
Constraint-Based Local Search for the
Automatic Generation of Architectural Tests

Pascal Van Hentenryck1, Carleton Coffrin1, and Boris Gutkovich2

1 Brown University, Providence RI 02912, USA
2 Intel Corporation, Haifa, Israel

Abstract. This paper considers the automatic generation of architec-
tural tests (ATGP), a fundamental problem in processor validation. AT-
GPs are complex conditional constraint satisfaction problems which typ-
ically feature both hard and soft constraints and very large domains (e.g.,
all memory addresses). Moreover, the goal is to generate a large number
of diverse solutions under tight runtime constraints. To improve solution
diversity, this paper proposes a novel approach to ATGPs by modeling
them as MaxDiversekSet problems and solving them with constraint-
based local search over conditional variables. The paper presents the
semantics and implementation of conditional variables in this context
and demonstrates the computational benefits of the approach.

1 Background and Motivation

The automatic generation of architectural tests is a fundamental and complex
problem in processor design. It consists of generating random sequences of in-
structions obeying specified constraints. The complexity of this process prevents
the problem from being represented and solved globally. Instead the problem is
traditionally solved by an incremental process (see Figure 1) which generates
one instruction at a time and transforms the constraints on the sequence into
constraints on the test generation of single instructions.

This paper considers the main step in this process: the single instruction
generator. This automatic test generation problem (ATGP) can be viewed as a
constraint satisfaction problem involving three types of constraints:

1. Architectural Constraints that specify the instruction set, i.e., which
instructions are valid.

2. Test Scenario Constraints that specify the intention of a validation en-
gineer.

3. State Constraints that specify the current architectural state maintained
by the test generator.

The goal is not to find a single solution or to find all solutions, which is imprac-
tical due to the size and complexity of modern architectures. Rather, it is to
generate diverse tests which exercise the architecture as thoroughly as possible.

To make the problem concrete, consider the simple example depicted in Fig-
ure 2. The left table specifies the instruction set. The first two instruction types



Architectural
Constraints

Test Scenario
Constraints

Single
Instruction
Generator

Simulator and
Trackers

Test
Builder

Test

Instruction

State
State Imposed

Constraints

Fig. 1. The Architecture of Automatic Generation of Architectural Tests

Instruction Set

add register r1 r2 r3

sub register r1 r2 r3

load immediate r1 constant

load memory r1 address

jump immediate constant

jump memory address

Test Scenario: address = 1234 ∨ constant = abcd

jump memory 1234

load immediate 12 abcd

jump immediate abcd

load memory 4b 1234

Fig. 2. A Simple Processor Instruction Example

are arithmetic operations that operate on registers and have three registers. The
third and fourth instruction types are an immediate and a memory load. The last
two instruction types are immediate and memory jump. The right table depicts
a disjunctive constraint proposed by a validation engineer and the instructions
that satisfy it. Observe that the constraint implicitly specifies that the instruc-
tion is either a load or a jump. The CSPs induced by ATGPs are generally quite
complex for various reasons:

1. The ATGP is a so-called conditional constraint satisfaction problem [1]3,
since the existence of some instruction fields are conditioned on the value
of other fields such as the opcode and the addressing mode. In our simple
example, the constant field is only defined if the instruction is a load or a
jump and the mode is immediate.

2. The ATGP typically operates over large instruction sets due to the complex-
ity of modern architectures. Moreover, some of these fields have very large
domains, since they represent memory addresses or large constants.

3. The ATGP typically contains both soft and hard constraints, specified by
the validation engineer.

4. The validation engineer may specify a desired distribution of instructions to
bias toward some specific instructions.

3 Conditional CSPs were originally called Dynamic CSPs in [1]. Both terms are heavily
overloaded; we use CCSPs in this paper.



Earlier approaches (e.g., [2]) address these difficulties by introducing conditional
variables to handle the CCSP and use randomization to obtain diverse solutions.

In this paper, we reconsider the issue of producing diverse solutions for AT-
GPs. We propose to view the ATGP as a MaxDiversekSet problem in the
sense of [3] over the CCSP and to use constraint-based local search to obtain
high-quality solutions to the model. We show that the resulting approach pro-
duces significant improvements in solution diversity compared to pseudo-random
solutions, while the running times remain reasonable. The technical contributions
can be summarized as follows:

1. The paper proposes a new approach to producing diverse solutions to AT-
GPs, exploiting jointly earlier results in constraint programming and con-
straint-based local search.

