
Internet Poker: Data
Collection and Analysis

Haruyoshi Sakai

 2

Table of Contents

ACKNOWLEDGEMENTS ..4

ABSTRACT ..5

DATA COLLECTION..7

1. Introduction 7

2. Data Collection Methods 8

3. Screen Capturing Primitives 9
a) Simple Image Matching ... 9
b) Trie Based Image Matching ... 9

4. Text Recognition 13

5. Game Element Parsing 15
a) Text Fields.. 15
b) Graphical Fields ... 16
c) Card Fields ... 17

6. Game Parsing 18
a) Pre-betting Action .. 18
b) Betting Action .. 20
c) Pot resolution ... 22
d) Overall Hand Parsing ... 24

7. The Query Environment: Main Components 25
a) Player ... 25
b) Game .. 25

8. The Query Environment: Secondary components 26
a) GameHeader... 26
b) Roster ... 26
c) RosterEntry .. 26
d) RoundTranscript... 27
e) Action... 27
f) Results.. 27
g) PokerHand.. 27
h) Outcome ... 28
i) DataSet ... 28

9. Sample Query 29

10. Lessons learned 30

11. Future Directions 31

DATA ANALYSIS: BETTING HABITS...32

1. Introduction 32

 3

2. Average Normalized Pot Size 33
a) Data .. 33
b) Analysis.. 36

3. Betting Round Statistics 38
a) Data .. 38
b) Analysis.. 40

4. Player bet size as a proportion of the current pot 41
a) Data .. 41
b) Analysis.. 44

5. Conclusion 46

DATA ANALYSIS: DESCRIPTIVE DATA..47

1. Introduction 47

2. Hand Occurrences 47

3. Winningest and Losingest Players 48

4. Hand with largest pot 49

CLOSING ...51

 4

Acknowledgements

My thanks go out to John Jannotti for his help throughout this process.

 5

Abstract

In the past few years, there has been a massive boom in the popularity of poker

as an American pastime. While there has always been interest in poker in the

United States, the game was propelled into the limelight due in no small part to

the aptly named Chris Moneymaker, an accountant from Tennessee. In 2003,

Moneymaker rose to the top of a then all-time high field of 800 players and

claimed the first place purse of the World Series of Poker main event, raking in a

cool $2.5 million. While the standard buy-in for the main event of the World

Series is $10,000, Moneymaker managed to turn an initial investment of $39

dollars into $2.5 million by winning a satellite tournament on the Internet poker

room, PokerStars. Since then, poker has experienced an explosion in popularity.

The field of the 2004 WSOP swelled to approximately 2,500 players, and this

year’s event is expected to be even larger. Internet poker has seen a similar

explosion of popularity. As I write (at 2 in the morning), PokerStars has 20,070

players at 3511 separate virtual tables with average pot sizes ranging from a

paltry $.25 to $625. With the ever-growing number of players, and ever

increasing money stakes, Internet poker presents a large number interesting

problems.

In Internet poker, it pays to have as much data as possible. A player with a large

database of hands often has a huge advantage playing against others. However,

while most Internet poker sites allow you access to the hands in which you

participated, they usually do not allow you access to hands in which you did not

take part. Moreover, the hand histories that one can obtain from the online poker

sites are uneven in quality, some omit important information such as player chip

stacks, and to my knowledge none include temporal information, that is, how long

a player took to act. In the following, I present my method for automatically

transcribing player hands, along with a presentation of some statistics from my

corpus of 64,000 hands of Texas Hold’em.

 6

Opening Remarks

The most popular variation of poker that is played today is undoubtedly

Texas Hold’em, specifically No Limit Texas Hold’em. For that reason, I

chose to focus on this particular poker variation. All of my data was collected

at No Limit tables, and all my remarks pertain specifically to No Limit (though

they are probably true elsewhere as well). In this thesis, I assume a working

knowledge of the rules of No Limit Hold’em, and a familiarity with basic poker

terminology. If you are unfamiliar with Hold’em, I direct you to the appendix,

where you will find some references to familiarize you with the basics as well

as a glossary of the terms I use.

 7

Data Collection

1. Introduction

Figure 1: The PokerStars interface

All Internet poker applications have a large number of commonalities in their

interfaces. This thesis takes the PokerStars interface (see Figure 1) as a

representative of the standard GUI. Each table has some fixed number of

virtual seats (9 in this case), which users can choose to occupy (we see an

unoccupied seat (1) at the bottom of the table). When a seat is occupied, the

player’s name, stack (2), and user icon are displayed. We also see a simple

text console (3), which is used for chat, as well as announcements of various

game events. Lastly is the table itself, which is where the community cards

(4) are dealt. From these elements, the user is able to discern all information

that is relevant to the current state of the game. This user interface is also

the entry point through which I chose to extract all hand data.

1

4

3

2

 8

2. Data Collection Methods
When approaching the problem of accumulating hand data, there are

three different approaches that lend themselves:

1. Sniffing packet traffic between the poker client and server.

2. Taking advantage of provided hand history facilities.

3. Scraping the screen to obtain game information.

Each of these approaches has its own drawbacks. Option 1 presents a

number of technical difficulties. First, the task of reverse engineering the

packet format would be tedious and time consuming. Second, and more

importantly, the traffic between the client and server is securely encrypted.

While in theory, it should be possible to determine the encryption key through

studious examination of local binaries, in practice this would be extremely

difficult, and probably illegal. Moreover, the packet format and encryption

schemes would vary between poker programs, severely restricting the

general applicability of any code I produced.

Similar considerations apply to using application native hand history

facilities. As noted previously, support for hand histories is uneven. Some

programs do not provide them, and those that do make use of differing

formats. The means for accessing these histories are similarly varied. The

GUI access points differ, as do the formats in which these histories are

transmitted; some are sent by email, others are saved as local text files.

This leaves the final approach: performing screen captures. While there is

bound to be a number of application specific elements (i.e. fonts, element

positions, card faces, etc.), the general form of the GUI shares the common

elements of player seats, board cards, and chat window. In addition, by

necessity, a screen scraper has full access to all relevant game information.

After all, if the screen scraper could not see it, the human players would not

be able to either.

