, P, ...). We follow with the
diate node, and the labels inside the brackets indicatext non-terminal to be unpacked from the binarized
that the node will eventually be expanded into thosarode and it's head part-of-speech, etc.
labels. It might be fairly objected that this formulation
Klein & Manning employ Collins’ (Collins, 1999) of binarization loses the information of whether a
horizontal markovization to desparsify their inter-label is to the left, right, or is the heir of the parent’s
mediate nodes. This means that given an intermediead. This is solved by the inside position feature,
ate node such ¢’ (D) E'F|, we forget those labels described in Section 2.1 which contains exactly this
which will not be expanded past a certain horizoninformation.
Klein & Manning use a horizon of two (or less, in _
some cases) which means only the next two labefs3 Smoothing
to be expanded are retained. THUs(D) EF]is In order to make the PCFG we infer compara-
markovized tdC (D) ... F]. ble to that of Klein & Manning, we follow their
Our mechanism lays out the unmarkovized infead in smoothing no production probabilities save
termediate rules in the same way, but we mostlthose going from preterminal to nonterminal. Our
use our clustering scheme to reduce sparsity. VWamoothing mechanism runs roughly along the lines
do so by aligning the labels contained in the inof theirs.
termediate nodes in the order in which they would Preterminal rules are smoothed as follows. We
be added when increasing the markovization horizonsider several classes of unknown words, based
zon from zero to three. We also always keep then capitalization, the presence of digits or hyphens,
heir label as a feature. So for instan@@,(D) EF] and the suffix. We estimate the probability of a tag
would be represented as having Treebank label "INF' given a word (or unknown clasdy’, asp(T |



_ _ LP__ LR F1 _CB _0CB| probable-annotated-parse method. They do however
Klein &Manning | 86.3 85.1 85.7 131 572 . .
Matsuzaki etal. | 86.1 860 861 139 583 compare the performance of different methods using

This paper 84.8 848 848 147 57.1 development data, and find that their better approxi-
mation gives an absolute improvement in f-measure
in the .5-1 percent range. Hence it is probable that
even with their better method our grammar would
W) = SEREeClel) wherep(T | unk) =  not outperform theirs.
C(T,unk)/C(unk) is the probability of the tag  One interesting thing our method allows is for us
given any unknown word class. In order to estimaté0 examine which features turn out to be useful in
probabilities given unknown classes, and the probavhich contexts. We noted for each treebank non-
bility given an unknown word in general, we let theterminal, and for each feature, how many times that
clusterer see every tree twice, once unmodified, aftPnterminal was split on that feature, for the gram-
once with the unknown class replacing each worthar selected in the model selection stage. We ran
seen less than five times. The production probabithe clustering with four different random seeds.
ity p(W | T) is thenp(T | W)p(W)/p(T) where ~ We find that in particular, the clusterer only
p(W) andp(T) are the respective empirical distri-found the head feature to be useful in very spe-
butions. cific circumstances. It was used quite a bit to

The clusterer does not use smoothed probabilitiegplit preterminals; but for phrasals it was only
in allocating annotated preterminals to clusters, butsed to splitAD.JP,ADV P,NP,PP,V P,QP, and
simply the maximum likelihood estimates as it doeS BAR. The part of speech of the head was only
elsewhere. Smoothing is only used in the parser. used to splitvV P andV P.

) Furthermore, the grandparent tag appears to be of

4 Experiments importance primarily fol” P and PP nonterminals,

We trained our model on sections 2-21 of the Pen“10ugh itis used once out of the four runs fgi’s.

Wall Street Journal Treebank. We used the first 400 This indicates that .Iexical. parsers might be able
sentences of section 24 for model selection. Sectidf Make do by only using lexical head and grandpar-

22 was used for testing during development, Wh”gnt_ information_in very spgcific instances, there_by
section 23 was used for the final evaluation. shrinking the sizes of their models, and speeding
parsing.

Table 1: Parsing results

5 Discussion _
_ 6 Conclusion
Our results are shown in Table 5. Unfortunately, our

model does not perform quite as well as that of KleiWe have presented a scheme for automatically dis-
& Manning’s or Matsuzaki's parsers. Itis worth not-covering phrasal categories for parsing with a stan-
ing that Matsuzaki's grammar uses a different parsgdard CKY parser. The parser achieves 84.8%
evaluation scheme than Klein & Manning or we do precision-recall f-measure on the standard test-
We select the parse with the highest probabilitgection of the Penn WSJ-Treebank (section 23).
according to the annotated grammar. Matsuzaki, divhile this is not as accurate as the hand-tailored
the other hand, argues that the proper thing to do is ggammar of (Klein and Manning, 2003) it is close,
find the most likely unannotated parse. The probznd we believe there is room for improvement. For
bility of this parse is the sum over the probabilities ofstarters, the particular clustering scheme is only one
all annotated parses that reduce to that unannotatetimany. Our algorithm splits clusters along particu-
parse. Since calculating the parse that maximizdar features (e.g., parent, head-part-of-speech, etc.).
this quantity is NP hard, they try several approxi-One alternative would be to cluster simultaneously
mations. One is what Klein & Manning and we do.on all the features. It is not obvious which scheme
However, they have a better performing approximashould be better, and they could be quite different.
tion which is used in their reported score. They dd®ecisions like this abound, and are worth exploring.
not report their score on section 23 using the most- More radically, it is also possible to grow many



decision trees, and thus many alternative grammai3avid M. Magerman. 1995. Statistical decision-tree
We have been impressed by the success of random-models for parsing. IThe Proceedings of the 33rd

: : _ Annual Meeting of the Association for Computational
forest methods in language modeling (Xu and Je Linguistics pages 276—283, San Francisco. The Asso-

linek, 2004). In these methods many trees (the for- cjation for Computational Linguistics, Morgan Kauf-
est) are grown, each trying to predict the next word. man.

The multiple trees together are much more powerful . . i
th P indi 'dg v, Th . htpb ¢ Lf\/llchell P. Marcus, Beatrice Santorini, and Mary Ann
an any one indiviaualy. € Same mig € 'U€  Marcinkiewicz. 1993. Building a large annotated cor-

for grammars. pus of English: The Penn TreebanKomputational
Linguistics 19(2):313-330.
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