2. The paper shows that constraint-based local search finds high-quality so-
lutions to MaxDiversekSet problems, even when the number of required
solutions increases significantly. The paper also quantifies the quality loss
experimentally.

3. The paper presents a new semantics for conditional variables, which is more
suited for ATGPs than the original one which was designed for configuration
problems.

4. The paper presents the algorithmic foundations for constraint-based local
search over conditional variables and shows how constraint-based local search
can accommodate conditional variables naturally and compositionally.

The rest of the paper is organized as follows. The next two sections present the
building blocks of our approach. Section 2 presents the approach to generate
diverse solutions to CSPs and presents experimental results on some simple
problems. Section 3 discusses the modeling of the problem as a CCSP and the
semantics of conditional variables and how to perform constraint-based local
search over conditional variables. Section 4 shows how to model ATGPs in CBLS
and search for diverse solutions. Section 5 reports experimental results of our
prototype implementation on some benchmark ATGPs to validate the approach,
and Section 6 concludes the paper.

2 Generating Diverse Solutions

Modern approaches to ATGPs (e.g., [2]) use a pseudo-random exploration of the
search space to generate diverse solutions. This is often sub-optimal however.
The goal of this paper is to provide a more principled approach to diversity for
ATGPs. For this reason, ATGPs are modeled as MaxDiversekSet problems,
which were studied extensively in [3]. More precisely, given a CSP P, its set of
solutions sol(P), and a function δ to measure the distance between solutions,
the MaxDiversekSet problem for P consists in finding a set of solutions S =
{s1, . . . , sk} maximizing ∑

1≤i<j≤k

δ(si, sj)



In ATGPs, it is convenient to use the Hamming distance for the distance function
δ between two solutions s1 = 〈v1, . . . , vn〉 and s2 = 〈w1, . . . , wn〉

δ(s1, s2) =
n∑
i=1

(vi 6= wi)

This problem is in general quite difficult from a practical standpoint, since it
requires to search for k solutions simultaneously and produces very large CSPs
(See also [3] for the theoretical complexity which is FPNP [logn]-complete). More-
over, in this application domain, it is often desirable to produce the solutions
incrementally, one at a time. For this reason, the incremental algorithm in [3] is
an excellent candidate for finding approximated solution to MaxDiversekSet
problems associated with ATGPs. The algorithm can be formalized as follows:

IncrementalGeneration(P)
1 S ← {};
2 while |S| ≤ k
3 do find s ∈ sol(P) maximizing

∑
e∈S δ(s, e);

4 S ← S ∪ {s};
5 return S;

The algorithm generates one solution at a time until a set of the required car-
dinality is obtained. The core of the algorithm is in Line 3, which generates the
solution maximizing the distance to already generated solutions.

To implement line 3, reference [3] proposed a constraint-programming algo-
rithm using a global constraint for enforcing arc consistency on the distance
constraint (derived from the objective). The resulting algorithm was applied to
the generation of three solutions to a real-life configuration application, where
“three” is considered the “optimal” cardinality to present to users in recom-
mender systems. However, in ATGPs, the cardinality is in general much larger
and it is typical to generate 50 to 100 instructions. This led us to approximate
the computation in Line 3 with constraint-based local search in order to scale
the incremental algorithm effectively.

Figures 3 and 4, depict experimental results on the allinterval series of size
10 and the 100-queens problem (with 100 variables). The figures report the av-
erage Hamming distance between two generated solutions (y-axis) in sets of in-
creasing cardinality (x-axis) for three methods: the incremental CBLS algorithm
(Incremental-CBLS), the incremental CP algorithm (Incremental-CP), and a
control CBLS algorithm (Control-CBLS), which generates pseudo-random solu-
tions using CBLS. The CBLS techniques are averaged over ten runs. Incremental-
CP uses a global constraint maintaining arc consistency for the Hamming dis-
tance and the variable/value heuristic proposed in [3]. Incremental-CBLS uses
a generic min-conflict search and a global constraint for the Hamming distance,
with value-based violations [4] enabling move evaluation in constant time. The
average distance of two solutions is calculated by dividing the MaxDiverse-
kSet value by the number of solution pairs in the set S. Specifically, given a



10 20 30 40 50

8.
0

8.
5

9.
0

9.
5

10
.0

Number of Solutions (of 296 total)

A
ve

ra
ge

 H
am

m
in

g 
of

 T
w

o 
S

ol
ut

io
ns Upper Bound

Incremental−CP
Incremental−CBLS
Control−CBLS
Standard Deviation

10 20 30 40 50

0
10

20
30

40
50

60

Number of Solutions (of 296 total)

S
ec

on
ds

Incremental−CP
Incremental−CBLS
Control−CBLS
Standard Deviation

Fig. 3. Diversity Results and Computation Times for the Allinterval Series of Size 10.