 9

3. Screen Capturing Primitives
In order to create screen captures on the fly, I resorted to the built-in Java

library, Robot1. This class allows for real time screen capturing as well as

simulated user input (which could be useful for future extensions). This

facility allows for the creation of simple image recognition primitives: simple

image matching and prefix based foreground recognition.

a) Simple Image Matching
This operation is as simple as it sounds, it involves a pixel by pixel

comparison between two images. In pseudocode:

ExactMatch(image_1, image_2)
Input: Two images
Output: True if the images are pixel by pixel matches,
false otherwise

for(x = 0; x < image_1.width; x++) {
 for(y = 0; y < image_1.height; y++) {
 if(image_1[x][y] ≠ image_2[x][y]) {
 return false;
 }
 }
}

return true;

This method gives a quick and easy method of performing a direct

comparison between two passed images.2 However, if we wish to make

a comparison between a target image and a collection of comparison

images, this method is inefficient, especially as the number of

comparison images grows.

b) Trie Based Image Matching
To perform proper text recognition one needs to compare screen

images against all possible characters. While it is simple to implement

1 http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Robot.html
2 Note that the image comparison is only affected by the size of the first image, if the second image is larger,
it can still match.

 10

this using simple image matching, the running time becomes unwieldy

as the number of images increases. In order to optimize the running

time when comparing a source image against a large number of

candidate images, it becomes necessary to use a prefix trie. While tries

are commonly used in string matching applications, a simple

generalization allows us to apply the trie technique for image matching.

Given the library of images to compare against, we select a color to act

as a relevant, or foreground color. After this foreground color is selected,

we treat the candidate images as strings with length equal to the pixel

width of the image. The K-th “character” of these image strings

corresponds to the number of foreground pixels in the K-th column of the

candidate image.

Figure 2: The 'T' corresponds to the string 1,1,1,10,10,1,1,1

Once the trie is constructed, in order to find the matching image, we

simply have to traverse the tree, and find the image with the longest

matching prefix. In pseudo-code3:

3 In the actual code, the images are paired with data (e.g. a character that matches the image). However, in
the pseudo-code, this detail is elided.

 11

ConstructTrie(images)
Input: A collection of images
Output: An image trie

trie.root = ConstructNode(images, -1)

return trie

ConstructNode(images, depth)
Input: A collection of images, and the node depth
Output: A trie-node

if(images.size == 1)
 node.residents = images

return node

foreach(image in images)

//There are no more ‘characters’ left
 if(image.width == depth + 1)
 node.residents += image //Add the image

 child_images[image.pixelCount(depth+1)].add(image)

foreach((count, matching_images) in child_images)
 node.children[count] =

ConstructNode(matching_images, depth + 1)

return node

 12

FindMatch(trie, match_against)
Input: A trie and an image to match against
Output: The matching image, or null if there is no match

cur_node = trie.root
offset = 0

while(cur_node ≠ null && offset < match_against.width)

 count = match_against.pixelCount(offset)
 tmp = cur_node.children[count]

 if(tmp == null && cur_node.residents.size == 0)
 return null

if(tmp == null)
 foreach(image in cur_node.residents)
 if(ExactMatch(image, match_against))
 return image

return null;

cur_node = tmp;
offset++;

 13

4. Text Recognition
Using trie based image matching, the task of performing text recognition

becomes significantly easier. Say we have an image that corresponds to a

body of text that we wish to match against, for example:

Now, to extract the text from the image, we simply need a trie of images

corresponding to the characters of the text’s font. To determine the text

contents, we simply begin at the first column of the image, and advance one

pixel at a time checking whether there is a match in the trie. In pseudo-code:

ParseString(image, trie)
Input: An image to parse and the parsing trie
Output: A string corresponding to the parsed image.

string = “”
offset = 0

while(offset < image.width)
 subimage = Subimage of image beginning at offset
 match = FindMatch(trie, subimage)
 if(match == null)
 offset++
 continue

string += GetCorrespondingChar(match)

 offset += match.width
}

return string

In order to construct the character trie, it was necessary to collect images

matching each of the characters that could be encountered. Once this was

completed, I assembled images into a simple configuration image that was

parsed at run time (Figure 3). This image consisted of the upper and

lowercase letters and the numerals as well as various punctuation

characters.4 Each individual character is delimited by blue pixels. The

punctuation characters are presented in ASCII-order to ease parsing the

configuration file (red pixels indicate the next character in ASCII order is

4 In order to preserve my sanity, I did not create an exhaustive listing of all ASCII characters, only those
that are the most common.

 14

omitted). In addition, since character-fields vary slightly in height depending

on their location on the screen, it was also necessary to duplicate the

numerals.

Figure 3: The character configuration image (slightly enlarged)

In addition, each game has a unique game ID, for which it was necessary to

produce another character configuration image:

Figure 4: Game ID character configuration image

In practice, this solution works very well.5 It is a concise representation of a

particular on screen font which can be easily generalized to any font that

might be encountered on Internet poker.

5 With one small exception: lowercase ‘L’ and upper case ‘I’ look exactly the same. The result is that all
occurrences of ‘I’ are replaced by ‘l’.

 15

5. Game Element Parsing

a) Text Fields
With text recognition in hand, parsing the text based game elements

simply becomes a matter of locating the relevant text fields in the GUI, and

extracting the text. In the PokerStars interface, there are three relevant text

fields:

Figure 5: Relevant text fields

1. The unique game ID number

2. Individual player name

3. Player stack

For each of the virtual seats at a table, these fields are always located in

the same spot in relation upper left hand corner of the player window.

Therefore, extracting the values of these text fields is a simple matter of

predetermining their locations, and then scanning these locations when the

need arises.

1
2
3

 16

b) Graphical Fields
Graphical fields are those gameplay related elements of the GUI that are

neither playing cards nor text fields. These are:

1. Player action

2. Button position

Whenever a player performs an action, their icon momentarily changes

reflect the action that they just took. A player has the following actions

available to them: ‘fold’, ‘bet’, ‘call’, ‘raise’, ’check’, ‘muck’, ‘fold’, ‘post small

blind’, ‘post big blind’, ‘post big blind and small blind’, and ‘show cards’.

These actions can all be easily recognized through the use of simple image

matching.

Figure 6: Action configuration file6

The button position on the table can also be easily determined through the

use of simple image matching (see Figure 6 for the image configuration file).

Since the table surface is green, to locate the button, one simply has to

determine which seat has a red pixel in front of it (this corresponds to the red

pixels contained in the ‘D’).

