
Participatory Networking:
An API for Application Control of SDNs

Andrew D. Ferguson
Brown University

adf@cs.brown.edu

Arjun Guha
Cornell University

arjun@cs.cornell.edu

Chen Liang
Brown University

chen_liang@cs.brown.edu
Rodrigo Fonseca

Brown University
rfonseca@cs.brown.edu

Shriram Krishnamurthi
Brown University

sk@cs.brown.edu

ABSTRACT
We present the design, implementation, and evaluation of an API
for applications to control a software-defined network (SDN). Our
API is implemented by an OpenFlow controller that delegates read
and write authority from the network’s administrators to end users,
or applications and devices acting on their behalf. Users can then
work with the network, rather than around it, to achieve better per-
formance, security, or predictable behavior. Our API serves well as
the next layer atop current SDN stacks. Our design addresses the
two key challenges: how to safely decompose control and visibil-
ity of the network, and how to resolve conflicts between untrusted
users and across requests, while maintaining baseline levels of fair-
ness and security. Using a real OpenFlow testbed, we demonstrate
our API’s feasibility through microbenchmarks, and its usefulness
by experiments with four real applications modified to take advan-
tage of it.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—network management; C.2.4 [Computer-Communication
Networks]: Distributed Systems—network operating systems

Keywords
Software-Defined Networks; OpenFlow; Participatory Networking

1. INTRODUCTION
Today’s applications, whether running in datacenters, enterprise,

campus, or home networks have an increasingly difficult relation-
ship with the network. Networks are the shared fabric interconnect-
ing users, applications, and devices, and fluctuating, unpredictable
network performance and reliability create challenges and uncer-
tainty for network administrators, application developers, and frus-
trated end-users alike. As a result, software developers, researchers,
and administrators expend considerable effort to work around the
network rather than work with the network: video conferencing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM’13, August 12–16, 2013, Hong Kong, China.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2056-6/13/08 ...$15.00.

applications constantly probe network bandwidth [6], overlay net-
works are used to re-route traffic [6], network paths are reactively
reconfigured based on inferences [1], and humans are required to
throttle heavy network loads in response to planned or unplanned
shifts in traffic matrices. Using humans for network control, how-
ever, is no panacea, having been responsible for significant recent
outages at both Github [22] and Amazon [2].

At a minimum, packet networks forward data, collect traffic statis-
tics, and divide traffic based on addresses or other header fields. In-
creasingly, modern networks also provide additional services, often
implemented via middleboxes, such as firewalling, compression,
encryption, threat-detection, acceleration, and caching. Yet, all of
these features are, for the most part, invisible to the applications
and endpoints passing traffic through them, or only available via
rudimentary interfaces such as DSCP header bits.

With greater visibility into and control of the network’s state, a
conferencing application could request bandwidth for a video call,
and learn via the network that while only a guaranteed audio call is
available now, it could reserve a video call in one hour. An intrusion
detection script on a user machine could request that the network
filter traffic from a specific source. An important RPC service could
protect latency-sensitive flows from competing background traffic.
Or, a MapReduce-style application could request bandwidth guar-
antees or maximally disjoint paths to improve performance of its
shuffle phase.

Such examples suggest that an API should exist between the
network’s control-plane and its users, applications, and end-hosts.
These principals need both read access to learn the network’s present
and potential future conditions, and write access to make indepen-
dent configuration changes for their own benefit, and provide help-
ful knowledge such as future traffic demands, directly to the net-
work’s control-plane.

In this paper, we develop the concept of participatory networks [18],
in which the network provides a configuration API to its users, ap-
plications, and end-hosts, and present the design, implementation,
and evaluation of the first practical participatory networking con-
troller for an OpenFlow-enabled software-defined network.

In the absence of security guarantees and limited authorities,
participatory networks would be places of anarchy. To be usable,
such networks must provide isolation for their independent prin-
cipals, preventing malicious users from hogging bandwidth, drop-
ping packets, or worse. While isolation could be provided through
network virtualization, we believe that is not always the right ab-
straction as it hides the fundamentally shared aspect of networks.
Instead, participatory networks expose network state and config-
uration to their principals, allowing them to make more informed
decisions about their use of the network.

We call our prototype controller PANE. It delegates read and
write authority, with optional restrictions, from the network’s ad-
ministrators to the users, or applications and hosts acting on their
behalf. The controller is logically centralized, has a global view of
the network, and implements the principals’ high-level intents by
changing the configuration of the actual network devices. In addi-
tion, we implement and evaluate the examples described above by
augmenting four real applications (§7).

PANE’s user-facing API serves as the next layer on the cur-
rent SDN stack. The abstractions provided by software-defined net-
works allow us to reason formally about PANE’s design, and ensure
the network continues to provide baseline levels of fairness and se-
curity, even as principals dynamically invoke their capabilities.

Our design addresses the two key challenges of participatory net-
works: how to safely decompose control and visibility of the net-
work, and how to resolve conflicts between participants and across
requests. PANE’s solutions to these challenges – delegation of priv-
ileges, and a hierarchy of conflict resolution functions – were de-
veloped both through formal reasoning, and by porting real-world
applications to solve existing use cases. We start with an overview
of our solution in §2, followed by more in-depth discussions for
each challenge in §4 and §5 respectively.

Many approaches to achieve some of these goals have been pre-
viously proposed including active networking [45], IntServ net-
working [7], and distributed reservation protocols such as RSVP [8]
and NSIS [33]. We discuss their relation to participatory network-
ing in §9. PANE does not introduce any new functionalities into
the network. Instead, it exposes existing functionalities and pro-
vides a single platform for reasoning about their use. We argue that
this approach provides several advantages: a single target for appli-
cation developers, a unified management framework for network
administrators, and, most importantly, the ability to reason across
all network resources.

PANE is designed for networks within a single administrative
domain including corporate WANs, datacenters, campus or enter-
prise networks, and home networks. In such networks, there is,
logically, a single owner from which authority can be delegated.
PANE’s design does not rely on changes to the end-hosts’ network-
ing stacks, such as the use of a particular driver or hypervisor, mak-
ing it suitable for networks with user-owned or managed devices.

Participatory networks are backwards-compatible with exiting
networked applications – principals submit requests only to receive
predictable behavior from the network. Unmodified applications
receive the best-effort performance of existing packet networks.

This paper makes the following contributions:

1. We implement a fully-functioning SDN controller which al-
lows a network’s administrators to safely delegate their au-
thority using our API.

2. We analyze the algorithm proposed in [16] for consolidat-
ing hierarchical policies, and propose a new algorithm that
reduces the complexity from exponential to polynomial.

3. We demonstrate our system’s usefulness and practicality on a
real OpenFlow testbed using microbenchmarks and four real
applications enhanced with our API.

2. OVERVIEW
We first present an overview of PANE, including the model of

interaction, the types of messages, and the kinds of network re-
sources one can request. We discuss the challenges involved in ex-
posing network control to multiple principals, and the solutions we

OpenFlow Module

Share Tree

HFT Compilation
Linearization

Conflict Resolution

Authorization

Policy Tree

Network
Information
Base (NIB)

PANE user requests

Switches

1

2

Figure 1: The PANE system and request processing

propose. We then discuss additional considerations that influenced
PANE’s design, which we detail in the following sections (§3-§6).

PANE allows principals to gain controlled visibility into the net-
work and to safely influence network operations. Principals in PANE
are end users, or, most commonly, applications and devices run-
ning on their behalf. We assume some infrastructure in the network
for authentication, such as 802.1x associated with an existing user
database. After authentication, principals interact with the PANE
controller using a simple text-based protocol.

Principals can issue three types of messages to read and write
network state: requests (§3.1), queries (§3.2), and hints (§3.3). Re-
quests are for resources (e.g., bandwidth or access control), with
an action to be taken by the controller. Queries read some compo-
nent of network state (e.g., traffic between hosts, or available band-
width). Hints inform PANE about current or future traffic charac-
teristics; the controller may choose to use hints to improve service.
Our initial design implements a first come-first serve service model,
where the controller handles messages in a serialized fashion.