0 20 40 60 80 100

98
.5

99
.0

99
.5

10
0.

0

Number of Solutions

A
ve

ra
ge

 H
am

m
in

g 
of

 T
w

o 
S

ol
ut

io
ns

Upper Bound
Incremental−CP
Incremental−CBLS
Control−CBLS
Standard Deviation

0 20 40 60 80 100

0
50

0
10

00
15

00

Number of Solutions

S
ec

on
ds

Incremental−CP
Incremental−CBLS
Control−CBLS
Standard Deviation

Fig. 4. Diversity Results and Computation Times for the Queens Problem of Size 100.

distance function δ and a set of solutions S = {s1, . . . , sk} the average distance
is ∑

1≤i<j≤k

δ(si, sj)(
k
2

)
The figures also depict a simple upper bound on the maximal diversity and
the standard deviation. The upper bound ignores the problem constraints and
uses only the domains of the variables, shifting the assignment by one for each
successive solution. Assuming that the problem variables are v1, . . . , vm and that
D(vi)n denotes the n-th value of domain of vi, the upper bound is computed as
follows:

HammingUpperBound(k)
1 for i ∈ 1..m
2 do for j ∈ 1..k
3 do si,j ← D(vi)((j−1)%|D(vi)|)+1return

∑
1≤i<j≤k

∑m
a=1 sa,i 6= sa,j



opcode mode r1 r2 r3 address constant

add register 0..0xff 0..0xff 0..0xff

sub register 0..0xff 0..0xff 0..0xff

load immediate 0..0xff 0..0xffff

load memory 0..0xff 0..0xffff

jump immediate 0..0xffff

jump memory 0..0xffff

Table 1. The Variables in The Simple ATG Problem

For consistency with the MaxDiversekSet value, the upper bound is also di-
vided by the number of solution pairs in the set S, i.e.

(
k
2

)
, to produce a bound

on the average distance between two solutions. The results are particularly in-
teresting. They indicate that Incremental-CBLS is near-optimal in quality on
both benchmarks, since the distance to the upper bound is minimal, and out-
performs Control-CBLS significantly and asymptotically (the two curves never
converge). The quality of Incremental-CP is of course at least as good as the
quality of Incremental-CBLS. However, the computational results also show that
Incremental-CP does not scale well once the number of solutions is increased.
Note also that the Control-CBLS is extremely fast, since it simply finds pseudo-
random solutions at each step and never tries to optimize the diversity.

3 Conditional Variables

When modelling an ATGP, it is traditional to introduce a variable for each field
which appears in some instruction. As an illustration, Table 1 describes the vari-
ables and their domains in our simple ATG example, as well as the instructions
they are used in. The first row depicts the variables, while subsequent ones de-
pict the instructions, the variables they use, and the domains of these variables.
For instance, the add and the sub instructions do not use the address and con-
stant variables. As a result, the ATGP gives rise to a Conditional Constraint
Satisfaction Problem (CCSP) in the sense of [1], as observed in [5]. Mittal and
Falkenhainer showed how to transform a CCSP into a CSP by introducing addi-
tional variables denoting whether a variable is active, i.e., whether its condition
holds. Subsequent work produces new reformulation techniques (e.g., introduc-
ing a dummy value in the domain to express whether the variable is active) and
dedicated algorithms to produce significant improvements in efficiency [6, 7].