6 These correspond to bet, call, check, fold, muck, post big blind, post big and small blind, post small blind,
raise, seat empty, and show cards respectively.

1
1

2

 17

c) Card Fields
The final category of parsed game elements is the card elements. There

are two types of cards that can be parsed:

Figure 7: Card Types (aces take down a $5000 pot)

1. Hole cards

2. Community cards

These two card types differ only in their placement on the screen. Since

the suit and numerals are placed consistently on each card, correctly parsing

each card is simply a matter of recognizing the suit and the numeral correctly.

This is accomplished in a manner very similar to standard text parsing. One

simply makes use of a trie, constructed using captured images of each of the

numerals and suits. Rather than pairing a character with each image in this

trie, one simply substitutes a suit/numeral value. Below is the configuration

image for card parsing:

Figure 8: Card parsing configuration image

1

2

 18

6. Game Parsing
The stages of parsing a complete game of poker can be broken down into

three distinct segments, each of which is parsed in a slightly different manner.

a) Pre-betting Action
The goal of pre-betting action is to determine which players are in the pot,

their stacks, and their names. Determining the identity of the players in the

pot is complicated by the fact that not all players sitting at the table play each

hand. All poker programs allow the users to sit out hands if they choose, and

seated players are also prevented from playing if they time out or have just

sat down at the table.7 However, the player with the dealer button must

always be involved in the hand, and the small and big blind must follow the

button in a clockwise order. Therefore, to determine the blinds, one polls the

players on the screen for actions, moving in a clockwise direction around the

table. In practice, it is sufficient to poll for player actions every 100

milliseconds. In addition, the seats that have already acted must be noted,

so that they are not double counted. After the blinds have been posted, the

cards are dealt, and the players in the hand can be deduced by noting which

players have cards dealt to them. Even though the blinds at a table never

change, the first time it is parsed, these blinds need to be determined. This

can be ascertained by checking the amount of a player’s stack before and

after they post the big or small blinds. The difference is the blind amount.

Finally, we cannot begin parsing a game mid-hand. To determine when a

new game has begun, we simply poll the position of the button. Since the

button moves at the end of every hand, a change in button position indicates

that a new hand has begun. In pseudo-code:

7 Players are prevented from playing after sitting down immediately to the left of the button, as this would
allow them to take advantage of position.

 19

ParsePrebetting(table)
Input: A table of virtual seats
Output: A transcript of the pre-betting portion of the
 game.

//Wait for the beginning of a new game
buttonPos = getButtonPosition(table);

while(getButtonPosition(table) == buttonPos) {
 wait for 50 ms
}

buttonPos = getButtonPosition(table);

//Update the stacks of all the players
updateStacks(table);

//Continue polling until the cards are dealt8
while(!cardsDealt(table)) {

 //Move around the table, starting one to the
 //left of the button
 for(seat in table starting to button’s left) {
 //Skip players that have already acted
 if(seat.hasActed) {
 continue;

}

action = getAction(seat);
if(action == NO_ACTION) {
 continue;
}
if(action == POST_SB) {
 //The blind is the difference between
 //the old and new stack
 smallBlind = seat.getStack;
 seat.updateStack();
 smallBlind = smallBlind – seat.getStack;

 RECORD POSTING OF SMALL BLIND
}
//Posting big blind and big blind and small
//blind is handled the same way
...

}
wait for 50 ms

}
//Create transcript of player seating, and game statistics
//noting which players have cards dealt to them
...
return transcript

8 This allows the capturing of newly seated players posting the blind for entry.

 20

b) Betting Action
The bulk of game parsing occurs while during the betting action. This

covers the betting on all betting rounds (preflop, flop, turn, and river), as well

as the community cards that are dealt. As each betting round is identical in

structure9, they can each be handled in an identical manner. Parsing

community cards is simply a matter of examining the card field in the center

of table, and shall not be discussed further here. The main difficulty is in

determining the order in which players are required to act. In No Limit

Hold’em, the betting begins immediately to the left of the button, and

proceeds around the table in clockwise fashion. Each player can then either

bet, check, call or raise. The betting round ends when either a) the player in

last position checks (indicating that no more money was added to the pot) or

b) the action is called around to the last player that bet or raised or c) there is

only one player left in the pot (this occurs when all the other players fold). At

any time, a player may opt to call, bet or raise all-in. After moving all-in, a

player may perform no further actions. In addition, a player that has moved

all in may win no more from each other player than the total that they

contributed to the pot. Lastly, if a player does not have enough remaining

money to call a bet, they may call all-in instead. Again, note that

determining the amount of a bet is simply a matter of determining a player’s

stack before and after they act. The pseudo-code for parsing follows:

9 With the exception of preflop, here, the blinds are treated as having already bet, but are able to act in spite
of this.

 21

ParseBettingRound(table)
Input: A table of virtual seats
Output: A transcript of the betting round

activeSeat = //Player to left of button

//Set all player’s amt_in_round to 0

//The amount of that a player has to call to stay in
callBurden = 0;

//Continue until everyone has folded, or everyone has
//met the call burden
while(table.activePlayers > 1 && (!activeSeat.hasActed ||

activeSeat.amt_in_round ≠ callBurden)) {

//Poll the next player until they act
do {
 action = getAction(activeSeat);
 if(action == NO_ACTION) {
 wait for 50 ms
 continue;

}
} while(action == NO_ACTION);

//We have an action
activeSeat.hasActed = true;

RECORD ACTION //Record the action for the transcript

//Handle the different action types
if(action == CHECK) {
 //Don’t need to do anything
}
if(action == BET) {
 callBurden += action.betAmt;
 activeSeat.amt_in_round += action.betAmt;
}
if(action == RAISE) {
 callBurden = action.raised_to;
 activeSeat.amt_in_round +=

(cullBurden – active.amt_in_round);
}
//If the player moves all in, or folds,
if(action.all_in || action == FOLD) {
 REMOVE SEAT FROM ACTING ORDER
}

}

//Return the transcript of the betting round
return transcript;

 22

c) Pot resolution
This is the final phase of game parsing involves determining who the

winner of the pot (or pots, if there are side pots formed by players moving all-

in). If the pot is won uncontested (i.e. everyone else folds), the winner of the

pot is obvious. However, if the final betting round ends, and there is more

than one player remaining in the hand, that game must be resolved with a

show-down. In the case that there is a side pot or pots (i.e. one or more

players moved all-in, and other players with bigger stacks continued playing),

the pots are resolved in a top-down fashion. The pot with the active players

is resolved with a showdown. Then the side pot involving players with

second highest amount of money invested is resolved by pitting the winner of

the topmost pot against the player (or players) in that side pot10. This

continues with the third highest pot and so on until all pots have been

exhausted. This segment of the game parsing also requires that all players’

final hands be determined. This is accomplished through the following

algorithm for hand checking11:

1. Sort the player’s 7 cards (5 community and 2 hole cards) by suit (if two cards have the
same suit, sort by numerical value), and check for any flushes. If a flush is found, check
for a straight-flush (check if the value of the 4th card after the flush high card is equal to
the numerical value of the flush high card minus 4, specially casing the ace for the case
of a 5 high flush). If this is found, the player’s hand is a straight flush, otherwise note
that the player has a flush (this might not be their best hand however).

