
Hierarchical Policies for Software Defined Networks

Andrew D. Ferguson
Brown University

adf@cs.brown.edu

Arjun Guha
Brown University

arjun@cs.brown.edu

Chen Liang
Brown University

chen_liang@cs.brown.edu
Rodrigo Fonseca

Brown University
rfonseca@cs.brown.edu

Shriram Krishnamurthi
Brown University

sk@cs.brown.edu

ABSTRACT
Hierarchical policies are useful in many contexts in which resources
are shared among multiple entities. Such policies can easily express
the delegation of authority and the resolution of conflicts, which
arise naturally when decision-making is decentralized. Conceptu-
ally, a hierarchical policy could be used to manage network re-
sources, but commodity switches, which match packets using flow
tables, do not realize hierarchies directly.

This paper presents Hierarchical Flow Tables (HFT), a frame-
work for specifying and realizing hierarchical policies in software
defined networks. HFT policies are organized as trees, where each
component of the tree can independently determine the action to
take on each packet. When independent parts of the tree arrive
at conflicting decisions, HFT resolves conflicts with user-defined
conflict-resolution operators, which exist at each node of the tree.
We present a compiler that realizes HFT policies on a distributed
network of OpenFlow switches, and prove its correctness using the
Coq proof assistant. We then evaluate the use of HFT to improve
performance of networked applications.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—network management; C.2.4 [Computer-Communication
Networks]: Distributed Systems—network operating systems; C.2.1
[Computer-Communication Networks]: Network Architecture and
Design

General Terms
Management, Design, Experimentation

Keywords
Software Defined Networks, OpenFlow, Participatory Networking,
hierarchical policies

1. INTRODUCTION
Hierarchies are useful in many contexts in which resources are

shared and delegated among multiple entities. For example, Linux

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotSDN’12, August 13, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.00.

cgroups [1] organize processes in trees to express and control the
sharing of memory, CPU, and I/O bandwidth, and the Cinder op-
erating system [13] uses a hierarchy to control the sharing of bat-
tery resources among smartphone applications. In general, hierar-
chies are a common representation of delegation and accounting
for shared resources.

This makes hierarchies a natural way to delegate management
of network resources. For example, a network administrator may
wish to delegate the authority to block external traffic to a security
team. The team leader may wish to further delegate this authority
to deputies, and if two deputies disagree on whether to block a par-
ticular flow, the leader may want a conservative conflict-resolution
policy, such as “deny overrides allow.” In a campus network, the
network administrator may delegate authority for traffic engineer-
ing to several teams, such as media services for simulcasting, or
scientists for bulk data transfers.

Existing systems, such as the previously mentioned cgroups and
Cinder, can natively use a tree structure for accounting and dele-
gation. Although software defined networks enable custom packet-
handling at each switch, we cannot install hierarchical policies di-
rectly on commodity hardware.

This paper presents the design, realization, and evaluation of hi-
erarchical policies in software defined networks. We develop Hi-
erarchical Flow Tables (HFT), which provide a semantics for pol-
icy trees – a representation of hierarchical policies designed for
networks (§2). We also develop a compiler and runtime system to
realize policy trees on a network of OpenFlow switches [10] by
integrating information about the network topology (§3).

Finally, HFT enables Participatory Networking [2], a framework
in which end-users and their applications propose changes to the
network configuration. With this, we evaluate the use of HFT to
improve the performance of networked applications in our proto-
type participatory network (§5). Existing systems [3, 5, 11, 16],
which we compare in §6, do not support hierarchical network-wide
policies such as ours.

2. SEMANTICS OF HFT
HFT allows several principals to author a tree of policies, and

specify custom conflict-resolution operators at each node in the
tree. In this section, we define the semantics of a policy tree as
the final action it produces on an individual packet, after it has con-
solidated actions from all policies in the tree.1 In §3, we compile
these policy trees to run efficiently on hardware.

Figure 1 defines packets (K), policy trees (T), actions (A), and a
function eval that matches packets against policy trees and returns
an action. For our purposes, packets are a vector of header names
1This semantic model, where the central controller conceptually
sees all packets, is inspired by Frenetic [3].