In the context of ATGPs, Moss [2] extended constraint-programming solvers
with the concept of conditional variables. A conditional variable y is a pair (x,C),
in which x is a regular variable and C is a constraint. Figure 5 depicts the mod-
eling of the simple ATG problem with conditional variables. The variable section
declares the variables, their domains, and possibly a condition. The last 5 vari-
ables are conditional and depend on the values of the opcode or mode variables.
The second section depicts the architectural constraints which, together with



Variables:
opcode ∈ {add, sub, load, jump}
mode ∈ {register, immediate,memory}
r1 ∈ {0..0xff} if opcode = add ∨ opcode = sub ∨ opcode = load
r2 ∈ {0..0xff} if opcode = add ∨ opcode = sub
r3 ∈ {0..0xff} if opcode = add ∨ opcode = sub
address ∈ {0..0xffff} if mode = memory
constant ∈ {0..0xffff} if mode = immediate

Architectural Constraints:
(opcode ∈ {add, sub} ∧mode = register)∨
(opcode = load ∧mode ∈ {immediate,memory})∨
(opcode = jump ∧mode ∈ {immediate,memory}

Test Scenario:
address = 1234 ∨ constant = abcd

Fig. 5. Modeling the Simple ATG Example with Conditional Variables

the domains, specify the legal instructions. The test scenario is depicted in the
third section.

The motivation for introducing conditional variables was twofold. First, Moss
argued that the reformulation techniques are not necessarily feasible in ATGPs,
since the domain can already take the entire memory word. She also argued that
the more specialized techniques are not general enough for ATGPs. Second, the
availability of conditional variables at the modeling level makes it possible to
design search algorithms exploiting the semantics of conditional variables in the
ATGP context. In particular, the search procedure in [2] nondeterministically de-
cides the active status of each variable and enforces the condition or its negation
by adding a new constraint.

This research follows a similar path but for constraint-based local search
instead of constraint programming. It uses conditional variables as first-class
modeling objects and uses their semantics to guide the search, albeit in a fun-
damentally different way. The rest of this section will specify the semantics of
conditional variables which is only defined informally in [2] and extends the
concept of constraint violations in CBLS to conditional variables.

The Semantics of Conditional Variables There are many possible semantics for
conditional variables, each of which may be appropriate for a particular appli-
cation domain. Mittal and Falkenhainer use what we call a lenient semantics in
which a constraint holds as soon as one of its conditional variables is inactive.
The lenient semantics are appropriate for the configuration problems they con-
sider, but is not suited for ATGPs. Consider the instruction set proposed earlier
and the test scenario

constant > 10.

Using the lenient semantics, the ATGP problem admits as solutions, all the in-
tructions that do not include a constant, i.e., the arithmetic instructions and the
memory load and jump instructions, as well as all those for which the constant



is greater than 10. Indeed, if the constant variable is inactive, the constraint is
ignored in the lenient semantics.

The semantics we propose are strict on the basic constraints: A constraint
only holds if all its variables are active. However, the strictness requirement does
not carry over logical or threshold connectives. Consider the test scenario

address = 1234 ∨ constant = abcd.

If we require strictness on the disjunction, the resulting ATGP has no solution,
since no instruction has both an address and a constant. The intended semantics
here is to generate instructions which have either an address with value “1234”
or a constant whose value is “abcd”. Finally, consider a Hamming distance con-
straint

n∑
i=1

(vi 6= wi) ≥ d

which involves reification. The semantics cannot be strict over the entire con-
straint or it would never be instrumental in comparing two solutions. Rather
the reified constraint should only return 1 (true) when it is satisfied and all
its variables are active and 0 (false) otherwise. In other words, the strictness
is limited to the reified constraint and not the enclosing expression. Note also
that a lenient semantics does not make sense for this constraint, since the con-
straint would hold as soon as a variable is not active. Even a lenient semantics
on the reified constraints is not desirable, since similar instructions would have
a positive score when many of their variables are undefined.

Figures 7, 8, and 9 describe the semantics of the small language given in Fig-
ure 6. The figures use var(y) and cond(y) to denote the variable and condition
part of a conditional variable. The semantics are given for an assignment α of
values to the variables. The figures also give the invariants which maintain the
truth values of all constraints, showing that the semantics can be implemented
compositionally and maintained incrementally, as was the case for differentiable
invariants [8]. This indicates that our approach does not require any program
transformation and leverages all the functionalities of CBLS. Figure 7 gives the
semantics for the evaluation of expressions and should not raise any issue. Ob-
serve that the condition of a conditional variable is ignored and is handled at
a different level. Figure 8 gives the semantics of constraints. The primitive con-
straints hold when their traditional semantics hold and when their expressions
are well-defined, meaning that their variables are active. The logical connectives
simply apply the semantics recursively on their subexpressions. By definition, a
conjunction is always strict: all its variables must be active. The rest of the fig-
ure specifies when an expression is well-defined. Figure 9 depicts how to handle
reification, which is important to give the semantics to the Hamming distance
over conditional variables. The evaluation of a reified constraint simply calls the
semantic definition for constraints and uses the Kronecker symbol δ to convert
Boolean values into 0/1 values:

δ(b) =
{

1 if b = true;
0 otherwise.



v ∈ N ; x ∈ Variable; y ∈ ConditionalVariable; e ∈ Expression; c ∈ Constraint .
e ::= v | x | y | e+ e | e− e | e× e | c
c ::= e = e | e ≤ e | c ∨ c | c ∧ c

Fig. 6. The Syntax of Expressions and Constraints (Partial Description).