Each message refers to some subset of the network’s flows; we
call these flowgroups. For example, a message may request to deny
all traffic from a particular host, or to rate-limit a single flow, or
query the bandwidth used by some set of flows. Without restric-
tions, a malicious or negligent principal can adversely affect the
network. Therefore, a key novelty of PANE is its method to safely
allow multiple principals to affect the network, without ceding ad-
ministrative privileges.

PANE addresses two key challenges. First, it provides a flexi-
ble mechanism that gives multiple principals control over a fine-
grained portion of network resources. Second, it resolves the in-
evitable conflicts that arise between principals’ requests, while al-
lowing oversubscription.

PANE uses shares to limit the authority of principals. A share
states who (which principals) can say what (which messages) about
which flows in the network. This statement is represented, respec-
tively, by a share’s three components: its principals, privileges, and
flowgroup. Figure 3(a) shows an example share. Principals of a
share have two implicit privileges. A principal can delegate its priv-
ileges to another principal, much like passing an object capabil-
ity. In addition, principals can create sub-shares of shares to which
they have access. Shares are thus organized in a global share tree.
The share tree enforces two key invariants: a sub-share’s flowgroup
must be a subset of its parent’s flowgroup, and a sub-share’s privi-
leges cannot be more permissive than its parent share’s privileges.

The share tree constrains the policies that can be realized in the
network, but does not itself cause any policy to be implemented

in the network. Instead, accepted requests and realized hints de-
termine network policy. We call such accepted requests and real-
ized hints policy atoms – units of the overall network policy. Policy
atoms are arranged in the same hierarchy as the share tree, forming
a policy tree. A policy tree is a declarative data structure that repre-
sents the desired global policy for the network. PANE materializes
this policy in the network by installing rules in the switches that
implement an equivalent policy (§6).

Policy atoms thus exist in the context of a share, and are bound
by the shares’ privileges and flowgroup. However, policy atoms
may conflict. For example, one policy atom may deny all HTTP
flows, while another allows HTTP flows. These atoms may even ex-
ist on different shares. The PANE share tree is flexible: it supports
oversubscription, and allows several shares to express policies for
overlapping flowgroups. A key novelty of PANE is a principled and
intuitive conflict-resolution algorithm for hierarchical policies.

We use Hierarchical Flow Tables (HFTs) to materialize PANE’s
policy tree. HFTs provide a model for resolving conflicts in a hier-
archy of policies, and a formally-verified compiler from such hier-
archies to flow tables suitable for OpenFlow switches. In particular,
HFTs use conflict resolution operators within and between each
node in the hierarchy to flexibly resolve conflicts. We describe the
design of PANE’s operators and its use of the HFT compiler in §5.

Having summarized PANE’s key ideas, we now describe at a
high level the processing of a single request, as depicted in Fig-
ure 1. When an authenticated principal sends the controller a mes-
sage, perhaps requesting a resource for a flowgroup in a particu-
lar share, PANE first checks that the request is admissible per the
share’s flowgroup and privileges – Diamond 1 in the figure.

If this first check passes, PANE then checks to see if it is compat-
ible with the state of the network – Diamond 2. This check involves
all accepted requests (i.e., policy atoms) in the policy tree, and
the physical capabilities of the network. For example, a bandwidth
reservation requires a circuit between two endpoints with sufficient
bandwidth and switch queues. This check requires compiling the
current policy tree, augmented with the request itself. If this check
passes (i.e., if the request is feasible), the request is incorporated
into the tree, and the controller can install the policy onto the net-
work. This process also has a variation which only partially fulfills
requests; §5.2 describes both variations in more detail.

A final key feature, which we detail in subsequent sections, is
that PANE allows principals to request resources for future inter-
vals. To support this, PANE maintains a time-indexed sequence of
policy trees. The above checks may thus be made against future,
planned network state as appropriate.

3. INTERACTING WITH PANE
We now expand upon the three message types introduced in the

overview: requests, queries, and hints. Table 1 has a concise speci-
fication of these messages, and their relation to other key concepts
in PANE’s API.

3.1 Requests
A request affects the state of the network for some interval of

time. By default, requests take effect immediately and do not ex-
pire; this allows critical network invariants to be expressed easily.
Specific start and end times may optionally be provided. Verifying
if a request can be granted may require walking the tree’s hierarchy,
depending on the type of request. This design allows resources to
be oversubscribed; overallocation is prevented when requests are
granted, and not when shares are created.

Time

B
a
n
d
w
id
th

Reservation Limit
✔✘

t

Figure 2: Example user request for reserved bandwidth; PANE
determines that it cannot be fulfilled until time t.

Participatory networks may support requests for a variety of net-
work resources and services, which we detail next.

Access Control The simplest type of network service exposed by
PANE is access control – the ability to allow and deny traffic, using
the Allow and Deny requests. Like all requests, they specify a flow-
group describing the affected traffic, and the share which the princi-
pal is using to invoke the privilege. Each access control privilege is
optionally constrained by a specified number of seconds, n. To ex-
ceed this limit, principals must periodically renew requests. Shares
lacking the ability to allow or deny traffic have n = 0. When cre-
ating a sub-share, a principal cannot exceed these constraints. For
example, if a share carries the privilege to Deny traffic for up to 300
seconds, a sub-share cannot be created with the privilege to Deny
traffic for up to 301 seconds.

The handling of a given packet is ultimately decided by the com-
position of every matching access control request. This composi-
tion makes use of the share tree’s hierarchy to resolve conflicts –
for example, an access control request made on a child share over-
rides those in parent shares. We defer further discussion of PANE’s
general approach to conflict resolution until §5.

With each request, the principal can specify a fulfillment mode,
either strict or partial. These are provided for atomicity and conve-
nience. In strict mode, PANE rejects a request if it would be (par-
tially) overridden by any previous request. For example, if a user
wants to allow connections to TCP ports 1000-2000, but there ex-
ists a request in a sub-share that denies port 1024, PANE rejects the
request, explaining why. In partial mode, PANE implements the re-
quest, and informs the user that it was only partially satisfied; in
the same example, PANE would inform the user that it has allowed
ports 1000-1023, and 1025-2000.

These modes exist for two reasons: first, to avoid race condi-
tions in request allocations, and second, to avoid complicated, fine-
grained specifications that depend on PANE’s current state. We de-
fer a more complete discussion of the strict and partial fulfillment
modes until §5.2.

Guaranteed Minimum Bandwidth PANE also provides a Re-
serve privilege which provides guaranteed minimum bandwidth
(GMB) between two hosts. Shares which contain the privilege to
reserve bandwidth are limited by a modified token bucket: it has
the usual attributes of fill rate F , capacity C, and maximum drain
rate M , and an additional minimum drain rate m. This lower bound
prevents reservations with very low drain rates that could last indef-
initely. A simple reservation with maximum bandwidth B is a spe-
cial case with F = M = B;C = m = 0. GMB reservations are
ultimately implemented by PANE’s runtime as a sequence of for-
warding actions and switch queues, as we describe in §6. Requests
which cannot be implemented are rejected.

Figure 2 shows a simple example in which a principal has re-
quested an immediate bandwidth reservation. PANE determines that
granting the request will exceed the share’s available bandwidth.
The principal then examines the share’s schedule of available band-

Share S ∈ {P} × {F} × {Priv} A share gives principals some privileges to affect a set of flows.
Principal P ::= (user, host, app) A triple consisting of an application, running on a host by a user.
Flow F ::= 〈srcIP=n1, dstIP=n2, A set of packets with shared properties: source and destination IP address,

proto=n3, srcPort=n4, dstPort=n5〉 transport protocol, and source and destination transport ports.
Privilege Priv ::=CanDeny n | CanAllow n The privileges to allow or deny traffic for up to n seconds (optional).

| CanReserve n | CanRateLimit n The privileges to reserve bandwidth or set rate-limits, up to n MB.
| CanWaypoint {IP} | CanAvoid {IP} The privileges to direct traffic through or around particular IP addresses.

Message Msg ::=P : {F} : S → (Req Tspec | Hint Tspec | Query) A message from a principal with a request, hint, or query using a share.
Time Spec Tspec ::= from t1 until t2 An optional specification from time t1 until t2.
Request Req ::=Allow | Deny Request to allow/deny traffic.

| Reserve n | RateLimit n Request to reserve n MB or rate-limit to n MB.
|Waypoint IP | Avoid IP Waypoint/avoid traffic through a middlebox with the given IP address.