2. Sort the cards by numerical value.

3. Step through the cards one by one, performing the following checks in order:

a. Check whether the 3rd card after the current is the same value. If it is, we have 4
of a kind, this is the best possible hand.

b. Check whether the 2nd card after the current is of the same value. If it is, we
have at least 3 of a kind. If we previously had a pair, the player has a full house
as their best possible hand. Otherwise, note the index of the 3 of a kind

c. Check whether the next card has the same value. If it does, there is a pair. If
there was previously a 3 of a kind, we now have a full house, the best possible
hand for this player. Otherwise, note index of the pair.

d. Check whether the last value we checked 1 higher than the current card value.
Keep track of the number of consecutive cards. If this number ever reaches 5,
the player has a straight.

10 For quick reference, the ranking of hands in Hold’em, from best to worst is: straight-flush, four of a kind,
full house, flush, straight, three of a kind, two pair, pair, high card.
11 I elide the pseudo-code on this one, it’s more complicated than it’s worth

 23

4. Check the remaining possible outcomes. If the player had a flush from step 1, their best
hand is a flush. Failing that, using the information noted in 3, check for a straight, 3 of a
kind, two pair, and pair in that order. If the player has none of these, they have high
card.

Compared to determining the player’s hands, determining the winner of each

pot is relatively simple:
DeterminePotWinners(pots)
Input: A collection of pots, in highest-amount-invested-
first order.
Output: A transcript of the pot results.

bestHand = null;

foreach(pot in pots) {

 //Check players, in act order
 foreach(seat in pot) {
 hand = getHand(seat);

 //Check the player’s hand, see if it’s a winner
 if(hand != MUCK) {
 //If this player shows a better hand,
 //he/she is the current winner
 //(any hand is better than a null hand)
 if(hand > bestHand) {
 potResult.clear();
 potResult.winners += seat;
 bestHand = hand;

}
//The player ties
if(hand == bestHand) {
 potResult.winners += seat;
}

}
}

RECORD POT RESULTS

}

//return a transcript of the events
return transcript

 24

d) Overall Hand Parsing
Once obtained, the elements of prebetting, betting action, community

cards and pot resolution are concatenated to produce a complete transcript

of the hands. Sample output from the program follows:

----------------BEGIN_HAND---------------
Hosting Application: PokerStars
Game ID: 1437847749
Starting time: 1112137891635
Players: 4 / 9
Blinds: 10.0 / 20.0
Play Money: false

 1 hazards21 (2345.0 in chips)
 2 HaveMyCash (2000.0 in chips)
Button 3 TheNutters (2468.0 in chips)
 5 sigalit (777.5 in chips)

0.6 - sigalit posts SB of 10.0
4.0 - hazards21 posts BB of 20.0
3.0 - HaveMyCash folds
0.0 - TheNutters folds
3.8 - sigalit raises 40.0 to 60.0
1.7 - hazards21 folds

Main pot:
sigalit wins pot (40.0)

 25

7. The Query Environment: Main Components
Once a corpus of data has been assembled, it is necessary to create an

environment in which the data can be examined in a meaningful way. I

chose to create two main units of functionality in my query environment

which represent the important components of the data, namely the players

and games.

a) Player
Between the two primary components, the player is far simpler. As noted

previously, each player is associated with an identifying name (usually

indicating their massive poker playing skills). In addition, for ease of access,

each player is associated with all of the games that they have taken part in.

Therefore, a player can be summarized as follows:

Type Name
String m_playerName
Set<Game> m_games

b) Game
In essence, a game is composed of the following components:

1. Header information (i.e. blinds, start time, number of players involved)

2. Player roster (the name of the players in the game, their relative position, and stacks)

3. Betting action and community cards

4. Pot resolution

5. The per-player game outcomes (i.e. money won or lost, betting round played to, etc)

Each of these elements has corresponding field in a game object:

Type Name
GameHeader m_header
Roster m_roster
Map<Round,RoundTranscript> m_rounds
List<Results> m_resolutions
Map<Player, Outcome> m_outcomes

These fields correspond to the sum total of the information recorded in a

single game transcript, and allow the hand data to be programmatically

examined.

 26

8. The Query Environment: Secondary components
I now briefly present the secondary components of the query environment.

a) GameHeader
As noted, the game header contains metadata about a hand of Hold’em.

While most of this data could be ascertained through an examination of the

betting action, it is much simpler to store it in advance.

Type Name Description
String m_appName The hosting poker application (i.e.

PokerStars)
long m_gameId The unique game ID

Date m_startingTime The start time of the game

byte m_numPlayersIn The number of players
participating in the hand

byte m_numSeats The number available seats

float m_smallBlind The size of the small blind

float m_bigBlind The size of the big blind

float m_totalPotSize The total pot size

b) Roster
This object is responsible for storing information about the seating

arrangement of the players, as well as their initial state. It is essentially a

mapping between players and RosterEntries.

Type Name Description
Map<Player, RosterEntry> m_entries A collection of roster

entries, mapped from
players

Set<Player> m_players A set of the players in the
game

c) RosterEntry
The RosterEntry stores the starting information about a player in a specific

game.

Type Name Description
Player m_player The player whose information this is

float m_stack The amount of money the player has

HoleCards m_cards The player’s hole cards (if any)

byte m_position How many players act before them

boolean m_isButton Whether or not the player has the
dealer button

 27

d) RoundTranscript
This is simply a list of the actions performed by the players in this betting

round, along with any community cards that were dealt.