H = header names and ingress ports
patterns V = const | prefix | ?
matches M = ∅ | 〈

−−→
H, V 〉

actions A = Allow | Deny | GMB(n) | 0
conflict-resolution (+) = A→ A→ A
operators
policy atoms P = M ×A
policy tree nodes D = (+D)× 2P

policy trees T = (+P)× (+S)×D × 2T

packets K = 〈
−−−−−→
H, const〉

cmb : D ×K → A

cmb((+, {· · · (Mi, Ai) · · ·}), K) = A′1 + · · ·+ A′k + 0
where {A′1, · · · , A′k} = {Ai|Mi ∩K 6= ∅}

eval : T ×K → A

eval((+P , +S , D, {T1, · · · , Tn}), K) = cmb(D, K) +P A1

where A1 = eval(T1, K) +S A2

A2 = eval(T2, K) +S A3

· · ·
An = eval(Tn, K) +S 0

Figure 1: Semantics of HFT2

and values; we do not match on packets’ contents. For concrete-
ness, we depict the actions we have implemented in our prototype
(§3): admission control, guaranteed minimum bandwidth (GMB),
and 0, a special “don’t care” action. In §7, we outline how to sup-
port additional ones such as rate-limiting and waypointing.

A policy tree is a tree of policy nodes (D), which contain sets of
policy atoms (P). An atom is a match rule and action pair, (M, A).
When a packet matches a policy atom, M ∩K 6= ∅, the atom pro-
duces its action. The interesting cases occur when a packet matches
several policy atoms with conflicting actions. In these cases, we re-
solve conflicts with the conflict-resolution operators (+) attached
throughout the policy tree.

Policy trees have different types of conflict-resolution operators
at several points in the tree (i.e., +D , +P , +S in Figure 1). These
multiple types allow HFT to resolve different types of conflicts us-
ing independent logic. For example, conflicts between parent and
child nodes may be resolved differently than conflicts between a
single node’s internal policy atoms. Therefore, the choice of conflict-
resolution operators is a key policy decision. Our prototype net-
work (§4) provides two default operators; developing and evaluat-
ing additional operators is left as future work.

The function cmb matches a packet with an individual policy
tree node. If a packet matches several policy atoms, cmb uses the
node’s internal conflict-resolution operator, +D , to combine their
actions. The compiler requires +D to be associative, commutative,
and have 0 as its identity.3

The function eval matches a packet with a policy tree by apply-
ing cmb to the policy tree node at the root, and recursively applying
eval to its children. A policy tree has conflict-resolution operators
+P and +S , which respectively allow it to resolve parent-child and
inter-sibling conflicts differently. In particular, +P does not have to
be commutative – it is always used with the parent’s action on the

22M×A is the set of all subsets of pairs drawn from M and A.
3That is, we require a + 0 = 0 + a = a.

(dstPort = 22, Deny)

(dstIP = 10.0.0.2, GMB=30)

(dstPort = 80, GMB=10) (srcIP = 10.0.0.1, Allow)

Allow
GM

B=
10

GMB=10GM
B=

30

1

2 3

4 5

GMB=30
[srcIP = 10.0.0.1
dstIP = 10.0.0.2

ddstPort = 80]

packet headers:

Figure 2: Evaluation of a single packet

left and the child’s action on the right. This lets us express intuitive
conflict resolutions such as “child overrides parent.”

Example: Figure 2 depicts a simple policy tree and illustrates how
eval produces an action, given the tree and indicated packet. Each
node contains its policy atoms, and atoms which match the packet
are colored green. The eval function recursively produces an ac-
tion from each sub-tree; these actions are the labels on each node’s
outgoing edge.

In this example, the policy atoms at each leaf match the packet
and produce an action. Node 3 receives conflicting actions from its
children, which it resolves with its inter-sibling conflict-resolution
operator: GMB(10)+S Allow = GMB(10). Node 3 has no policy
atoms itself, so it produces the 0 action. Since 0 is the identity of
all conflict-resolution operators, 0 +P GMB(10) = GMB(10) is
the resulting action from this sub-tree.

Finally, Node 1 computes the aggregate action of its children:
GMB(30) +S GMB(10) = GMB(max(30, 10)). Since Node 1’s
policy atoms do not match the packet, the final action is 0 +P

GMB(30) = GMB(30).