E
α

[v] = v iv ← v

E
α

[x] = α(x) ix ← x

E
α

[y] = α(var(y)) iy ← ivar(y)

E
α

[e1 + e2] = E
α

[e1] + E
α

[e2] ie1+e2 ← ie1 + ie2

E
α

[e1 − e2] = E
α

[e1]− E
α

[e2] ie1−e2 ← ie1 − ie2
E
α

[e1 × e2] = E
α

[e1]× E
α

[e2] ie1×e2 ← ie1 × ie2

Fig. 7. The Evaluation of Expressions and their Underlying Invariants.

The rule of well-definedness of a reified constraint simply returns true, meaning
that the definedness is local to the reified constraints and does not propagate to
the enclosing expression.

It is worth highlighting that the lenient semantics can be obtained in a very
similar way: just replace the conjunction by disjunction and negate the well-
definedness condition in the first two lines of Figure 8 and include a recursive
call in the definition of well-definedness for reified constraints. So it is possible
to accommodate easily both the lenient and the strict semantics in the same
system. Observe also that the generated invariants are acyclic by construction
since the condition in a conditional variable can only use previously declared
variables. Acyclicity is in fact always assumed in CCSPs and is natural in their
application domains.

The Definition of Violations Figure 10 depicts the violations of constraints over
conditional variables, as well as the invariants to maintain them. Several points
deserve to be highlighted. First, the definition of violations capture the im-
portance of conditions in conditional variables. The violations of a constraint
c(y1, . . . , yn) over conditional variables is expressed directly in terms of the vio-
lations of the same constraint over traditional variables c(var(y1), . . . , var(yn))
but it adds a penalty φ for each of its conditional variables whose condition
does not hold. The expression U

α
[e] computes the number of inactive conditional

variables in e. The penalty is large to focus the search on making the condi-
tional variables active before considering the other violations. Second, observe
that conditional variables in reifed constraints are not counted, reflecting the
semantics of reification in this context too. Finally, the invariants are once again
computed naturally, showing the compositional nature of the implementation.

4 Modeling and Solving The ATGP Problem

We now describe how to model and solve ATGPs.



B
α

[e1 = e2] = E
α

[e1] = E
α

[e2] ∧ D
α

[e1] ∧ D
α

[e2] be1=e2 ← ie1 = ie2 ∧ de1 ∧ de2
B
α

[e1 ≤ e2] = E
α

[e1] ≤ E
α

[e2] ∧ D
α

[e1] ∧ D
α

[e2] be1≤e2 ← ie1 ≤ ie2 ∧ de1 ∧ de2
B
α

[r1 ∨ r2] = B
α

[r1] ∨ B
α

[r2] br1∨r2 ← br1 ∨ br2
B
α

[r1 ∧ r2] = B
α

[r1] ∧ B
α

[r2] br1∧r2 ← br1 ∧ br2

D
α

[v] = true dv ← true

D
α

[x] = true dx ← true

D
α

[y] = B
α

[cond(y)] dy ← dcond(y)

D
α

[e1 + e2] = D
α

[e1] ∧ D
α

[e2] de1+e2 ← de1 ∧ de2
D
α

[e1 − e2] = D
α

[e1] ∧ D
α

[e2] de1−e2 ← de1 ∧ de2
D
α

[e1 × e2] = D
α

[e1] ∧ D
α

[e2] de1×e2 ← de1 ∧ de2

Fig. 8. The Evaluation of Constraints and their Corresponding Invariants.

E
α

[c] = δ(B
α

[c]) ic ← δ(bc)

D
α

[c] = true dc ← true

Fig. 9. The Evaluation of Reified Constraints and their Corresponding Invariants.