Query Query ::=TrafficBetween srcIP dstIP | ... Query the total traffic between two hosts.
Hint Hint ::=Duration t | ... Hint that the flow’s duration is t.
Policy Atom Atom ::=P : {F} → Req Tspec A requested modification of network state.

| Hint P : {F} → Req Tspec A realized hint; it may be removed if it conflicts with a future request.

Table 1: Main concepts in PANE

width and sends a new request for a reservation to start at t; PANE
accepts the request and later implements it.

When creating sub-shares of shares with GMB privileges, the
sub-share’s token bucket must “fit inside” the parent’s token bucket;
parents cannot provide more tokens to their children than they re-
ceive. However, a share’s tokens can be over-subscribed by its sub-
shares. Over-subscription with sub-shares allows a principal to del-
egate access to all available bandwidth in a share more flexibly
than by delegating access directly. By creating sub-shares, PANE’s
extensible conflict resolution (§5) can mediate between the child
shares’ requests. To prevent over-allocation, PANE draws tokens
from all of its parent shares, up to the root of the tree when a re-
quest is granted.

Path Control A third request type directs flows through or around
middleboxes using Waypoint and Avoid. For example, a univer-
sity’s network administrators can route students’ traffic through a
packet shaper during business hours, and security researchers can
avoid intrusion detection systems for traffic to be collected by hon-
eypots. Shares contain sets of IP addresses listing the middleboxes
which they can route through or avoid, and, as with flowgroups,
sub-shares may only contain subsets of their parents’ sets. PANE
implements Waypoint and Avoid by installing flow-specific for-
warding rules along a path determined by fixing or deleting nodes
as appropriate when routing over the network graph (§6.1). Re-
quests to create unrealizable paths are rejected.

Rate-limits PANE can support rate-limit requests which result in
matching traffic being routed through ports with established rate-
limiters, as available in current switches. While basic, such requests
can be used to mitigate DoS attacks or enforce traffic contracts be-
tween tenants in a shared datacenter. PANE’s global view of the
network enables it to make best use of the switches’ features and
place rate-limiters close to the traffic’s source, as we describe in
§6.1. Like PANE’s bandwidth reservations, rate-limits are currently
restricted to circuits; a network with distributed rate-limiters, such
as those proposed by Raghavan, et al. [39], could support more
general limits, and their use could be integrated into PANE as well.

3.2 Queries
PANE also supports messages to query the state of the network.

These queries may be for general information about the network,
such as the type of a link (e.g., copper or optical), the set of hosts
located downstream of a particular port, or other properties. Each
share may contain a list of properties which it is privileged to read.
This list is similar to a “view” on a database; when sub-shares are

created, this view may be further occluded. While these restrictions
provide basic privacy protection when exposing the network’s state,
they are not complete. For example, if a switch has three links, and
a principal has the privilege to read the sending and receiving rates
on two of the links, but not the third, it can infer the rate on the third
link. We leave a more complete development of privacy protections
as future work.

The current OpenFlow specifications and design make a number
of properties available which principals in PANE may query in-
cluding: the number (or list) of hosts behind a particular port, port-
specific diagnostic data such as the number of packets dropped, the
number of CRC errors, etc., the physical and topological location of
switches, and the access medium of links. In the future, we would
like to support additional details we believe would benefit applica-
tions such as the current signal-to-noise ratio or broadcasting power
of wireless access points.

PANE also supports a “network weather service” which provides
coarse information about current traffic conditions. For example,
statistics about the total traffic over inter-switch links are available,
but not statistics about individual flows. Support for collecting such
detailed statistics requires a more robust OpenFlow compiler (e.g.,
Frenetic’s [19]) than the one in PANE’s current implementation.

Applications can issue queries to the PANE controller to improve
the user experience. For example, Hadoop could use the weather
service to place reducers away from currently-congested parts of
the network, and streaming video players can determine that a wire-
less access point is attached to a cellular modem or similarly con-
strained backhaul as Shieh, et al. proposed [42].

3.3 Hints
The final type of message in PANE is a hint. Hints are used

to provide the network with information which may improve the
application’s or network’s performance, without creating an addi-
tional requirement. Providing hints across abstraction boundaries is
a natural feature in other systems.

Three hints which are useful for networked applications include:
a flow’s size in bytes, a desired flow-completion deadline, and the
predictability of future traffic. PANE can use flow size informa-
tion to spread large flows across multiple paths of equal-cost, as
in Mahout [12] or Hedera [1]. Deadlines can be communicated to
supporting routers such as those proposed in D3 [48]. Hints about
traffic predictability can be used by optimizers such MicroTE [5].

PANE may use hints to derive and install policy atoms which
affect related traffic, although it gives no guarantee or notification
to the user. For example, a hint that a flow is short may generate

Flowgroup

Principals Privileges
src=128.12/16 ⋀ dst.port ≤1024

Alice
Bob

deny, allow
bandwidth: 5Mb/s

limit: 10Mb/s
hint

query

(a)

Root
share

x y

w z

(b)

Figure 3: (a) A PANE share. (b) A share hierarchy. The rectan-
gle above each share represents a flowgroup according to one
dimension (e.g., source IP). Sub-shares are defined on a subset
of their parent’s flowgroup, and may not have more permissive
privileges than their parent.

a policy atom to increase that flow’s priority. We call such hints
realized, and their corresponding policy atoms are tagged as merely
hints (cf. Table 1).

The integration of hints, which can benefit non-PANE systems,
as in the examples above, is deliberate. PANE provides a network
administrator with the framework to delegate privileges, divide re-
sources, and account for their usage; the ability to issue hints is
a privilege, particularly those which affect limited resources. The
framework provided by PANE makes it more feasible to implement
hints in an untrusted environment, where malicious principals may
issue false or excessive hints in an attempt to gain an advantage.

Finally, in the absence of transactional-style requests (e.g., a re-
quest for “resource A or resource B”), PANE’s hints are a more
flexible way to provide information to the network than via re-
quests. In this use, hints share a similar role to PANE’s partial ful-
fillment mode for requests (§5.2).

4. PRIVILEGE DELEGATION
This section presents the semantics of shares and how princi-

pals’ messages are authorized in more detail. The PANE controller
maintains two key data structures. First, the share tree determines
the privileges that principals have to read or write network state.
The tree-structure allows principals to create new shares and del-
egate authority to each other. The share tree itself does not affect
the state of the network. Instead, the second key data-structure, the
policy tree, holds policy atoms that can affect the network. PANE
maintains the invariant that all policy atoms in the policy tree are
properly authorized by the share tree at all times.

A share-tree is an n-ary tree of shares, where a share gives a set
of principals some privileges to affect a set of flows in the network.
We elaborate on these terms below.

Principals A PANE principal is a triple consisting of an applica-
tion running on a host by a user. For example, a principal may be
(Skype, 192.168.1.7,Alice) or (Hadoop, 10.20.20.20,Bob). Shares
in PANE are held by principal-sets. We abbreviate singleton sets
to their principal. We also use wildcards to denote large sets. e.g.,
(Alice, ?, ?) is the set of all principals with Alice as the user, and
(?, ?,Hadoop) is the set of all principals with Hadoop as the ap-
plication. We write (?, ?, ?) to denote the set of all principals.

Principals send messages to the PANE controller to request re-
sources and query the state of the network. For example, the prin-
cipal (Skype, 192.168.1.7,Alice) may request low-latency service
between the Skype call’s source and destination, and the principal
(Hadoop, 10.20.20.20,Bob) may request guaranteed bandwidth be-
tween the three machines in an HDFS write pipeline, as we imple-
ment in §7.1.

In a deployed system, PANE could use 802.1x to authenticate the
user portion of a principal against an existing user database such as
Active Directory or LDAP. In an ideal environment, the application
and host portions could be attested to by a TPM module and appli-
cation signatures on the end host [43]. For now, our prototype only
considers the user portion of a principal.

The three-part principal design allows users and network admin-
istrators to fully understand the provenance of each request. For
example, in a cluster of Hadoop machines, requests by different
Application Masters are identifiable back to the specific machine
they were made from. Similarly, users can differentiate between
requests from distinct applications on the same machine.