Type Name Description
BoardCards12 m_board The dealt community cards (if any)

Round m_round Which round this is (i.e. flop, river,
etc)

List<Actions> m_actions The actions taken in the round

Set<Players> m_players The players in the round

e) Action
This records the details of any action that a player takes. The available

actions are: check, bet, raise, fold, call, and post SB/BB/BB and SB.

Type Name Description
Player m_player The player performing the action

float m_amt The amount of money added to the
pot (if any)

float m_delay The amount of time a player took to
perform an action

float m_toLevel The amount that the player raised to
(if any)

ActionType m_type The type of action (i.e. fold, check)

boolean m_allIn Whether a player is all in with this
action

f) Results
This documents the outcome of a single pot of the game.

Type Name Description
float m_potAmount The size of the pot

List<Player> m_winners The winners of the pot

byte m_potNum The pot number (the bottom-most
pot is 0)

PokerHand m_bestHand The winning hand

g) PokerHand
This represents a 5-card hand in poker.

Type Name Description
Card[] m_cards An array of the 5 cards used in the

hand
byte m_handType The type of the hand (i.e. pair, full

house, etc). This can be used for
comparing the strength of hands
(higher value is a stronger hand)

12 I elide a description of BoardCards, it is simply an array of cards

 28

h) Outcome
This represents the fate of a particular player in a given game. This outcome

can be either win or lose. A player can lose by folding, mucking, or showing

a hand that is beaten. A player can win by showing a winning hand, or

winning the pot uncontested (everyone else folds).

Type Name Description
Player m_player The player whose outcome this is

byte m_outcome The outcome (fold, muck, win-
show, lose-show)

boolean m_potContested Whether the pot was contested

Round m_round The betting round this outcome
occurred on

i) DataSet
Last, but not least, I touch upon the object that holds the record of all the

games and players, and acts as a programmatic entry point for all queries.

In essence, this is simply a set of all players (accessible by name), and all

games. Both the collection of players and games can be iterated over.

Type Name Description
Map<String,
Player>

m_playerMap A map from player names

Set<Game> m_gameSet A set of all the games

 29

9. Sample Query
I now present the code of a sample query (the results of this query will be

discussed in the following sections). The query in question prints out the

total size of all pot sizes in terms of multiples of the big blind. The results are

categorized by blind size, and printed to an output stream.

public void performQuery(DataSet ds,

PrintStream... output) {

TreeMap<Float, LinkedList<Float>> results =
 new TreeMap<Float, LinkedList<Float>>();

//Iterate over all the games
 for(Game cur: ds.getGames()) {

 float blind = cur.getHeader().m_bigBlind;

if(!results.containsKey(blind)) {
 results.put(blind,

new LinkedList<Float>());
 }

 float potSize =

cur.getHeader().m_totalPotSize / blind;

//Add the normalized pot size to the results set
 results.get(blind).addLast(potSize);

 }

 //Prints the collected data to output
 printResults(output);
}

 30

10. Lessons learned
While developing the hand parser, I made several realizations. First, in

retrospect, I feel it was a mistake to parse betting rounds by using the on-

screen action indicators rather than parsing the text console. I encountered

a number of unexpected issues while coding the action parsing. For

example, the action indicators on the player icon continue displaying the

player’s action for approximately 3 seconds after they perform that action.

This can lead to confusing scenarios in which players act fast enough that

action returns to a player while they are still displaying their previously taken

action. Also, in order to ensure that actions were recorded in the correct

order, it was necessary to implement a game logic that mirrored that which

was already implemented server side. It would have been far more efficient

to simply parse the text console (which was guaranteed to be in the correct

order) rather than going to the screen. I had briefly considered this approach

when I began coding, however I underestimated the difficulties of on-screen

parsing, and opted to take the action-icon route instead. By the time that I

had fully determined the difficulties that this method presented, it would have

taken more time to rewrite my hand parsing than to finish the on-screen

action scraping implementation. However, in any future implementation that I

may write, I will certainly use text-console parsing for actions rather than

screen parsing. Also, this is an application that readily lends itself to a

database backend. Since the corpus of data in question (64,000 hands) was

relatively small, and I did not have sufficient time to learn and implement a

database back-end, I opted to use a simpler Java class-based backend.

However, this solution will not scale well, and there are a number of

performance and functionality benefits that a proper database backend will

impart. Future implementations would benefit from an implementation that

makes use of a database.

 31

11. Future Directions
As indicated in section 10, there are several reimplementation goals that

provide a boost to performance and ease the burden of hand parsing

implementation for other poker programs. However, in terms of extended

functionality, there is a large possibility space. As a future end goal, I would

like to create a poker collection/analysis tool with a full graphical front-end as

well as a fully customizable and extensible database-based backend.13 As a

first step towards this goal, I implemented a (very) simple graphical front-end

which allowed runtime loading of database queries using the reflection

capabilities of Java. While this is a nice start, I found that the time involved in

writing a query dominated the time that was required to compile the query

into my test program. Therefore, in practice, I found little need for the

runtime extensibility functionality that I coded.

 Another possible avenue of extension is the implementation of a poker-

playing AI agent. In conjunction with the table parsing that I have already

implemented, it would not be terribly difficult to create a simple agent which

played a tactically simple but sound game. Such an agent could be quite

profitable, especially at the lower blind games, where the players are far

weaker.

 Lastly, an interesting programming language project would be to create a

specialized query language for the purposes of examining the accumulated

hand data.

 There is a large number of interesting problems in this area, and these

suggestions are by no means intended to be exhaustive.

13 This differs from existing programs, which do no support easy extension.

 32

Data Analysis: Betting habits
1. Introduction

In this section I present my analysis of several queries that I found to be

interesting, or informative in some way. Before I present any data from my

data set, there is a major disclaimer that must be noted. In general, the

hands that are revealed in Internet poker are those that win. This is due to

the fact that players whose hands are beaten are allowed to muck their

hands without showing their cards. Consequently, it is usually the case that

the only time a losing hand is seen is when the loser has to reveal his hand

before the winner. Therefore, when drawing conclusions about hand

selection, one must always be careful to note that stronger hands will have

disproportionate representation. That said, I now present the statistics of my

data set.