The Model An ATGP consists of four different components: the objective func-
tion to achieve diversity, a hard constraint system, a soft constraint system, and
a probabilistic constraint system. The hard constraint system contains the archi-
tectural constraints, as well as the hard constraints in the test scenario. The soft
constraint system contains the soft constraints of the test scenario. The prob-
abilistic constraint system allows the validation engineer to bias the generated
sequence toward some instructions. An entry in a probabilistic constraint sys-
tem is a tuple 〈(c1, p1), . . . , (ck, pk)〉 where ci are mutually exclusive constraints
and pi are probabilities satisfying

∑k
i=1 pi = 1. The intention is to generate a

sequence of instructions which satisfy ci with probability pi. A typical example
would be

(opcode = add, 0.7), (opcode = jump, 0.2), (opcode = load, 0.1)

which would generate add, jump, and load instructions 70%, 20%, and 10% of
the time respectively.

The Search We experimented with various search procedures sharing a common
core. The core has four main features. First, the hard and soft constraint systems
H and S are combined into a single constraint system C through weights, i.e.,
C = wh∗H+S. The resulting constraint system is then reified into the objective
function, once again using weights

O = wd ∗HammingDistance − wc ∗ C



V
α

[e1 = e2] = E
α

[abs(e1 − e2)] + φU
α

[e1] + φU
α

[e2] ve1=e2 ← iabs(e1−e2) + φue1 + φue2

V
α

[e1 ≤ e2] = E
α

[max(e1−e2, 0)]+φU
α

[e1]+φU
α

[e2] ve1≤e2 ← imax(e1−e2,0)+φue1+φue2

V
α

[c1 ∧ c2] = V
α

[c1] + V[c2] vc1∧c2 ← vc1 + vc2

V
α

[c1 ∨ c2] = min(V
α

[r1],V
α

[r2]) vc1∧c2 ← min(vc1 , vc2)

U
α

[v] = 0 uv ← 0

U
α

[x] = 0 ux ← 0

U
α

[y] = δ(¬B
α

[cond(y)]) uy ← δ(¬dcond(y))

U
α

[e1 + e2] = U
α

[e1] + U
α

[e2] ue1+e2 ← ue1 + ue2

U
α

[e1 − e2] = U
α

[e1] + U
α

[e2] ue1−e2 ← ue1 + ue2

U
α

[e1 × e2] = U
α

[e1] + U
α

[e2] ue1×e2 ← ue1 + ue2

U
α

[c] = 0 uc ← 0

Fig. 10. Violations of Constraints over Conditional Variables and their Invariants.

Second, the search always selects the variable with the steepest gradient and
always assigns to it the value producing the steepest increase in objective O.
Third, tabu-search is used as the meta-heuristic. Fourth, the search always in-
cludes a restarting strategy. The probabilistic constraint system is handled in an
initial step. For each probabilistic constraint, the search flips a coin and imposes
the appropriate constraint based on the provided distribution.

This core can be enhanced with a strategic oscillation strategy which adjusts
the weights to balance the time spent in the feasible and infeasible region [9].
However, the core procedure achieves the best quality/efficiency tradeoff over
the benchmarks presented in the next section. The strategic oscillation offers
benefits in solution quality at the expense of an increase in computation times.
Since efficiency is a critical factor in ATGPs, this strategy was not retained.

A critical aspect of the search procedure is also its handling of large domains.
As mentioned earlier, domains in ATGPs can vary in size considerably. A domain
may be small (e.g., the available registers) or very large (e.g., the set of all 32-
bit addresses or the set of all 16-bit constants). It is not practical to find the
value that decreases the objective the most by differentiation in these cases: It
would take too much time to enumerate all the values. Our search handles large
domains differently by performing a random sampling of the domain.

It is important to emphasize that ATGPs have many local minima and it
is not easy to escape them. This is the main justification for restarts which are
critical to achieve a reasonable tradeoff between solution quality and efficiency.
This situation is partly due to our modeling which is geared toward feasibility:
Violations of the conditions from conditional variables have a significant penalty
(the φ value in the violation definition). However, without this penalty, the
search has difficulty finding feasible solutions and is heavily biased toward the
Hamming distance.