Flows A flow is a set of related packets on which requests are
made. For example,

〈srcIP=w, dstIP=x, proto=TCP, srcPort=y, dstPort=z〉

is a flowgroup that denotes a TCP connection from w : y to x : z.
A PANE share allows principals to affect a set of flows, which we
denote with wildcards when possible. For example, the following
flowgroup denotes all HTTP requests:

〈srcIP=?, dstIP=?, proto=TCP, srcPort=?, dstPort=80〉

whereas the following denotes HTTP requests and responses:

〈srcIP=?, dstIP=?, proto=TCP, srcPort=?, dstPort=80〉∪
〈srcIP=?, dstIP=?, proto=TCP, srcPort=80, dstPort=?〉

A key invariant of the share tree is that if share S1 is a sub-share
of share S2, then S1’s flowgroup is a subset of S2’s flowgroup.
Therefore, sub-shares allow principals to implement fine-grained
delegation of control.

Privileges Privileges in PANE define the messages principals may
send using the share. Each message type, as described in the pre-
vious section, has a corresponding privilege. For example, CanAl-
low n and CanDeny n permit admission-control policies to be re-
quested for n seconds, and CanWaypoint {IP} indicates that prin-
cipals can route traffic through an IP address in the given set.

5. CONFLICT RESOLUTION
Conflicts arise naturally in a participatory network, as PANE is

designed to allow multiple, distributed principals to author the net-
work configuration. For example, one principal may issue a request
to deny traffic to TCP port 80, while another may request such traf-
fic be allowed. This section discusses how PANE handles conflicts
between overlapping requests.

Two requests overlap when the intersection of their respective
flowgroups is not empty, i.e., there are some flows that match both.
As described in §2, principals make requests in the context of a
share, and accepted requests become policy atoms residing in this
share. Policy atoms, then, inherit from the share tree a natural hier-
archical relationship, which we call the policy tree. The network’s
effective policy is a function of the set of all policy atoms, their po-
sition in the tree, and the semantics of conflict resolution between
overlapping policy atoms.

The semantics of the policy tree is the final action it produces
on an individual packet, after it has consolidated the actions of all
policy atoms in the tree. Figure 4 illustrates a packet’s evaluation:
matching policy atoms (shown in green) produce an action, such as
Allow (shown in blue), and conflicts are resolved up the hierarchy
until a final action is emitted from the tree.

The policy tree is a declarative representation of the effective pol-
icy implemented by PANE and installed in the physical network. In

(dstPort = 22, Deny)

(dstIP = 10.0.0.2, GMB=30)

(dstPort = 80, GMB=10) (srcIP = 10.0.0.1, Allow)

Allow
GM

B=
10

GMB=10GM
B=

30

1

2 3

4 5

GMB=30
[srcIP = 10.0.0.1
dstIP = 10.0.0.2

ddstPort = 80]

packet headers:

Figure 4: Evaluation of a single packet

PANE, we represent policy trees using HFTs, or Hierarchical Flow
Tables [16]. HFTs are a natural choice for PANE as they provide
two key features: first, flexible conflict resolution through the use of
conflict resolution operators; and second, a formally-verified com-
piler from HFTs to the flow match tables used in OpenFlow. HFT’s
eval function implements the evaluation strategy described above.
We now describe how PANE uses the operators to resolve conflicts
(§5.1), the compiler to strictly or partially fulfill requests (§5.2),
and the complexity of this approach (§5.3).

5.1 Conflict-resolution Operators
HFTs resolve conflicts through the use of conflict resolution op-

erators. These operators take two conflicting requests as input, and
return a single resolved request. For example, a packet which matches
policy atoms from Reserve(10) and Reserve(30) may be resolved
to the higher guaranteed bandwidth, Reserve(30), as occurs at Node
1 in Figure 4.

HFTs have three types of conflict-resolution operators at each
node in the tree. These multiple types allow HFTs to resolve dif-
ferent types of conflicts using independent logic: +D is used to
resolve conflicts between requests within the same share, +P be-
tween conflicting requests in parent and child shares, and +S to
resolve conflicts between sibling shares. Their placement directly
in the nodes allows conflict resolution to make implicit use of the
hierarchy. This design makes it simple to express intuitive conflict
resolutions such as “child overrides parent.”

For PANE we chose simple conflict-resolution operators in the
interest of user and administrator understanding. PANE’s parent-
child operator (+P) specifies a “child overrides parent” policy for
admission control. PANE’s +S and +D operators are identical, and
specify a “Deny overrides Allow policy” between siblings.

5.2 Strict vs Partial Fulfillment
We now return to PANE’s strict and partial modes of fulfillment,

first introduced with the Allow and Deny privileges. In each mode,
a request is first authenticated against the share tree, then, as shown
in Figure 1, PANE verifies the resulting policy tree can be compiled
to a valid network configuration. After this verification, the two
modes differ.

In strict mode, PANE ensures that a request’s specified action
is the same as the action returned by HFT’s eval function for all
packets in the request’s flowgroup – that is, no conflict resolution
operator has changed the resulting action for any matching packets.
More formally, when a request with match rule M and action A is
added to a policy tree, yielding tree T , ∀ packets K ∈ {K|M ∩
K 6= ∅}, eval(T,K) = A. If this condition does not hold, the
request is rejected. In partial mode, the request is not subject to
this check, and may even be relaxed – for example, a request for
30 Mbps of guaranteed bandwidth on a share with only 20 Mbps
available will be relaxed to a request for 20 Mbps.

These modes are useful for three reasons. First, strict mode pro-
vides the principal with a guarantee that the request will be im-
plemented in the network as specified. This is a limited form of
change-impact analysis: was the impact of my change on the net-
work’s configuration what I expected? If not, cancel the request.
We will expand PANE’s ability to provide change-impact analysis
in future work.

Second, partial mode improves support for concurrent requests,
as at least a relaxed form of a partial request will succeed. Without
this, a principal faces the risk of repeatedly crafting strict requests
based on the network state at time t0, only to have the request arrive
at time t2 > t0 and conflict with a request accepted at time t1,
where t2 > t1 > t0.

Finally, partial mode’s ability to relax a request is a useful con-
venience. For example, if a principal has permissions which affect
dozens of specific TCP ports in the range 1000-2000, yet not all of
them, partial requests can be made for that range, and the requests
would be relaxed to just the specific ports, freeing the principal
from needing to specify the particular ports on each request.

Partial reservations, such as the 20 Mbps received of the 30 Mbps
requested in the example above, are particularly useful as applica-
tions can use them to provide upper-bounds for transfer time. Al-
though the faster reservation may have been preferred, the slower
one still provides predictability to the end-user (and in either sce-
nario, the actual bandwidth received by the transfer may be even
higher than the guaranteed minimum). Such a use case is different
from that for bandwidth hints; with hints, the principal does not
know how the information will be used, if at all.

5.3 Compiler Complexity
To realize a policy tree in OpenFlow hardware, we have to com-

pile it to flow tables for each switch. We use a variation of Hier-
archical Flow Tables (HFT) [16]. A direct implementation of the
HFT algorithm produces flow tables of size O(2n), where n is the
size of the policy tree. This algorithm is therefore useless on all but
trivial policies. However, we make two changes that greatly reduce
the complexity: the modified algorithm yields flow tables of size
O(n2) in O(n2) time. This section is an overview of our results.

OpenFlow flow tables are simple linear sequences of patterns
and actions. A flow can match several, overlapping policy atoms
in a policy tree and trigger conflict-resolution that combines their
policies. However, in an OpenFlow flow table, a flow will only trig-
ger the action of the highest-priority matching pattern.

For example, suppose the policy tree has two atoms with the fol-
lowing flowgroups:

〈srcIP=X, dstIP=Y, proto=tcp, srcPort=?, dstPort=?〉
〈srcIP=?, dstIP=?, proto=tcp, srcPort=?, dstPort=80〉

Suppose flows that match the first flowgroup – all flows from X
to Y – are waypointed through some switch, and that flows that
match the second flowgroup – all HTTP requests – are given some
bandwidth reservation. These two flowgroups overlap, thus a flow
may be (1) waypointed with a reservation, (2) only waypointed, (3)
only given a reservation, or (4) not be affected by the policy.

An OpenFlow flow table that realizes the above two-atom policy
tree must have entries for all four cases. The original algorithm [16]
generates all possible combinations given trees of size n — i.e. flow
tables of size O(2n).

