
A Northbound API for Sharing SDNs
Andrew D. Ferguson
adf@cs.brown.edu

Arjun Guha
arjun@cs.cornell.edu

Chen Liang
chen_liang@brown.edu

Rodrigo Fonseca
rfonseca@cs.brown.edu

Shriram Krishnamurthi
sk@cs.brown.edu

PANE’s Northbound API

The Need to Share SDNs Resolving Conflicts

Evaluation Examples

Decomposing Network Control and Visibility

Prototype Implementation
•	Applications	running	in	home,	campus,	datacenter,	and	wide-area	
networks	can	benefit	from	direct	interaction	with	the	control-plane

Share S 2 {P}⇥ {F}⇥ {Priv} A share gives principals some privileges to affect a set of flows.
Principal P ::= (user, host, app) A triple consisting of an application, running on a host by a user.
Flow F ::= hsrcIP=n1, dstIP=n2, A set of packets with shared properties: source and destination IP address,

proto=n3, srcPort=n4, dstPort=n5i transport protocol, and source and destination transport ports.
Privilege Priv ::=CanDeny n | CanAllow n The privileges to allow or deny traffic for up to n seconds (optional).

| CanReserve n | CanRateLimit n The privileges to reserve bandwidth or set rate-limits, up to n MB.
| CanWaypoint {IP} | CanAvoid {IP} The privileges to direct traffic through or around particular IP addresses.

Message Msg ::=P : {F} : S ! (Req Tspec A message from a principal with a request,
| Hint Tspec | Query) hint, or query using a share.

Time Spec Tspec ::= from t1 until t2 An optional specification from time t1 until t2.
Request Req ::=Allow | Deny Request to allow/deny traffic.

| Reserve n | RateLimit n Request to reserve n MB or rate-limit to n MB.
| Waypoint IP | Avoid IP Waypoint/avoid traffic through a middlebox with the given IP address.

Query Query ::=TrafficBetween srcIP dstIP | ... Query the total traffic between two hosts.
Hint Hint ::=Duration t | ... Hint that the flow’s duration is t.

Table 1: PANE definitions (top) and end-user API (bottom). There is also a simple API to create shares and delegate privileges.

Implementation and Evaluation PANE is implemented as a Haskell program. It primarily uses OpenFlow 1.0 to configure
switches; it also uses Open vSwitch commands, and OpenFlow slicing extensions to configure queues.

Ekiga Ekiga is an open source video conferencing application which we modified to ask the user for the anticipated duration of
video calls. Ekiga uses this information to schedule a bandwidth reservation between the caller’s host and either the network gateway
or the recipient’s host. If a desired reservation cannot be scheduled, the user is notified that the call quality may be sub-optimal.

SSHGuard SSHGuard detects brute-force attacks by monitoring logs and installing local firewall rules (e.g., via iptables). We
modified SSHGuard to send Deny messages to the PANE controller. Because PANE controls the local network, it can block malicious
traffic at the edge. Not only does this offload work from the end-host’s network stack, it also protects internal network traffic that
may have suffered by sharing a link along which a denial-of-service attack is taking place.

ZooKeeper ZooKeeper provides consistent, available, shared state among a quorum of replicated servers. For resiliency in the face
of network failures, ZooKeeper servers may be distributed throughout a datacenter; therefore, quorum messages may be delayed
by heavy traffic on shared links. Because ZooKeeper’s role is to provide coordination for other services, such negative effects are
undesirable. We modified ZooKeeper to make bandwidth reservations using PANE. In our benchmark, we found that competing
traffic dramatically reduced ZooKeeper’s performance: average latency quadrupled from 1.55ms to 6.46ms. When, upon startup,
each member of the ensemble made a PANE reservation for 10 Mbps of guaranteed minimum bandwidth for messages with other
ZooKeeper servers, average latency dropped down to 2.02ms.

Hadoop We augmented a Hadoop 2.0.3 pre-release to use PANE. By using PANE, our version of Hadoop is able to reserve guaranteed
bandwidth for its operations. The first set of reservations occurs during the shuffle: each reducer reserves bandwidth for transferring
data from the mappers. The second set reserves bandwidth when writing the final output back to HDFS. These few reservations
protect the majority of network transfers which occur during the lifetime of a Hadoop job.