Summary Statistics:
$0.10 Big Blind Games: 1459

$1.00 Big Blind Games: 2929

$2.00 Big Blind Games: 2847

$4.00 Big Blind Games: 18668

$6.00 Big Blind Games: 5382

$10.00 Big Blind Games: 11705

$20.00 Big Blind Games: 18236

Total Games: 61236

Total Unique Players: 3708

As I did not have enough time to devote to observing all types of game

simultaneously, my data collection in different blinds varied significantly. As

a rule I was more interested in seeing how the higher stakes players played,

so I only collected lower blind games for the purposes of establishing a

baseline. I now present some statistical analysis.

 33

2. Average Normalized Pot Size

a) Data
In the following chart14 we see the distribution of pot size for $.10 blinds.

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

Pot size as multiple of big blind

Fr
eq

ue
nc

y

Mean: 20.1
Std Dev: 30.7
Mode: 2.5

Chart 1: Distribution of pot size for $.10 big blinds

From this we see that the average pot size is approximately 20 times the big

blind, while the pots are most frequently between 2 and 3 times the big blind.

This corresponds to the case where every player folds to a bet, or the small

blind calls a half bet, and the big blind checks. While this is the commonest

pot size, there is also a relatively gradual tailing off in the distribution.

Contrast this with the distribution of the pot size obtained in the $4.00 big

blind games:

14 Please note that in all the distributions I present, the final column indicates the number frequency of
items with value greater than the highest marked bucket. In this case, pots with size greater than 100.

 34

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80 90 100

Pot size as multiple of big blind

Fr
eq

ue
nc

y

Chart 2: Distribution of pot size for $4.00 big blinds

Lastly, consider the distribution of the $20.00 big blinds:

Mean: 14.0
Std Dev: 25.0
Mode: 2.5

 35

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80 90 100

Pot size as multiple of big blind

Fr
eq

ue
nc

y

Chart 3: Distribution of pot size for $20.00 big blinds

This is the tightest distribution, with the lowest mean and standard deviations.

Note that once again the mode is between 2 and 3 times the big blind.

Mean: 13.3
Std Dev: 19.7
Mode: 2.5

 36

b) Analysis
In general, it is interesting to know how large pot sizes get as a function of

blind size. The average pot size is affected by several factors the most

important of which are:

1. The number of players involved in a pot, and how long they stay in

2. The size of the players’ bets/raises

3. The willingness of players to call bets/raises

As we shall see in the following sections, all of these factors are

interrelated. As the number of players involved in a pot increases, there is a

greater and greater incentive for additional players to become involved, as

the size of the pot, as well as the pot odds15 become more and more

favorable. Therefore, to some extent, the number of players experiences a

positive feedback loop. The greater the number of players entering a pot, the

greater incentive for additional players to enter. But what helps determine

willingness to enter the pot? While this is a function of players’ preferences

and hole cards, it is also affected by the size of the bets/raises that the

players expect to encounter. If the players generally make small bets/raises,

players will be more inclined to enter a pot cheaply by limping16. Therefore,

the size of player bets has a direct impact on the size of the pot. As we will

shall see, players at lower levels are much more likely to limp or bet weakly,

and thus players are incentivized to participate in pots. As a result, smaller

bets and raises have the seemly unintuitive effect of increasing pot size.

Lastly, having more players that are more willing to call bets/raises are

also likely to increase the size of bets (as a bet needs to be larger to be

significant) and also to increase the number of players involved in the hand

(they are more willing to stick around). A player’s willingness to call a bet is a

function of the size of the bet, as well as their expectation that others will also

call. Clearly, a player should almost always be willing to call a bet that is a

mere 1/10th of the pot. Similarly, a player should be more willing to call a bet

15 Pot odds refer to the return/investment ratio of an action. For example, if 5 players enter a pot, each
calling the big blind, the 6th player to act will be getting 6.5 to 1 odds on their money by calling the big
blind as well. They only have to win 1 out of 7.5 times in order to break even.
16 A player is considered to limp if they simply call the big blind preflop.

 37

that is ½ the size of the pot if they expect that the 6 players following them

will also call the bet (they are effectively getting [1 + 7 * .5 =] 4.5 to .5 odds

on their call).

This data, and the data to follow supports the hypothesis that games at

lower blind levels:

1. More players are involved in pots, and stay in pots longer

2. Players make smaller bets/raises

3. Players are more willing to call bets/raises

The following data further supports this conclusion.

 38

3. Betting Round Statistics

a) Data
In this table we have the percentage of players that see the flop (provided the

hand reaches the flop), as well as the percentage of times that the game

proceeds to the flop. Only games with a full compliment of 9 players are

considered.

Blind Level % of Players
to Flop

% of games with
 flop seen

$0.10 40% 90%

$4.00 35% 79%

$20.00 32% 70%
Table 1: Flop Statistics

This chart illustrates what percentage of hands at a given blind level end at a

given betting round.

0

10

20

30

40

50

60

Preflop Flop Turn River

Betting Round

Pe
rc

en
ta

ge

$.10 Blinds

$4.00 Blinds

$20.00 Blinds

Chart 4: Indicates what percentage of games end at a given betting round

 39

Finally, this chart indicates what percentage of hands end on a given betting

round, given that they reach that betting round (since 100% of hands end on

the river once they reach the river, the river is omitted from the chart).

0

5

10

15

20

25

30

35

40

Preflop Flop Turn

Betting Round

Pe
rc

en
ta

ge

$.10 Blinds
$4.00 Blinds
$20.00 Blinds

Chart 5: Percentage of time a hand ends on a betting round, given that it reaches that round

 40

b) Analysis
This data reinforces the conclusions of the previous section. In the lowest

blinds, a greater percentage of players see the flop, and the flop is seen

more often. As the blinds increase, the number of players seeing the flop,

and flop seen decrease. This indicates that players at higher blind levels are

not only involved in fewer pots, but flops are seen less often. This conclusion

is further reinforced by Chart 4. We see that at the highest blind, the largest

proportion of the games end preflop (that is, all players but one fold), and the

smallest percentage of games at the smallest blind end preflop. Conversely,

the smallest blinds have the highest percentage of hands ending on the river,

whereas the largest blinds have the smallest. This demonstrates that players

at smaller blinds are more willing to stay in a pot longer than players at

higher blinds. Chart 5 demonstrates this point more clearly. From this chart

it becomes obvious that the lower the blind level, the more willing the players

are to stay in hand. Also, we find that the flop produces the highest

percentage of folded hands. This is to be expected, as at this point the

players have seen 5/7 of the cards that they will be dealt. Consequently,

most players make (or miss) their hand on the flop, and will usually be more

willing to fold to bets.