We make two changes to prune the generated flow table: (1) we
remove all rules that generate empty patterns and (2) we remove all
rules whose patterns are fully shadowed by higher-priority rules.
The earlier algorithm is recursive, and we prune after each recur-
sive call. It is obvious that this simple pruning does not affect the

semantics of flow tables. However, a surprising result is that it dra-
matically improves the complexity of the algorithm.

The intuition behind our proof is that for sufficiently large pol-
icy trees, the intersections are guaranteed to produce duplicate and
empty patterns that get pruned. To see this, note OpenFlow patterns
have a bit-vector that determines which fields are wildcards. If pat-
terns have h header fields, there are only 2h unique wildcard bit-
vectors. Therefore, if a policy tree has more than 2h policy atoms,
then by the pigeonhole principle some patterns must have identical
wildcard bits.

Consider two policy atoms with the same wildcard bits. If the
two patterns are identical, then so is their intersection. Therefore,
the original two patterns get pruned, leaving only the intersection.
Now, suppose the two patterns are distinct (and still have the same
wildcard bits). Therefore, since their wildcards are the same, they
both match some header differently, and thus their intersection is
empty and pruned.

Our full complexity analysis, available in an extended tech re-
port [17], shows that when the number of policy atoms, n, is larger
than 2h, then the compilation algorithm runs in O(n2) time and
produces a flow table of size O(n2). Note that h is effectively a
constant, fixed by the number of header fields which may deter-
mine a flow; this value is limited by the number of fields defined
in OpenFlow. OpenFlow 1.0 patterns are 12-tuples, and our current
policies only use 5 header fields. Therefore, on policies with more
than 25 policy atoms, the algorithm is quadratic.

Updating Flow Tables
It is not enough for PANE to generate flow tables quickly. It

must also propagate switch updates quickly, as the time required
to update the network affects the effective duration of requests. The
OpenFlow protocol only allows switches to be updated one rule at a
time. A naive strategy is to first delete all old rules, and then install
new rules. In PANE, we implement a faster strategy: the controller
state stores the rules deployed on each switch; to install new rules,
it calculates a “diff” between the new and old rules. These diffs
are typically small, since rule-table updates occur when a subset of
policy atoms are realized or unrealized.

6. THE PANE CONTROLLER
The complete PANE system integrates the previously described

components into a fully-functioning SDN controller, as depicted in
Figure 1. It manages simultaneous connections with the network’s
principals and its switches. In this role, it is responsible for imple-
menting both our participatory networking API, and the details of
computing default forwarding routes, transmitting OpenFlow mes-
sages, and reacting to network changes such as switches joining
and links failing. To accomplish these tasks, the PANE controller
maintains three data structures: the share tree, a sequence of policy
trees, and a network information base (NIB), described below.

We have developed a prototype PANE controller using Haskell
and the Nettle library for OpenFlow [46]. We use and extend the
HFT compiler described in [16]. Although we chose OpenFlow as
our substrate for implementing PANE, its design does not depend
on OpenFlow. PANE could be implemented using other mecha-
nisms to control the network, such as 4D [24], MPLS, or a col-
lection of middleboxes.

The PANE controller is an entirely event-driven multicore pro-
gram. The three primary event types are incoming PANE API mes-
sages, incoming OpenFlow messages, and timer events triggered
by the start or finish of previously accepted requests or realizable
hints. A prototype release is available on Github, and we provide a

virtual machine for Mininet-based evaluation on our website.1 The
release also includes a Java library which implements an object-
oriented interface to PANE’s text API.

API messages always specify a share on which they are oper-
ating. When a message arrives, the PANE controller first uses the
share tree to determine whether it is authorized, and then, for re-
quests, whether it is feasible by consulting the policy trees, as de-
scribed in the previous sections.

When requests start and expire, the PANE controller compiles
the new policy tree to a set of switch flow tables, translating high-
level actions to low-level operations on individual switches in the
network. For example, a Reserve(n) action becomes a circuit of
switch queues and forwarding rules that direct packets to those
queues. As we will describe next, PANE’s runtime uses its NIB and
a default forwarding algorithm to realize this and other actions. Our
implementation constructs a spanning tree and implements MAC
learning as its forwarding algorithm.

When possible, PANE uses the slicing extension to OpenFlow
1.0 to create queues, and out-of-band commands when necessary.
While OpenFlow allows us to set expiry timeouts on flow table en-
tries, PANE must explicitly delete queues when reservations expire.

6.1 Network Information Base
A network information base (NIB) is a database of network ele-

ments – hosts, switches, ports, queues, and links – and their capabil-
ities (e.g., rate-limiters or per-port output queues on a switch). The
runtime uses the NIB to translate logical actions to a physical con-
figuration, determine a spanning tree for default packet forwarding,
and to hold switch information such as manufacturer, version, and
its ports’ speeds, configurations, and statistics.

For example, PANE’s runtime implements a bandwidth reserva-
tion, (M,Reserve(n)), by querying the NIB for the shortest path
with available queues between the corresponding hosts. Along this
path, PANE creates queues which guarantee bandwidth n, and flow
table rules to direct packets matching M to those queues. We chose
this greedy approach to reserving bandwidth for simplicity, and
leave the implementation of alternatives as future work.

PANE also uses the NIB to install Deny rules as close as pos-
sible to the traffic source. For example, if the source is outside
our network, this is the network’s gateway switch. If the source
is inside the network, packets are dropped at the closest switch(es)
with available rule space. The NIB we implement is inspired by
Onix [30]. It uses a simple discovery protocol to find links between
switches, and information from our forwarding algorithm, such as
ARP requests, to discover the locations of hosts.

6.2 Fault Tolerance and Resilience
The PANE controller must consider two types of failures. The

first is failure of network elements, such as switches or links, and
the second is failure of the controller itself.

When a switch or link fails, or when a link’s configuration changes,
the PANE runtime must recompile the policy tree to new individual
switch flow tables, as previously used paths may no longer be avail-
able or acceptable. Because the underlying network has changed,
this recompilation step is not guaranteed to succeed. If this hap-
pens, we defer to PANE’s first come-first serve service model, greed-
ily replaying requests to build a new policy tree which does com-
pile; implementing this simply requires annotating the current pol-
icy tree’s policy atoms with the order in which they were created.
Principals are notified via call-backs if a previously accepted re-
quest is now unsatisfiable. Developing a more sophisticated ap-
proach to re-constructing a feasible policy tree, perhaps taking ad-
1http://pane.cs.brown.edu

http://pane.cs.brown.edu

vantage of priorities, or with the goal of maximizing the number of
restored requests, remains as future work.

To handle failure of the controller, we can keep a database-like
persistent redo log of accepted requests, periodically compacted by
removing those which have expired. Upon recovery, the PANE con-
troller could restore its state from this log. In production settings,
we expect the PANE controller to be deployed on multiple servers
with shared, distributed state. Switches would maintain connec-
tions to each of the controllers as newer OpenFlow specifications
support. We leave the design and analysis of both options as fu-
ture work. Because network principals use PANE in an opt-in fash-
ion to receive predictable performance, a complete runtime failure
would simply return the network to its current state of providing
best-effort performance only.

6.3 Additional Features
The PANE runtime supports several additional features beyond

the requests, hints, and queries previously described. Principals are
able to query PANE to determine their available capabilities, exam-
ine the schedule of bandwidth availability, create sub-shares, and
grant privileges to other principals. PANE’s API also provides com-
mands to determine which existing requests and shares can affect
a specified flowgroup; this is particularly useful for debugging the
network, such as to determine why certain traffic is being denied.

Beyond the API, the PANE controller also includes an adminis-
trative interface which displays the current state and configuration
of the network, real-time information about the controller’s perfor-
mance such as memory and CPU usage, and allows the dynamic
adjustment of logging verbosity.

7. EVALUATION
We evaluate our PANE prototype with the Mininet platform for

emulating SDNs [32], and with real networks. Our primary testbed
includes two Pronto 3290 switches and several software OpenFlow
switches (both Open vSwitch and the reference user-mode switch)
on Linux Intel-compatible hardware, and on the TP-Link WR-1043ND
wireless router. Wired connections are 1 Gbps and wireless runs
over 802.11n. Clients on the network include dedicated Linux servers,
and fluctuating numbers of personal laptops and phones. In addi-
tion to the participatory networking API, the network also provides
standard services such as DHCP, DNS, and NAT.