Test Scenario 2:

Hard: OpTypeSp1 = imm32 && OpValue1 > 0x12345

Soft: OpValue1 < 0x22222 || (OpValue1 > 0x33333 && OpValue1 < 0x77777)

Test Scenario 3:

Prob: InstructionGroups = {arithm%70, logic%20, cmp%10}
Test Scenario 7:

Hard: OpType1 = immediate || OpType2 = immediate

Hard: if (OpType1 = immediate) then (OpValue1 > 0xff)

Hard: if (OpType2 = immediate) then (OpSize2 > 8)

Soft: OpRole0 = dest

Test Scenario 8:

Hard: InstructionClass != GP && InstructionGroups = logic

Soft: OpValue0 = OpValue1

Fig. 11. The ATG Test Scenarios

5 Experimental Results

This section presents the experimental results on some benchmarks provided by
Intel. The benchmarks consist of an instruction set consisting of 80 instruction
types with up to 20 fields and 8 test scenarios. For space reasons, it is not pos-
sible to present all the results but Figure 11 depicts some interesting scenarios.
Scenario 2 features both hard and soft constraints, including some over large
domains. Scenario 3 features a probabilistic constraint. Scenario 7 features hard
and soft constraints with implications and disjunctions. Scenario 8 features a
soft constraint which restricts the feasible region significantly and creates a sig-
nificant tension with the Hamming distance. Incremental-CBLS is implemented
on top of the Comet system [4] (Significant improvement in speed would result
from a native support of conditional variables) and the experiments were run on
Intel Xeon CPU 2.80GHz machines running 64-bit Linux Debian.

Figures 12 and 13 depict the experimental results on the above scenarios.
Other results are consistent but cannot be included for space reasons. Once
again, the graphs on the left give the average Hamming distance between two
solutions as a function of the number of solutions and each point corresponds
to an average of 10 runs. In general, it is difficult to compute a tight upper
bound on ATGPs because of the conditional variables, some of which are not
active. The figure reports an upper bound on scenario 8, since the set of feasible
instructions is more restricted in this case and the upper bound can exploit that
information (a similar result holds for scenario 5 whose results are not shown
for space reasons). The results show a significant benefit in solution quality for
Incremental-CBLS compared to Control-CBLS. Interestingly, the shape of the
results closely follows the queen and allinterval results presented earlier. The
curves for the average Hamming distance do not converge, Incremental-CBLS
is close to the upper bound on scenarios 5 and 8, and Incremental-CBLS has
significantly smaller standard deviations on ATGPs.



10 20 30 40 50

4.
0

4.
5

5.
0

5.
5

6.
0

Scenario 2 − Diversity

Number of Solutions

A
ve

ra
ge

 H
am

m
in

g 
of

 T
w

o 
S

ol
ut

io
ns Incremental−CBLS

Control−CBLS
Standard Deviation

10 20 30 40 50

0
5

10
15

Scenario 2 − Computation Time

Number of Solutions

S
ec

on
ds

Incremental−CBLS
Control−CBLS
Standard Deviation

10 20 30 40 50

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

Scenario 3 − Diversity

Number of Solutions

A
ve

ra
ge

 H
am

m
in

g 
of

 T
w

o 
S

ol
ut

io
ns Incremental−CBLS

Control−CBLS
Standard Deviation

10 20 30 40 50

0
5

10
15

20
25

Scenario 3 − Computation Time

Number of Solutions

S
ec

on
ds

Incremental−CBLS
Control−CBLS
Standard Deviation

Fig. 12. Diversity Results and Computation Times for the ATGPs.

The computation times remain reasonable for Incremental-CBLS but obvi-
ously the computation times increase compared to Control-CBLS which only
searches for random feasible solutions. Scenario 8 is more demanding, since the
soft constraint is in direct contradiction with the Hamming distance and restricts
the search space significantly when enforced. Only assignments were considered
as local moves. An improvement could be gained from considering value swaps
as well.

The tradeoffs between solution quality and efficiency was also investigated
since both diversity and efficiency are important in ATGPs. Figure 14 shows
the results on scenario 2. The number of restarts is reduced from 8 to 4 without
significant degradation in quality but with a 50% reduction in computation time.
This indicates that Incremental-CBLS can likely be tuned to meet strong timing
constraints while still bringing significant benefits.

Finally, Figure 15 shows the benefits of parallelism in ATGPs problems.
It transforms the search into a multistart procedure which are executed on 4
processors. The figure shows that the computation times are decreased by 50%
again for 8 and 4 multistarts, closing further the gap with Control-CBLS. The
generation of 50 diverse solutions now takes less than 6 seconds.