We executed three 40 GB sort jobs in parallel on a network of 22 machines (20 slaves and two masters) connected by a Pronto
3290 switch controlled by PANE. Hadoop currently has the ability to prioritize or weight jobs using the scheduler, but this control
does not extend to the network. In our benchmark, the first two jobs were provided with 25% of the cluster’s memory resources,
and the third, acting as the “high priority” job, was provided with 50%. The benchmark was run in two configurations: in the first,
Hadoop made no requests using PANE; in the second, our modified Hadoop requested guaranteed bandwidth for each large flow.

Averaged across three runs, the high priority job’s completion time decreased by 19% when its bandwidth was guaranteed.
Because it completed more quickly, the lower priority jobs’ runtime also decreased, by an average of 9%, since Hadoop’s work-
conserving scheduler re-allocates freed memory resources to remaining jobs.

References
[1] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram Krishnamurthi. Hierarchical Policies for Software Defined

Networks. In HotSDN ’12.

[2] Andrew D. Ferguson, Arjun Guha, Jordan Place, Rodrigo Fonseca, and Shriram Krishnamurthi. Participatory Networking. In Hot-ICE ’12.

2

•	These	applications	may	require	both	read	access	to	determine	
current	network	properties	and	conditions,	and	write	access	to	
adjust	the	configuration	of	the	network	itself
•	To	prevent	anarchy,	a	northbound	API	which	provides	this	access	
must	overcome	two	challenges:	1)	how	to	decompose	control	
and	visibility?	and	2)	how	to	resolve	conflicts?
•	Our	prototype	introduces	participatory networking,	implemented	
by	an	OpenFlow	controller	called	PANE

Hadoop: Extending Scheduler Weights into the Network

Example: Bandwidth Scheduling

ZooKeeper: Guaranteed Bandwidth for Lower Latency

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.0001 0.001 0.01 0.1 1

P(
X

<=
 x

)

Latency of DELETE Operations (s)

Pre
Post

PANE

•	A	distributed	service	
providing	shared,	con-
sistent,	available	state
•	Each	operation	requires	
agreement	of	a	quorum	
of	servers
•	Configured	an	ensemble	of	five	ZooKeeper	servers	connected	to	
a	PANE-controlled	OpenFlow	switch,	plus	a	benchmarking	client
•	This	CDF	shows	the	latency	of	operations	on	an	isolated	network	
(Pre);	when	ZooKeeper	competes	with	other	traffic	(Post);	and	
when	ZooKeeper	requests	guaranteed	bandwidth	(PANE)

OpenFlow Module

Share Tree

HFT Compilation
Linearization

Conflict Resolution

Authorization

Policy Tree

Network
Information
Base (NIB)

PANE user requests

Switches

1

2

•	We	have	developed	a	prototype	
implementation	of	our	API	as	an	
OpenFlow-based	SDN	controller
•	The	PANE	controller	implements	
user	requests	after	authorization	
(1)	and	conflict-resolution	(2)
•	PANE	has	been	running	our	lab’s	
network	since	Feb.	2012,	and	
comes	with	a	Java	library	for	client	
applications	(examples	on	Github)

•	An	open	implementation	of	MapReduce,	Hadoop’s	scheduler	
supports	weighted	fair-sharing	across	jobs	in	the	cluster
•	However,	these	weights	do	not	extend	into	the	network	currently;	
bandwidth	is	allocated	by	TCP’s	traditional	approach
•	We	augmented	Hadoop	to	reserve	bandwidth	in	proportion	to	
each	job’s	weight,	and	benchmarked	three	simultaneous	sort	jobs	
weighted	2:1:1.	Completion	time	decreased	by	19%	for	the	top-	
weighted	job,	and	by	9%	for	the	others	due	to	work-conservation

PANE’s	definitions	(top)	and	end-user	API	(bottom).	An	API	
to	create	shares	and	delegate	privileges	is	also	provided

QoS	in	a	Home Firewalls	in	a	Campus Circuits	in	a	Datacenter

6 11 18

•	The	API	uses	shares	to	describe	a	slice	
of	network	control
•	Each	share	states	who	(principals)	can	
say	what	(privileges)	about	which	flows	
in	the	network	(flowgroup)

Flowgroup

Principals Privileges
src=128.12/16 ⋀ dst.port ≤1024

Alice
Bob

deny, allow
bandwidth: 5Mb/s

limit: 10Mb/s
hint

query

•	The	privileges	PANE	exposes	are	requests,	hints,	and	queries
•	Requests	are	for	resources	and	affect	the	state	of	the	network,	
hints	provide	information	the	controller	may	use	to	improve	the	
network	configuration,	and	queries	read	the	state	of	the	network