 41

4. Player bet size as a proportion of the current pot

a) Data
We now examine perhaps the most telling data with regard to player skill, the

distribution of bet size with relation to the pot.

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 More

Bet size as proportion of pot

Fr
eq

ue
nc

y

Chart 6: Distribution of bets, with bets as proportion of the pot for $.10 blinds

In this chart we see the bet distribution as a function of the pot. In the lowest

blind level, the bets are distinctly skewed towards the low end of the bet

spectrum. As we increase the blind size, the skew will shift away from the

bottom end of the spectrum, and move towards the top end. We also see a

relatively large proportion of bets that are more than 1.5 times the size of the

pot. These bets are considered to be over-bets.

Mean: 0.59
Std Dev: 0.51
Bets above 1.5: 3.5%

 42

0

500

1000

1500

2000

2500

3000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 More

Bet size as proportion of pot

Fr
eq

ue
nc

y
Mean: 0.61
Std Dev: 0.43
Bets above 1.5: 1.6%

Chart 7: Distribution of bets, with bets as proportion of the pot for $4.00 blinds

As the blinds increase, the bet distribution moves more towards the upper

end of the bet range, and the percentage of over-bets decreases markedly.

 43

0

500

1000

1500

2000

2500

3000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 More

Bet size as proportion of pot

Fr
eq

ue
nc

y
Mean: 0.72
Std Dev: 0.40
Bets above 1.5: 1.7%

Chart 8: Distribution of bets, with bets as proportion of the pot for $4.00 blinds

In the final chart, we see a decided shift towards the upper end of betting

range. The average bet’s value has increased substantially, and players err

on the side of a higher bet rather than a lower bet.

 44

b) Analysis
Here we find the root of the weaker play found at the lower blind levels.

Players at the lower levels systematically bet weakly. Betting in poker serves

several purposes, including:

1. To get more money into the pot

2. To thin the field (when you have a hand that plays well against a small number of
players, but loses values as the number of players increases)

3. To bluff (to induce your opponents into folding)

4. To gain a free card (i.e. scare your opponents into just calling rather than betting or
raising)

5. To gain information about your opponents hand

However, as mentioned before, the smaller the bet, the more inclined a

player should be to call. When a bet is so small that a player has better than

4 or 5 to 1 odds to call, a player should call with almost any hand. However,

this effectively eliminates 4 of the 5 purposes in betting (and weakens the

remaining one). If you bet weakly, there is little chance that you will

significantly thin the field. Moreover, a bluff with a weak bet gives one’s

opponents a strong incentive to call. Therefore, bluffing weakly simply puts

more of your money into a pot you expect to lose (if you thought you had the

best hand, you wouldn’t be bluffing). In addition, a weak bet is unlikely to

cow opponents into meekly calling or not raising. Lastly, if you bet such that

your opponent is getting correct odds to call irrespective of the cards they

hold, you have gained no information at all. This leaves only betting to get

more money into the pot. However, by doing this, you are attracting more

players into the pot, and more players means a greater chance that another

player can catch a miracle card to beat you. Therefore, players at lower blind

levels actually remove most of the value of betting, and in essence create a

game that is far more governed by luck.

In fact, this is probably the root cause of larger and longer pots found at

lower blinds. Players at these levels have learned from experience that they

will not face strong betting. Consequently, they are not afraid to put money

into the pot to try and hit long-shot draws. Moreover, they know everyone

else’s proclivity for calling, and know that they will most likely be getting

proper odds to call, since everyone else will as well. Lastly, since they know

 45

that most other players are compulsive callers, they are less inclined to bet

strongly with anything less than the best (or near best) hand. After all,

betting strongly just means that they lose more money when a player holding

the jack and 3 of spades hits his flush on the river! This creates an

environment where players are actively encouraged to maintain poor playing

strategy.

However, a player moving from a lower blind level to a higher would

rapidly find that their weak betting strategy is no longer effective. Many more

pots are bet and raised strongly, thus making simply calling with weak hands

less viable. In addition, a player that bets weakly will often find themselves

re-raised for all of their money. In other words, players that move up in

blinds have to quickly adapt their style to avoid being bullied by strong

players.

 It is also worth mentioning the over-betting. As seen above, players at the

$.10 blinds over-bet the pot more than twice as much as the higher blind

players. Many weaker players think that the best strategy is to commit all or

most of their money to the pot when they pick up a decent hand. However,

this is a mistake for two reasons:

1. If your hand is best, you are scaring players away

2. If your hand is not best, you will lose a lot of money

If one’s hand is actually the best hand, one gains the most money by having

a few players with second-best hands stay in the pot. These players can pay

off bets in later rounds. By over-betting, a player scares away decent hands

that would otherwise have given away some more of their money. However,

by putting in such a large bet, players are actually ensuring that they will only

be called by very strong hands, hands that are probably better than their own.

In essence, by over-betting a pot with a pretty good hand one will only be

called by a superior hand.

 46

5. Conclusion
In this section, we have seen that players at lower blinds tend to make

mistakes in fundamental poker strategy. They enter too many pots, bet

weakly, and stay in pots longer than they should. As the blinds increase in

value, however, players tighten up significantly, and start betting much more

aggressively. This suggests several basic approaches to playing the

different blind levels.

 At low levels, hands that are traditionally considered to be very strong (for

example, a pair of aces or kings) lose a bit of value since they will likely be

facing a number of other players. Since one can expect to see the flop

cheaply (as seen above, there are few aggressive bets), drawing hands

(suited cards for flushes, and consecutive cards for straights) go up in value,

and one should be willing to call moderate bets with these hands. Therefore,

at lower blinds, it is advised to lower one’s requirements for starting hands,

and to see more flops, hoping to hit a straight or a flush.

However, at blinds, this strategy is no longer as sound. Since there are

fewer players involved in pots, drawing hands lose value much of their value.

Not only can one no longer expect to see the flop cheaply, there are also less

players to pay off flushes and straights. In addition, limping into pots will no

longer be profitable, since there is a good possibility that a player later in the

act order will make an aggressive raise, which you will not be in the position

to call. It therefore becomes necessary to play a tighter game, and to be

more selective with hands, as well as more aggressive.