Members of our group have been using the testbed since Febru-
ary 2012 to manage our traffic, and during this time, it has been our
primary source of network connectivity. The testbed is compatible
with unmodified consumer electronic devices, which can interact
with a PANE controller running at a well-known location.2

In the following sections, we examine two aspects of our proto-
type. First, we consider four case studies of real applications that
use the PANE API to improve end-user experience (§7.1). Second,
we evaluate the practicality of implementing the PANE API in cur-
rent OpenFlow-enabled networks, considering questions such as
the latency of processing requests, and the number of rules created
by networked applications (§7.2).

7.1 Application Usage
We ported four real applications to use the PANE API: Ekiga,

SSHGuard, ZooKeeper, and Hadoop. We now describe how inten-
tions of an application developer or user can be translated to our
API, and the effects of using PANE on the network and the ap-

2The PANE controller could also be specified using a DHCP
vendor-specific or site-specific option.

plication. Our PANE-enabled versions of these applications are all
publicly available on Github.3

7.1.1 Ekiga
Ekiga is an open source video conferencing application. We mod-

ified Ekiga to ask the user for the anticipated duration of video calls,
and use a Reserve message to request guaranteed bandwidth from
the network between the caller’s host and either the network gate-
way or the recipient’s host, for the appropriate time. If such a reser-
vation is not available, Ekiga retrieves the schedule of available
bandwidth from PANE and calculates the earliest time at which a
video call or, alternatively, an audio call, can be made with guaran-
teed quality. It then presents these options to the user, along with a
third option for placing a “best effort” call right away.

Realizable reservations cause the PANE controller to create guar-
anteed bandwidth queues along the path of the circuit, and install
forwarding rules for Ekiga’s traffic.

Measurements of Skype use on a campus network with more
than 7000 hosts show that making reservations with PANE for VoIP
applications is quite feasible. Skype calls peaked at 75 per hour,
with 80% of calls lasting for fewer than 30 minutes [6]. This fre-
quency is well within current OpenFlow switches’ capabilities, as
we measure in §7.2.

7.1.2 SSHGuard
SSHGuard is a popular tool to detect brute-force attacks via log

monitoring and install local firewall rules (e.g., via iptables) in
response. We modified SSHGuard to use PANE as a firewall back-
end to block nefarious traffic entering the network. In particular,
this means such traffic no longer traverses the targeted host’s ac-
cess link.

For example, if Alice is running SSHGuard on her host and it
detects a Linux syslog entry such as:

sshd[2197]: Invalid user Eve from 10.0.0.3

SSHGuard will block Eve’s traffic for the next five minutes using
PANE’s Deny request. The PANE controller then places an Open-
Flow rule to drop packets to Alice’s host coming from Eve’s at a
switch close to Eve’s host.

Although this is a basic example, it illustrates PANE’s ability to
expose in-network functionality (namely, dropping packets) to end-
user applications. Besides off-loading work from the end-host’s
network stack, this approach also protects any innocent traffic which
might have suffered due to sharing a network link with a denial-of-
service (DoS) attack.

To demonstrate this benefit, we generated a UDP-based DoS at-
tack within our testbed network. We started an iperf TCP trans-
fer between two wireless clients, measured initially at 24 Mbps. We
then launched the attack from a Linux server two switch-hops away
from the wireless clients. During the attack, which was directed at
one of the clients, the performance of the iperf transfer dropped
to 5 Mbps, rising to only 8 Mbps after the victim installed a local
firewall rule. By using PANE to block the attack, the transfer’s full
bandwidth returned.

7.1.3 ZooKeeper
ZooKeeper [27] is a coordination service for distributed sys-

tems used by Twitter, Netflix, and Yahoo!, among others, and is a
key component of HBase. Like other coordination services such as
Paxos [31], ZooKeeper provides consistent, available, and shared
3https://github.com/brownsys/

https://github.com/brownsys/

 0
 0.1
 0.2
 0.3
 0.4

 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.0001 0.001 0.01 0.1 1

P
(X

 <
=

 x
)

Latency of DELETE Operations (s)

Pre
Post

PANE

Figure 5: Latency of ZooKeeper DELETE requests.

state using a quorum of replicated servers (the ensemble). For re-
siliency in the face of network failures, ZooKeeper servers may be
distributed throughout a datacenter, and thus quorum messages may
be negatively affected by heavy traffic on shared links. Because
ZooKeeper’s role is to provide coordination for other services, such
negative effects are undesirable.

To protect ZooKeeper’s messages from heavy traffic on shared
links, we modified ZooKeeper to make bandwidth reservations us-
ing PANE. Upon startup, each member of the ensemble made a
reservation for 10 Mbps of guaranteed minimum bandwidth for
messages with other ZooKeeper servers. Additionally, we modi-
fied our ZooKeeper client to make a similar reservation with each
server it connected to.

We installed ZooKeeper on an ensemble of five servers, and de-
veloped a benchmarking client which we ran on a sixth. The client
connected a thread to each server and maximized the throughput
of synchronous ZooKeeper operations in our ensemble. To remove
the effect of disk latency, the ZooKeeper servers used RAM disks
for storage. At no time during these experiments were the CPUs
of the client, switches, or servers fully loaded. Like our modified
applications, this benchmarking tool is also available on Github.

Figure 5 shows the latency of ZooKeeper DELETE requests dur-
ing the experiment. In the “Pre” line, ZooKeeper alone is running
in the network and no reservations were made using PANE. In the
“Post” line, we used iperf to generate bi-directional TCP flows
over each of the six links directly connected to a host. As shown in
the figure, this competing traffic dramatically reduced ZooKeeper’s
performance – average latency quadrupled from 1.55ms to 6.46ms
(we obtained similar results with a non-OpenFlow switch). Finally,
the “PANE” line shows the return to high performance when ZooKeeper
reserved bandwidth using PANE.

We found similar results for other ZooKeeper write operations
such as creating keys, writing to unique keys, and writing to the
same key. Read operations do not require a quorum’s participation,
and thus are less affected by competing background traffic.

7.1.4 Hadoop
In our final case study of PANE’s application performance ben-

efits, we augmented a Hadoop 2.0.3 pre-release with support for
our API. Hadoop is an open source implementation of the MapRe-
duce [13] data-processing framework. In Hadoop, large files are di-
vided across multiple nodes in the network, and computations con-
sist of two phases: a map, and a reduce. During the map phase, a
function is evaluated in parallel on independent file pieces. During
the reduce, a second function proceeds in parallel on the collected
outputs of the map phrase; the data transfer from the mappers to the
reducers is known as the shuffle. During the shuffle, every reduce
node initiates a transfer with every map node, making it particularly

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.001 0.01 0.1 1 10 100 1000

P
(X

 <
=

 x
)

Interarrival Time (s)

(a)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

N
u

m
b

e
r

o
f

R
e

s
id

e
n

t
R

u
le

s

Time(min)

(b)

Figure 6: Effect of Hadoop on PANE and network.

network-intensive for some jobs, such as sorts or joins. Finally, the
output of the reduce is written back to the distributed filesystem.

By using PANE, our version of Hadoop is able to reserve guar-
anteed bandwidth for its operations. The first set of reservations
occurs during the shuffle – each reducer reserves bandwidth for
transferring data from the mappers. The second set of reservations
reserves bandwidth when writing the final output. These few reser-
vations protect the majority of network transfers that occur during
the lifetime of a Hadoop job. Our version of Hadoop also makes
reservations when a map task needs to read its input across the net-
work; however, such transfers are typically less common thanks to
“delay scheduling” [52]. Therefore, in a typical job, the total num-
ber of reservations is on the order of M × R + R × 2 where M
and R are, respectively, the number of nodes with map and reduce
tasks. The number of reservations is not precisely described by this
formula as we do not make reservations for node-local transfers,
and reducers may contact a mapper node more than once during
the shuffle phase. As reducers can either be copying output from
mappers in the shuffle, or writing their output to the distributed
filesystem, the maximum number of reservations per reducer at any
time is set by the value of mapreduce.reduce.shuffle.parallelcopies
in the configuration, which has a default value of five.