Root
share

x y

w z

•	Shares	are	hierarchically	organized	
in	a	ShareTree	that	constrains	the	
flowgroups	and	privileges
•	As	in	a	capability	system,	principals	
may	create	new	sub-shares	and	
grant	access	to	other	principals

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Packet:
src 10.0.0.1

dst 10.0.0.2:80

AllowGMB=10
?+S

GMB=10GMB=30

0 +P

GMB=30•	Requests	and	hints	become	
policy atoms,	which	affect	
specified	traffic	and	are	
placed	in	the	Policy Tree
•	The	Policy	Tree	specifies	
the	outcome	for	all	packets
•	Conflicts	between	policy	atoms	are	resolved	by	conflict-resolution
operators	(such	as	+P	above)	which	exist	at	all	nodes	in	the	tree
•	For	efficiency,	PANE	compiles	the	policy	tree	into	OpenFlow	
match	tables,	using	a	variant	of	the	NetCore	algorithm

pane.cs.brown.edu

Time

Ba
nd

w
id
th

Reservation Limitar

t

CHAPTER 2. OVERVIEW 8

1 root: NewShare aliceBW for (user=Alice) [reserve <= 10Mb] on rootShare.
2 root: Grant aliceBW to Alice.
3 Alice: reserve(user=Alice,dstPort=80) = 8Mb on aliceBW from +20min to +30min.
4 root: NewShare bobAC for (dstHost=10.0.0.2) [deny = True] on rootShare.
5 root: Grant bobAC to Bob.
6 Bob: deny(dstHost=10.0.0.2, srcHost=10.0.0.3) on bobAC from now to +5min.
7 Bob: deny(dstHost=10.0.0.4, srcHost=10.0.0.3) on bobAC.

Figure 2.2: Sample interaction between three principals and PANE.

1 root: NewShare aliceBW for (user=Alice) [reserve <= 10Mb] on rootShare.
2 root: Grant aliceBW to Alice.
3 Alice: reserve(user=Alice,dstPort=80) = 8Mb on aliceBW from now to +10min.
3 Alice: reserve(user=Alice,dstPort=80) = 8Mb on aliceBW from +20min to +30min.

Figure 2.3: Sample interaction between three principals and PANE.

arranged in the same hierarchy as the share tree, forming a policy tree. A policy tree is a declarative data structure that

represents the desired global policy for the network. PANE materializes this policy in the network by installing rules

in the switches that implement an equivalent policy (Chap. 6).

Policy atoms thus exist in the context of a share, and are bound by the shares’ privileges and flowgroup. However,

policy atoms may conflict. For example, one policy atom may deny all HTTP flows, while another allows HTTP

flows. These atoms may even exist on different shares. The PANE share tree is flexible: it supports oversubscription,

and allows several shares to express policies for overlapping flowgroups. A key novelty of PANE is a principled and

intuitive conflict-resolution algorithm for hierarchical policies.

We develop Hierarchical Flow Tables (HFTs) to materialize PANE’s policy tree. HFTs provide a model for resolv-

ing conflicts in a hierarchy of policies, and a formally-verified compiler from such hierarchies to flow tables suitable

for OpenFlow switches. In particular, HFTs use conflict resolution operators within and between each node in the hier-

archy to flexibly resolve conflicts. We describe the design of PANE’s operators, and the semantics and implementation

of HFTs in Chap. 5.

Request Processing Having summarized PANE’s key ideas, we now describe at a high level the processing of a

single request, as depicted in Figure 2.1. When an authenticated principal sends the controller a message, perhaps

requesting a resource for a flowgroup in a particular share, PANE first checks that the request is admissible per the

share’s flowgroup and privileges – Check 1 in the figure.

If this first check passes, PANE then checks to see if it is compatible with the state of the network – Check 2. This

check involves all accepted requests (i.e., policy atoms) in the policy tree, and the physical capabilities of the network.

For example, a bandwidth reservation requires a circuit between two endpoints with sufficient bandwidth and switch

queues. This check requires compiling the current policy tree, augmented with the request itself. If this check passes,

the request is incorporated into the tree, and the controller can install the policy onto the network. This process also

Here,	Alice	uses	PANE	to	reserve	future	bandwidth.	The	network	
admin	only	needs	to	delegate	the	privilege;	PANE	does	the	rest.