3. COMPILING POLICIES
The preceding section assumes that a central function, eval , ob-

serves and directs all packets in the network. Although eval spec-
ifies the meaning of policy trees, this is not a practical implemen-
tation. We now describe how to compile HFT’s policy trees to run
on commodity switches, which support simpler, linear flow tables,
to produce a practical implementation.

Our compiler works in two stages. First, we translate policy trees
to network flow tables, which have a basic, linear matching seman-
tics (§3.1). Second, we use network flow tables to configure a dis-
tributed network of switches, translating high-level actions such as
GMB(n) to low-level operations on switches (§3.2).

3.1 Network Flow Tables
A network flow table (N) is a sequence of paired match rules

and actions. The scan function, defined in Figure 3, matches pack-
ets against network flow tables and returns the action associated
with the first matching rule. If no rules match the packet, then scan
returns 0.4

The matching semantics of network flow tables correspond to
the matching semantics of switch flow tables exposed by Open-
Flow. When a packet matches a switch flow table, only one rule’s
action applies. If a packet matches multiple rules, the switch selects
the one with the highest priority. A rule’s index in a network flow
table corresponds to a switch flow table priority, with index 0 as the
highest priority. Since all rules have distinct indices, a naive corre-
spondence would give all rules distinct priorities. A more compact

4The scan function is derived from NetCore [11].

Network Flow Tables N = 〈
−−−→
M, A〉

scan : N ×K → A

M1 ∩K = ∅ · · ·Mj−1 ∩K = ∅ Mj ∩K 6= ∅
scan(〈(M1, A1) · · · (Mn, An)〉, K) = Aj

M1 ∩K = ∅ · · ·Mn ∩K = ∅
scan(〈(M1, A1) · · · (Mn, An)〉, K) = 0

linD : D → N

linD (+D, {M1, A1, · · · , Mj , Aj}) = N1

where N1 = union(+D, 〈M1, A1〉, N2)
· · ·
Nj = union(+D, 〈Mj , Aj〉, 〈〉)

linT : T → N

linT (+P , +S , D, {T1 · · ·Tk}) = union(+P , linD(D), N1)
where N1 = union(+S , linT (T1), N

′
2)

· · ·
Nk = union(+S , linT (Tk), 〈〉)

union, inter : (+)×N ×N → N

union((+), N1, N2) = inter((+), N1, N2)N1N2

inter((+), 〈· · · (Mi, Ai) · · · 〉, 〈· · · (M ′j , A′j) · · · 〉) =
〈· · · (Mi ∩M ′j , Ai + A′j)) · · · 〉

Figure 3: Network Flow Tables

one, which we use, maps a sequence of non-overlapping network
flow table rules to a single priority in a switch flow table.

The linT function is our compiler from policy trees to network
flow tables. It uses linD as a helper to compile policy tree nodes.
The linD function translates policy atoms to singleton network
flow tables, and combines them with union(+,N ,N ′). Union
builds a network flow table that matches packets in either N or N ′.
Moreover, when a packet matches both N and N ′, union computes
the intersection using the + conflict-resolution operator to combine
actions.

Similarly, linT recursively builds network flow tables for its sub-
trees, and calls linD on its root node. It applies union to combine
the results, using +S and +P where appropriate.

The functions in Figure 3, linT , linD , union , and inter require
the conflict-resolution operators to satisfy the following properties.

DEFINITION 1 (WELL-FORMED). T is well-formed if:

• The +D and +S operators are commutative,

• All conflict-resolution operators are associative, and

• 0 is the identity of all conflict-resolution operators.

Proving the compiler correct requires the following key lemma,
which states that all conflict-resolution operators distribute over
scan .

LEMMA 1. For all +, N1, and N2, where 0 is the identity of +,
scan(union(+, N1, N2)) = scan(N1) + scan(N2).

With this, we prove the compiler correct.

OpenFlow Controller

Share Tree

Forwarding & Queue
Configuration

Policy Tree

Network Flow Table

Network
Information
Base (NIB)

PANE user requests

Linearization

OpenFlow messages

Valid Configuration

Switches

Figure 4: The PANE System

THEOREM 1 (SOUNDNESS). For all well-formed policy trees,
T and packets, P , eval(T, P) = scan(linT (T), P).