To measure the effect of using PANE to make reservations in
Hadoop, we developed a benchmark which executed three 40 GB
sort jobs in parallel on a network of 22 machines (20 slaves, plus
two masters) connected by a Pronto 3290 switched controlled by
PANE. Hadoop currently has the ability to prioritize or weight jobs
using the scheduler, but this control does not extend to the network.
In our benchmark, the first two jobs were provided with 25% of the
cluster’s memory resources, and the third, acting as the “high pri-
ority” job, was provided with 50%. The benchmark was run in two
configurations: in the first, Hadoop made no requests using PANE;
in the second, our modified Hadoop requested guaranteed band-
width for each large flow. These reservations were proportional to
the job’s memory resources, and lasted for eight seconds, based on
Hadoop’s 256 MB block size. In our star topology with uniform 1
Gbps links, this translated to 500 Mbps reservations for each link.

Averaged across three runs, the high priority job’s completion
time decreased by 19% when its bandwidth was guaranteed. Be-
cause it completed more quickly, the lower priority jobs’ runtime
also decreased, by an average of 9%, since Hadoop’s work-conserving
scheduler re-allocates freed memory resources to remaining jobs.

While Hadoop was running, we also measured its effect on PANE
and the switch’s flow table. Figure 6(a) is a CDF of the time be-
tween Hadoop’s reservations. As currently implemented, PANE mod-
ifies the switch flow table after each request. This CDF shows that
batching requests over a 10 ms window would decrease the number
of flow table updates by 20%; a 100 ms window would decrease the
updates by 35%. Figure 6(b) plots the amount of flow table space
used by Hadoop during a single job. On average, Hadoop accounted

for an additional 2.5 flow table entries; the maximum number of si-
multaneous Hadoop rules was 28.

7.2 Implementation Practicality
In addition to examining PANE’s use in real applications, we also

evaluated the practicality of its implementation in current Open-
Flow networks. We found that our Pronto 3290 switches, running
the Indigo 2012.09.07 firmware, were capable of supporting 1,919
OpenFlow rules, which took an average of 7.12 ms to install per
rule. To measure this, we developed a benchmarking controller
which installed wildcard match rules, issuing a barrier request af-
ter each flow_mod message was sent. We based this controller on
Floodlight, and it is available for download from our Github page.

The latency distribution to fully install each flow_mod is show
in Figure 7(a). It has two clusters – for the 92.4% of flow_mod’s
with latency less than 10.0 ms, the average latency was 2.80 ms;
the remaining 7.6% had an average latency of 59.5 ms. For PANE’s
principals, these much higher tail latencies imply that requests can-
not always be implemented within a few milliseconds, and for truly
guaranteed traffic handling, requests have to be made at least 100
milliseconds in advance.

We found that our Pronto switches could support seven hard-
ware queues with guaranteed minimum bandwidth on each port,
and each queue required an average of 1.73 ms to create or delete,
as shown in Figure 7(b). However, this average doubles to 3.56 ms
if queues are created consecutively on the same port (i.e., P1Q1,
P1Q2, P1Q3, ..., P2Q1, etc.), as shown in Figure 7(c). This shows
that an optimized PANE controller must consider the order in which
switch operations are made to provide the best experience.

Together, these results suggest that an individual switch can sup-
port a minimum of about 200 reservations per second. Higher through-
put is possible by batching additional requests between OpenFlow
barriers. While these switch features are sufficient to support the
four applications above, we found that Hadoop’s performance ben-
efited from per-flow reservations only when flows transferred more
than one megabyte. For smaller flows, the overhead of establish-
ing the reservations outweighed the benefit. In an example word
count job, only 24% of flows were greater than 1 MB; however this
percentage rises to 73% for an example sort.

8. DISCUSSION AND FUTURE WORK
The PANE prototype implements a complete OpenFlow con-

troller: it determines network-wide policies by realizing requests
and hints, monitors switches to respond to queries, determines rout-
ing, and updates switches as the policy changes. We’ve built each
of these components as separate modules, and compose them using
composition abstractions derived from Frenetic [19].

In the PANE prototype, policies are arranged as trees. This is not
a fundamental design decision – trees make it easy to implement
resource accounting and trace the provenance of delegation deci-
sions. However, generalizations such as DAGs should be possible.

An interesting generalization is a more flexible language for re-
quests. A principal should be able to describe the resources they
need as simple constraints. For example, “reserve 5 Gbps for 1 hour
within the next 5 hours.” Such requests would give the PANE con-
troller more scheduling flexibility. They would thus improve net-
work performance and lead to greater accepted requests.

We are also investigating allowing principals to request other
kinds of resources, e.g. latency and jitter. Current OpenFlow im-
plementations lack support for controlling these traffic properties.
In the future, we hope to borrow techniques from works such as
Borrowed Virtual Time [14] or HFSCs [44], which integrate and
balance the needs of throughput- and latency-sensitive processes.

Security Considerations While the principals in PANE are au-
thenticated, they do not need to be trusted as privileges are re-
stricted by the system’s semantics – the ShareTree restricts the ca-
pabilities of each principal. We recognize, however, that it may be
possible to exploit combinations of privileges in an untoward fash-
ion, and leave such prevention as future work.

Our prototype implementation of PANE is currently defense-
less against principals which issue excessive requests. We leave
such protection against denial-of-service as future work, and expect
PANE’s requirement for authenticated principals to enable such
protections, as use of the system can be audited.

PANE as a building block We believe the primitives provided by
PANE could serve as an implementation substrate for a variety of
recent proposals in the networking literature.

For example, Coflow [11] proposes an abstraction which groups
several related flows, allowing the network control-plane to better
optimize an application’s communication. By adding support for
transactions, we expect PANE could be used to implement Coflow
– each coflow would map to a sequence of PANE requests grouped
by a transaction. FairCloud [38], which develops several policies
for fairly dividing datacenter bandwidth, should be implementable
using PANE’s reservation and rate-limit requests.

Finally, because PANE allows applications to reserve guaranteed
bandwidth, such applications could skip TCP’s slow start phase, or
even allow for the network control-plane to be involved in setting
congestion control and other parameters, as in proposals such as
XCP [28] and OpenTCP [21]. PANE could also integrate better
support for middlebox-based services, perhaps by integrating the
approach advocated for by Gember, et al. [20].

9. RELATED WORK
Programming the Network PANE allows applications and users
to influence network operations, a goal shared by previous research
such as active networking [45]. In active networks, principals de-
velop distributed programs that run in the network nodes. By con-
trast, PANE sidesteps active networks’ deployment challenges via
its implementation as an SDN controller, their security concerns by
providing a much more restricted interface to the network, and their
complexity by providing a logically centralized network view.

Using Application-Layer Information Many previous works de-
scribe specific cases in which information from end-users or appli-
cations benefits network configuration, flexibility, or performance;
PANE can be a unifying framework for these. For example, using
Hedera to dynamically identify and place large flows in a datacen-
ter can improve throughput up to 113% [1]. PANE avoids Hedera’s
inference of flow size by enabling applications and devices to di-
rectly inform the network about flow sizes. Wang, et al. [47] pro-
pose application-aware networking, and argue that distributed ap-
plications can benefit from communicating their preferences to the
network control-plane, as we show in §7.1. ident++ [35] proposes
an architecture in which an OpenFlow controller reactively queries
the endpoints of a new flow to determine whether it should be ad-
mitted. TVA is a network architecture in which end-hosts authorize
the receipt of packet flows via capabilities in order to prevent DoS-
attacks [50]. By contrast, PANE allows administrators to delegate
the privilege to install restricted network-wide firewall rules, and
users can do so either proactively or reactively (cf. §7.1.2).

Darwin [9] introduced a method for applications to request net-
work resources, including computation and storage capabilities in
network processors. Like PANE, Darwin accounts for resource use
hierarchically. However, it does not support over-subscription, lacks

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1 10 100

Latency of flow mod install (ms)

Histogram
CDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1 10 100

Latency of interleaved queue creation (ms)

Histogram
CDF

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1 10 100

Latency of consecutive queue creation (ms)

Histogram
CDF

(c)

Figure 7: Latency of switch operations in milliseconds.

support for access control and path management, and requires routers
with support for active networks. Yap, et al. have also advocated
for an explicit communication channel between applications and
software-defined networks, in what they called software-friendly
networks [51]. This earlier work, however, only supports requests
made by a single, trusted application. By contrast, PANE’s ap-
proach to delegation, accounting, and conflict-resolution allow mul-
tiple applications to safely communicate with an SDN controller.