 47

Data Analysis: Descriptive Data
1. Introduction

In this section, I present data of little strategic import. Rather, this is data that

I found to be interesting for its own merits.

2. Hand Occurrences
Here is the number of occurrences of the different hand types that I have

appeared in hands I have transcribed.

Hand Type # of Occurrences
High Card 2057

Pair 8713

Two Pair 7008

Three of a Kind 1848

Straight 1535

Flush 1312

Full House 1263

Four of a Kind 127

Straight Flush 27 (2 Royal flushes)

 48

3. Winningest and Losingest Players
Here is a listing of the top 10 winningest and losingest players, both

normalized, and un-normalized.

Winningest Players Losingest Players

Name: Big Blinds won per
hand entered:

 Name: Big Blinds lost per
hand entered:

lobojiji 1.56 2fouroffsuit -2.89

m@ldito 1.37 69PokerDog -2.64

LotG 1.32 123shank -1.98

bigslick789 1.30 Donald -1.82

michael1123 1.25 EY400 -1.76

nutsetter 1.24 SPlKE01 -1.58

cpfactor 1.20 JuiceltUp -1.37

TheAvatar 1.12 KdNZ -1.22

brettk00 1.07 dud711 -1.21

DV6215 1.05 mdcslcmdc -1.21

Table 2: Winningest and Losingest Players, normalized to blind size

Winningest Players Losingest Players

Name: Total Dollars Won: Name: Total Dollars Lost:
Halfrek $33,752.80 SPlKE01 -$25,057.90

michael1123 $20,578.50 69PokerDog -$20,601.66

BBuddy $11,553.00 Donald -$14,041.50

Euphoria18 $11,229.00 thorladen -$12,598.72

brettk00 $9,640.65 ElkY -$11,715.80

bigslick789 $8,947.25 EY400 -$11,379.50

TheTakeover $8,499.23 EASSA -$11,130.50

inturn $7,580.00 curzdog -$9,600.34

TheSeize $7,288.50 hazards21 -$8,819.50

twincaracas $6,870.30 ibiza007 -$7,873.25

Table 3: Winning and Losingest Players, absolute

 49

4. Hand with largest pot
This is the observed hand with the largest pot:
----------------BEGIN_HAND---------------
Hosting Application: PokerStars
Game ID: 1500749300
Starting time: Sun Apr 10 10:38:52 EDT 2005
Players: 9 / 9
Blinds: 10.0 / 20.0
Play Money: false

 0 StuDaKid (5702.0 in chips)
 1 SixSticks (1884.0 in chips)
 2 michael1123 (8928.0 in chips)
 3 Halfrek (16864.0 in chips), cards: [8d 6d]
 4 stormcrow (547.0 in chips)
 5 ibiza007 (2487.0 in chips)
 6 jayla (4609.0 in chips)
Button 7 lNcinerate (9199.0 in chips)
 8 Lyric (2135.0 in chips), cards: [7h 7s]

0.0 - Lyric posts SB of 10.0
0.0 - StuDaKid posts BB of 20.0
5.4 - SixSticks folds
3.3 - michael1123 raises 60.0 to 80.0
1.1 - Halfrek calls 80.0
0.4 - stormcrow folds
14.9 - ibiza007 folds
1.6 - jayla calls 80.0
1.0 - lNcinerate folds
1.9 - Lyric calls 70.0
0.5 - StuDaKid folds

Flop is [5c Qh Kd]

1.2 - Lyric checks
1.9 - michael1123 checks
1.8 - Halfrek checks
0.6 - jayla checks

Turn is [5c Qh Kd 7d]

10.5 - Lyric bets 300.0
8.1 - michael1123 raises 500.0 to 800.0
2.1 - Halfrek calls 800.0
1.4 - jayla folds
3.4 - Lyric raises 1255.0 to 2055.0 and is all in
15.2 - michael1123 raises 1256.0 to 3311.0
20.4 - Halfrek calls 2511.0

River is [5c Qh Kd 7d 4s]

9.4 - michael1123 bets 2000.0

 50

4.4 - Halfrek raises 11473.0 to 13473.0 and is all in
1.1 - michael1123 calls 3537.0 and is all in

Side Pot 1:
1.5 - Halfrek shows [8d 6d] for Straight - Eight high.
[8d 7d 6d 5c 4s]
2.8 - michael1123 mucks
Halfrek wins pot (13586.0)

Main pot:
5.9 - Lyric shows [7h 7s] for Three of a Kind - Sevens.
[7d 7s 7h Kd Qh]
Halfrek wins pot (6505.0)

-----------------OUTCOME-----------------
StuDaKid folded on PREFLOP (stack change: -20.0)
SixSticks folded on PREFLOP (stack change: 0.0)
michael1123 mucked on RIVER (stack change: -8928.0)
Halfrek showed hand and won on RIVER (stack change: 11163.0)
stormcrow folded on PREFLOP (stack change: 0.0)
ibiza007 folded on PREFLOP (stack change: 0.0)
jayla folded on TURN (stack change: -80.0)
lNcinerate folded on PREFLOP (stack change: 0.0)
Lyric showed hand and lost on RIVER (stack change: -2135.0)

 51

Closing
I have presented my methodology and findings on Internet poker. As

mentioned early, the data I have collected, as well as the analysis I have

performed are only beginning to scratch the surface. To properly the gauge

the performance of a single player, it would be necessary to record many

more games than I had time for. In addition, there is a huge set of possible

circumstances that can be presented by the board. In order to cover this

range of possibility with any degree of thoroughness, I would require a data

set that is orders of magnitude larger.

However, in spite of the relatively small data set, there was still some

interesting data to be found. Hopefully future work will uncover more useful

information.

Image 1: Doyle Brunson

 52

Appendix:
1. Poker Rules sites:

• http://www.ultimatebet.com/rules-strategy/texas-holdem.html

A simple rules summary

• http://www.poker1.com/mcu/mculib_rules.asp

An exhaustive rules listing

2. Glossary
Term Definition

Stack The amount of money a player has; their chip stack

Muck Folding a losing hand at a showdown with out showing it. This

can only be done if a better hand has already been shown

Preflop The first round of betting

Flop The second round of betting

Turn The third round of betting

River The fourth and final round of betting

Button /

Dealer button

A marker indicating that a player is the “dealer” and thus the last

to act

Blind A mandatory preflop bet. The bet is “blind” because the player

must act without seeing their hand.