We mechanize all our definitions and proofs using the Coq proof
assistant [15]. �

3.2 The HFT Runtime
The final step in realizing policy trees is to translate the high-

level actions in a network flow table to low-level operations on a
network of switches. For example, a GMB(n) action needs to pro-
duce a circuit of switch queues and forwarding rules that direct
packets to those queues. The HFT runtime uses a network informa-
tion base (NIB) and a default forwarding algorithm to realize this
and other actions.

A NIB is a database of network elements – hosts, switches, ports,
queues, and links – and their capabilities (e.g., rate-limiters or per-
port output queues on a switch). The runtime uses the NIB to trans-
late logical actions to a physical configuration. For example, to
implement a bandwidth reservation, (M, GMB(n)), the runtime
queries the NIB for the shortest path with available queues be-
tween the corresponding hosts. Along this path, the runtime creates
queues which guarantee bandwidth n, and flow table rules to direct
packets matching M to those queues. We also use the NIB to in-
stall Deny rules as close as possible to the traffic source. The HFT
runtime currently implements a greedy algorithm for both of these
operations. Evaluating the efficiency of this approach and consid-
ering alternatives remains as future work.

The NIB we implement is inspired by Onix [8]. It uses a simple
discovery protocol to find links between switches, and information
from our forwarding algorithm to discover the locations of hosts.
When possible, we use the slicing extension to OpenFlow 1.0 to
create queues, and out-of-band commands when necessary. While
OpenFlow allows us to set expiry timeouts on flow table entries, our
controller must explicitly delete queues when reservations expire.

As the network flow table does not specify packet forwarding,
the runtime integrates decisions made by a separate forwarding al-
gorithm. Our implementation uses MAC learning as its forwarding
algorithm.

4. HFT IN PANE
HFT is the central component of PANE, our prototype imple-

mentation of Participatory Networking [2]. Figure 4 illustrates PANE’s
components, with HFT’s components shaded gray. PANE allows
users to submit requests for network resources with a start and end
time. The PANE controller first checks that requests are authorized
using a static share tree, which states which users can issue which

+P : A×A→ A

AP +P 0 = AP

0 +P AC = AC

Deny +P Allow = Allow
Allow +P Allow = Allow
AP +P Deny = Deny
Deny +P GMB(n) = GMB(n)
GMB(m) +P GMB(n) = GMB(max(m, n))
GMB(m) +P Allow = GMB(m)
Allow +P GMB(m) = GMB(n)

+S , +D : A×A→ A

A1 +S 0 = A1

0 +S A2 = A2

Deny +S A2 = Deny
A1 +S Deny = Deny
GMB(m) +S GMB(n) = GMB(max(m, n))
GMB(m) +S Allow = GMB(m)
Allow +S GMB(m) = GMB(m)
Allow +S Allow = Allow
A1 +D A2 = A1 +S A2

Figure 5: PANE’s conflict-resolution operators

requests about which flows in the network. It then verifies if the
request can be realized in the network, adding it to its policy tree.

HFT’s policy tree represents the accepted requests at a particu-
lar point in time. To check if an authorized request is realizable,
PANE takes a snapshot of the policy tree with the potential request
inserted at its start time. PANE then runs the HFT compiler on this
policy tree to ensure that it will be realizable, that is, a valid net-
work configuration can be built. If a valid configuration cannot be
built – for example, if the NIB cannot find a circuit for a bandwidth
reservation – PANE rejects the user’s request.

When requests start and expire, the PANE controller sends Open-
Flow messages constructed by HFT’s runtime to affected switches.
As Reitblatt, et al. [12] point out, it is a challenge to update switch
configurations without introducing inconsistent, intermediate stages.
Our implementation does not presently address this issue, but we
anticipate confronting this problem in the future.

Figure 5 specifies PANE’s conflict-resolution operators. The parent-
child operator (+P) specifies a “child overrides parent” policy for
admission control. The +S and +D operators are identical, and
specify a “Deny overrides Allow policy” between siblings. Our cur-
rent implementation hard-codes these operators at all nodes, but we
anticipate allowing principals to specify their own conflict-resolution
operators.