10 20 30 40 50

5
6

7
8

9

Scenario 7 − Diversity

Number of Solutions

A
ve

ra
ge

 H
am

m
in

g 
of

 T
w

o 
S

ol
ut

io
ns Incremental−CBLS

Control−CBLS
Standard Deviation

10 20 30 40 50

0
5

10
15

Scenario 7 − Computation Time

Number of Solutions

S
ec

on
ds

Incremental−CBLS
Control−CBLS
Standard Deviation

10 20 30 40 50

2.
5

3.
0

3.
5

4.
0

Scenario 8 − Diversity

Number of Solutions

A
ve

ra
ge

 H
am

m
in

g 
of

 T
w

o 
S

ol
ut

io
ns Upper Bound

Incremental−CBLS
Control−CBLS
Standard Deviation

10 20 30 40 50

0
5

10
15

20
25

30

Scenario 8 − Computation Time

Number of Solutions

S
ec

on
ds

Incremental−CBLS
Control−CBLS
Standard Deviation

Fig. 13. Diversity Results and Computation Times for the ATGPs.

6 Conclusion

This paper reconsidered the automatic generation of architectural tests (ATGP),
a fundamental problem in processor validation. It proposed to view ATGPs as
MaxDiversekSet problems to produce more diverse solutions than the ran-
dom exploration traditionally used. The paper showed that constraint-based lo-
cal search over conditional variables can provide significant benefits in solution
quality, while retaining reasonable efficiency. The paper described a semantics
and implementation of constraint-based local search over conditional variables,
which is particularly appropriate for ATGPs. It also showed that constraint-
based local search brings significant computational benefits over existing tech-
niques as an implementation technique for approximating MaxDiversekSet
problems.

There are many directions for future work. The treatment of large domains
should be enhanced and the tabu search should be complemented by constraint-
based repair techniques to suggest moves that can efficiently reduce the violations
of constraints involving large domains. Our prototype implementation should be
embedded in the Comet kernel and tested on large scale instances modeling
IA-32 and IA-64 processors.



10 20 30 40 50

4.
5

5.
0

5.
5

6.
0

Number of Solutions

A
ve

ra
ge

 H
am

m
in

g 
of

 T
w

o 
S

ol
ut

io
ns Incremental−CBLS − 8 Restarts

Incremental−CBLS − 4 Restarts
Incremental−CBLS − 2 Restarts
Control−CBLS

10 20 30 40 50

0
5

10
15

20

Number of Solutions

S
ec

on
ds

Incremental−CBLS − 8 Restarts
Incremental−CBLS − 4 Restarts
Incremental−CBLS − 2 Restarts
Control−CBLS

Fig. 14. Tradeoff Between Solution Quality and Efficiency on Scenario 2.

10 20 30 40 50

4.
5

5.
0

5.
5

6.
0

Number of Solutions

A
ve

ra
ge

 H
am

m
in

g 
of

 T
w

o 
S

ol
ut

io
ns Incremental−CBLS − 8 Multistarts

Incremental−CBLS − 4 Multistarts
Control−CBLS

10 20 30 40 50

0
2

4
6

8
10

Number of Solutions

S
ec

on
ds

Incremental−CBLS − 8 Multistarts
Incremental−CBLS − 4 Multistarts
Control−CBLS

Fig. 15. The Benefits of Parallelism on Scenario 2.

References

1. Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction problems. In: Pro-
ceedings of the Eighth National Conference on Artificial Intelligence. (July 1990)

2. Moss, A.: Constraint patterns and search procedures for cp-based random test
generation. In: Hardware and Software: Verification and Testing. (February 2008)

3. Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding diverse and similar
solutions in constraint programming. In: Proceedings of the Twentieth National
Conference on Artificial Intelligence. (May 2005)

4. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. The MIT Press
(2005)

5. Bin, E., Emek, R., Shurek, G., Ziv, A.: Using a constraint satisfaction formulation
and solution techniques for random test program generation. In: IBM Systems
Journal 41(3). (2002)

6. Geller, F., Veksler, M.: Assumption-based pruning in conditional csp. In: Principle
and Practice of Constraint Programming (CP’05). (2005)

7. Sabin, D., Freuder, E.C.: Configuration as composite constraint satisfaction. In:
Proceedings of Artificial Intelligence and Manufacturing Research Planning Work-
shop. (1996)

8. Van Hentenryck, P., Michel, L.: Differentiable invariants. In: 12th International
Conference on Principles and Practice of Constraint Programming. (CP’06). Lecture
Notes in Computer Science, Nantes, France (September 2006)

9. Glover, F., Laguna, M.: Tabu Search. Kluwer (1997)