5. EVALUATION
The true measure of the HFT runtime’s success is its ability to

successfully control traffic in an actual network. In particular, its
control should reflect the integration of the NIB to provide vir-
tual circuits with guaranteed minimum bandwidth, and optimize
the placement of access control logic within the network. To cap-
ture this, we tested HFT as part of PANE, our prototype controller
for a participatory network, and evaluated its performance in sce-
narios which exercised each benefit. In the first, a service reserved
bandwidth to protect inter-process messaging, and in the second, an
end-host used PANE to establish an in-network firewall to suppress
a denial-of-service attack.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F
un

ct
io

n
(C

D
F
)

Latency of CREATE (s)

Pre
Post

Pane

Figure 6: Latency of ZooKeeper CREATE requests.

The PANE testbed consists of software OpenFlow switches (both
Open vSwitch and the reference user-mode switch) running on Linux
Intel-compatible hardware and on the TP-Link WR-1043ND wire-
less router. Wired connections are 1 Gb/sec and wireless runs over
802.11n. Clients on the network include six dedicated Linux servers,
plus fluctuating numbers of laptops and phones. The network also
provides standard services such as DHCP, DNS, and NAT.

Members of our group have been using the testbed for more than
four months to manage our traffic, and during this time, it has been
our primary source of network connectivity. The testbed is compat-
ible with unmodified consumer electronic devices, which can easily
interact with a PANE controller running at a well-known location.5

5.1 ZooKeeper
ZooKeeper [6] is a coordination service for distributed systems

used by Twitter, Netflix, and Yahoo! among others, and is key com-
ponent of HBase. Like other coordination services such as Paxos [9],
ZooKeeper provides consistent, available, and shared state using
a quorum of replicated servers (the ensemble). For resiliency in
the face of network failures, ZooKeeper servers may be distributed
throughout a datacenter, and thus quorum messages may be nega-
tively affected by heavy traffic on shared links. Because ZooKeeper’s
role is to provide coordination for other services, such negative ef-
fects are undesirable.

To protect ZooKeeper’s messages from heavy traffic on shared
links, we modified ZooKeeper to make bandwidth reservations us-
ing PANE. Upon startup, each member of the ensemble made a
reservation for 10 Mbps of guaranteed minimum bandwidth for
messages with other ZooKeeper servers. Additionally, we modi-
fied our ZooKeeper client to make a similar reservation with each
server it connected to.

We installed ZooKeeper on an ensemble of five servers, and de-
veloped a benchmarking client which we ran on a sixth. The client
connected a thread to each server and maximized the throughput
of synchronous ZooKeeper operations in our ensemble. At no time
during these experiments were the CPUs of the client, switches, or
servers fully loaded.

5The PANE controller could also be specified using a DHCP
vendor-specific or site-specific option.

Figure 6 shows the latency of ZooKeeper CREATE requests dur-
ing the experiment. In the “Pre” line, only ZooKeeper is running in
the network and no reservations were made using PANE. In the
“Post” line, we used iperf to generate bi-directional TCP flows
over each of the six links directly connected to a host. This traf-
fic totaled 3.3 Gbps, which we found to be the maximum Open
vSwitch could sustain in our setup. As shown in the figure, this
competing traffic dramatically reduced ZooKeeper’s performance
– average latency doubled from 24ms to 48ms (similar results were
obtained with a non-OpenFlow switch). Finally, the “PANE” line
shows ZooKeeper’s return to high performance when it reserved
bandwidth for its messages using PANE.

We found similar results for other ZooKeeper write operations
such as deleting keys, writing to unique keys, and writing to the
same key. Read operations do not require a quorum’s participation,
and are thus less affected by background traffic.

5.2 Thwarting Denial-of-Service
PANE provides firewall capabilities to participants using HFT’s

Allow and Deny actions. Because these rules are placed directly in
the network by HFT’s runtime, rather than on the requesting edge
host, PANE can drop malicious traffic as it enters the network. This
behavior protects any innocent traffic which might have suffered
due to sharing a network link with a denial-of-service (DoS) attack.

To demonstrate this benefit, we generated a UDP-based DoS
attack within our testbed network. It was launched from a Linux
server two switch-hops away from our wireless clients. Before the
attack began, the clients were able to sustain a TCP transfer of 24
Mbps. During the attack, which was directed at one of the clients,
the performance of this transfer dropped to 5 Mbps, rising only to 8
Mbps after the victim installed a local firewall rule. By using PANE
to block the attack, the transfer’s full bandwidth returned.

6. RELATED WORK
HFT gives policy writers a programming model in which a cen-

tral controller sees all packets. This model is inspired by Frenetic [3],
which uses NetCore [11] as its language for expressing forwarding
policies. In contrast to NetCore, HFT supports hierarchical poli-
cies, which naturally support distributed authorship. A key element
of HFT is allowing overlapping and conflicting policies to co-exist
in a policy tree, as it resolves conflicts with arbitrary, user-defined
operators.

NetCore allows policy writers to match packets with arbitrary
predicates; when predicates are not realizable on switches, packets
are sent to the NetCore controller, which uses reactive specializa-
tion to install exact-match rules. In contrast, HFT’s matching rules
are simpler and realizable on OpenFlow switches, though we do
not anticipate any problem supporting reactive specialization.

FML [5] is a Datalog-inspired language for writing policies that
also supports distributed authorship. In an FML policy, conflicts
are resolved by a fixed scheme – deny overrides waypoints, and
waypoints override allow. By contrast, HFT offers more flexibility,
since each policy tree node can specify its own conflict resolution
operator. For example, within a single HFT policy tree, one policy
node may specify “allow overrides deny,” while another specifies
“deny overrides allow.”

FML also allows policies to be prioritized in a linear sequence (a
policy cascade), with higher-level policies overriding lower-level
policies. HFT can express a prioritized sequence of policies, in ad-
dition to more general hierarchies. For example, PANE uses an in-
verted “child overrides parent” conflict-resolution scheme (§4) by
default, but the author of an individual policy node can adopt a
more restrictive “parent overrides child” scheme. FML does not

support both “child overrides parent” and “parent overrides child”
schemes simultaneously.

Nettle [16] is a platform for writing OpenFlow controllers in a
functional reactive style. Our controller is built on Nettle, and al-
lows policy authors to write higher-level policies than those Nettle
supports natively.

FlowVisor [14] slices a single network so that several OpenFlow
controllers can independently control each slice. FlowVisor sup-
ports delegation – a controller can re-slice its slice of the network.
Each of these controllers sends and receives primitive OpenFlow
messages. In contrast, HFT allows policy authors to state high-
level, declarative policies that are agnostic to network topologies
and capabilities. HFT also permits policies to overlap and resolves
conflicts using high-level conflict-resolution operators.

Kim, et al. [7] describe an OpenFlow controller which automati-
cally configures QoS along flow paths using application-described
requirements and a database of network state. HFT’s runtime per-
forms a similar function for the GMB action, but also supports ad-
ditional actions.

TVA is a network architecture in which end-hosts authorize the
receipt of packet flows via capabilities in order to prevent DoS-
attacks [17]. HFT also supports this goal, but by allowing end-hosts
to safely manage network policies for themselves, as we show in
§5.2.

The eXtensible Access Control Markup Language (XACML)
provides four combiner functions to resolve conflicts between sub-
policies [4]. These functions are designed for access control de-
cisions and assume an ordering over the subpolicies. By contrast,
HFT supports user-supplied operators designed for several actions
and considers all children equal.

7. FUTURE WORK
HFT is an extensible framework that can easily support addi-

tional actions beyond those described in Figure 1. For example, we
could extend actions as follows:

A = · · · | RateLimit(n) |Waypoint(S) | Avoid(S)
S = switch ID

A RateLimit(n) action would require the runtime to setup a rate-
limiter on the switch closest to the source of traffic; our NIB can
already determine the closest switch to implement Deny rules near
the source. The Waypoint(S) and Deny(S), actions, which are in-
spired by FML [5], direct traffic to go through or avoid a particular
switch; we could easily extend our NIB to find a path that must
visit or avoid the given switch. We envision adding these and other
high-level actions to HFT and compiling them to software defined
networks with the HFT runtime.

The separation of policy trees from the underlying implemen-
tation presents them as an invariant which the runtime strives to
maintain. As the network topology changes, the HFT runtime can
adjust the policies’ realization. For example, the addition of new
switches may permit shorter paths. While we do not currently sup-
port such automatic reconfiguration in our prototype, we plan to do
so in the future.

8. CONCLUSION
HFT enables hierarchical policies for software defined networks.

These policies arise naturally when policy decisions are made by
a decentralized group of authors, and can easily conflict with each
other. Therefore, HFT’s conflict-resolution operators, which authors
can assign independently to each node, are a key part of an HFT
policy.

HFT allows high-level, network-wide policies that do not require
knowledge of the network topology. Its runtime uses a network in-
formation base (NIB), which provides topology information, such
as shortest paths and nearest switches. This separation of high-level
policies and topological details allows HFT to optimize the realiza-
tion of its policies.

HFT makes Participatory Networking possible – end users and
their applications can request high-level, abstract network resources,
and rely on HFT to implement these requests. Our experiments
show that HFT successfully compiles these requests to configura-
tions which improve the performance of real applications.

Acknowledgments
This work was partially supported by NSF grant 1012060. Andrew
Ferguson is supported by an NDSEG fellowship.

9. REFERENCES
[1] http://www.kernel.org/doc/Documentation/

cgroups/cgroups.txt. Last accessed April 6th, 2012.
[2] A. D. Ferguson, A. Guha, J. Place, R. Fonseca, and

S. Krishnamurthi. Participatory Networking. In Proc.
Hot-ICE ’12, San Jose, CA, 2012.

[3] N. Foster, M. J. Freedman, R. Harrison, J. Rexford, M. L.
Meola, and D. Walker. Frenetic: A High-Level Language for
OpenFlow Networks. In Proc. PRESTO ’10, Philadelphia,
PA, 2010.

[4] S. Godik and T. M. (editors). eXtensible Access Control
Markup Language, version 1.1, Aug. 2003.

[5] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and
S. Shenker. Practical Declarative Network Management. In
Proc. WREN ’09, Barcelona, Spain, 2009.

[6] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:
Wait-free coordination for Internet-scale systems. In Proc.
USENIX ATC ’10, Boston, MA, 2010.

[7] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J.
Lee, and P. Yalagandula. Automated and Scalable QoS

Control for Network Convergence. In Proc. INM/WREN ’10,
San Jose, CA, 2010.

[8] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A Distributed Control Platform for
Large-scale Production Networks. In Proc. OSDI ’10,
Vancouver, BC, Canada, 2010.

[9] L. Lamport. The Part-Time Parliament. ACM Trans. Comput.
Syst., 16(2):133–169, May 1998.

[10] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
OpenFlow: Enabling Innovation in Campus Networks.
SIGCOMM CCR, 38:69–74, 2008.

[11] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A
Compiler and Run-time System for Network Programming
Languages. In Proc. POPL ’12, Philadelphia, PA, 2012.

[12] M. Reitblatt, N. Foster, J. Rexford, and D. Walker. Consistent
Updates for Software-Defined Networks: Change You Can
Believe in! In Proc. HotNets ’11, Cambridge, MA, 2011.

[13] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières,
and N. Zeldovich. Energy Management in Mobile Devices
with the Cinder Operating System. In Proc. EuroSys ’11,
Salzburg, Austria, 2011.

[14] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar. Can the
Production Network Be the Testbed? In Proc. OSDI ’10,
Vancouver, BC, Canada, 2010.

[15] The Coq Development Team. The Coq proof assistant
reference manual – version 8.3.
http://coq.inria.fr/, 2011.

[16] A. Voellmy and P. Hudak. Nettle: Taking the Sting Out of
Programming Network Routers. In Proc. PADL ’11, Austin,
TX, 2011.

[17] Z. Yang, D. Wetherall, and T. Anderson. A DoS-limiting
Network Architecture. In Proc. SIGCOMM ’05,
Philadelphia, PA, 2005.

http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://coq.inria.fr/

	Introduction
	Semantics of HFT
	Compiling Policies
	Network Flow Tables
	The HFT Runtime

	HFT in PANE
	Evaluation
	ZooKeeper
	Thwarting Denial-of-Service

	Related Work
	Future Work
	Conclusion
	References