Network QoS and Reservations Providing a predictable network
experience is not a new goal, and there is a vast body of protocols
and literature on this topic. PANE relies heavily on existing mecha-
nisms, such as reservations and prioritized queue management [29,
44], while adding user-level management and resource arbitration.
PANE also goes beyond QoS, integrating hints and guarantees about
access control and path selection. To date, we have focused on
mechanisms exposed by OpenFlow switches; we expect other mech-
anisms for network QoS could be integrated as well.

Like PANE, protocols such as RSVP [8] and NSIS [33] pro-
vide applications with a way to reserve network resources on the
network. PANE, however, is designed for single administrative do-
mains, which permits centralized control for policy decisions and
accounting, and sidesteps many of their deployment difficulties.
PANE provides control over the configuration of network paths,
which RSVP and NSIS do not, and goes beyond reservations with
its hints, queries, and access control requests, which can be made
instantly or for a future time. Finally, RSVP limits aggregation sup-
port to multicast sessions, unlike PANE’s support for flow groups.

Kim, et al. [29] describe an OpenFlow controller which config-
ures QoS using application-described requirements and a database
of network state. PANE’s runtime performs a similar function for
the Reserve action, and also supports additional actions.

Recent works in datacenter networks, such as Oktopus [3] and
CloudNaaS [4], offer a predictable experience to tenants willing
to fully describe their needs as a virtual network, only admitting
those tenants and networks whose needs can be met through careful
placement. This approach is complementary to PANE’s, which al-
lows principals to request resources from an existing network with-
out requiring complete specification.

Software-Defined Networking PANE is part of a line of research
into centralized network management including Onix [30], Tesser-
act [49], and CoolAid [10]. CoolAid provides high-level requests
and intentions about the network’s configuration to its operators;
PANE extends this functionality to regular users and applications
with the necessary delegation and accounting, and implements them
in SDNs. PANE builds upon the abstractions proposed by Onix and
Tesseract for, respectively, OpenFlow and 4D [24] control-planes.

Recent developments in making SDNs practical (e.g.,[25, 34,
46]) improve the deployability of PANE. Resonance [36] delegates

access control to an automated monitoring system, using OpenFlow
to enforce policy decisions. Resonance could be adapted to use
PANE as the mechanism for taking action on the network, or could
be composed with PANE using a library such as Frenetic [19].

Expressing policies in a hierarchy is a natural and common way
to represent delegation of authority and support distributed author-
ship. Cinder [40], for example, uses a hierarchy of taps to provide
isolation, delegation, and division of the right to consume a mobile
device’s energy. PANE uses HFTs [16] as a natural way to express,
store, and manipulate these policies directly, and still enable an ef-
ficient, equivalent linear representation of the policy.

FlowVisor [41] divides a single network into multiple slices in-
dependently controlled by separate OpenFlow controllers. FlowVi-
sor supports delegation – a controller can re-slice its slice of the net-
work. Each of these controllers sends and receives primitive Open-
Flow messages. In contrast, PANE allows policy authors to state
high-level, declarative policies with flexible conflict resolution.

Networking and Declarative Languages PANE’s design is in-
spired by projects such as the Margrave tool for firewall analy-
sis [37] and the Router Configuration Checker [15], which apply
declarative languages to network configuration. Both use a high-
level language to detect configuration mistakes in network poli-
cies by checking against predefined constraints. PANE, however,
directly integrates such logic into the network controller.

FML [26] is a Datalog-inspired language for writing policies that
also supports distributed authorship. The actions in PANE are in-
spired by FML, which it extends by involving end-users, adding
queries and hints, and introducing a time dimension to action re-
quests. In an FML policy, conflicts are resolved by a fixed scheme
– deny overrides waypoints, and waypoints override allow. By con-
trast, PANE offers more flexible conflict resolution operators. FML
also allows policies to be prioritized in a linear sequence (a policy
cascade). PANE can also express a prioritized sequence of policies,
in addition to more general hierarchies.

The eXtensible Access Control Markup Language (XACML)
provides four combiner functions to resolve conflicts between sub-
policies [23]. These functions are designed for access control de-
cisions and assume an ordering over the subpolicies. By contrast,
HFTs support user-supplied operators designed for several actions
and consider all children equal.

10. CONCLUSION
The design and configuration of today’s networks is already in-

formed by application needs (e.g., networks with full-bisection band-
width for MapReduce-type frameworks, or deadline-based queu-
ing [3] for interactive web services). PANE provides a way for the
network to solicit and react to such needs automatically, dynami-
cally, and at a finer timescale than with human input. To do this,

our design overcomes the two challenges of decomposing network
control, and resolving conflicts between users’ needs.

Acknowledgments
This work was partially supported by NSF grant 1012060. An-
drew Ferguson is supported by an NDSEG fellowship. We thank
Theo Benson, Srikanth Kandula, Joe Politz, Jennifer Rexford, Scott
Shenker, and our shepherd Vyas Sekar for invaluable discussions
and suggestions; Justin Pombrio for improving the implementation
of PANE’s Network Information Base; Jordan Place for first imple-
menting PANE support in Ekiga; and Jeff Rasley for help with the
Hadoop experiments.

11. REFERENCES
[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and

A. Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In NSDI ’10.

[2] https://aws.amazon.com/message/65648/.
[3] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards

predictable datacenter networks. In SIGCOMM ’11.
[4] T. Benson, A. Akella, A. Shaikh, and S. Sahu. CloudNaaS: A Cloud

Networking Platform for Enterprise Applications. In SOCC ’11.
[5] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE: Fine

Grained Traffic Engineering for Data Centers. In CoNEXT ’11.
[6] D. Bonfiglio, M. Mellia, M. Meo, and D. Rossi. Detailed analysis of

skype traffic. IEEE Trans. on Multimedia, 11(1):117–127, 2009.
[7] R. Braden, D. Clark, and S. Shenker. Integrated Services in the

Internet Architecture: an Overview. RFC 1633, June 1994.
[8] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource

ReSerVation Protocol (RSVP). RFC 2205, Sept. 1997.
[9] P. Chandra, A. Fisher, C. Kosak, T. S. E. Ng, P. Steenkiste,

E. Takashi, and H. Zhang. Darwin: Resource Management for
Value-added Customizable Network Service. In IEEE ICNP ’98.

[10] X. Chen, Y. Mao, Z. M. Mao, and J. Van der Merwe. Declarative
Configuration Management for Complex and Dynamic Networks. In
CoNEXT ’10.

[11] M. Chowdhury and I. Stoica. Coflow: An Application Layer
Abstraction for Cluster Networking. In HotNets ’12.

[12] A. R. Curtis, W. Kim, and P. Yalagandula. Mahout: Low-Overhead
Datacenter Traffic Management using End-Host-Based Elephant
Detection. In IEEE INFOCOM ’11.

[13] J. Dean and S. Ghemawat. MapReduce: Simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, 2008.

[14] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time (BVT)
scheduling: supporting latency-sensitive threads in a general-purpose
scheduler. In SOSP ’99.

[15] N. Feamster and H. Balakrishnan. Detecting BGP configuration
faults with static analysis. In NSDI ’05.

[16] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and
S. Krishnamurthi. Hierarchical Policies for Software Defined
Networks. In HotSDN ’12.

[17] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and
S. Krishnamurthi. Participatory Networking: An API for Application
Control of SDNs. Technical Report CS-13-03, Brown Univ., 2013.

[18] A. D. Ferguson, A. Guha, J. Place, R. Fonseca, and S. Krishnamurthi.
Participatory Networking. In Hot-ICE ’12.

[19] N. Foster, M. J. Freedman, R. Harrison, J. Rexford, M. L. Meola, and
D. Walker. Frenetic: A High-Level Language for OpenFlow
Networks. In PRESTO ’10.

[20] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella. Towards
Software-Defined Middlebox Networking. In HotNets ’12.

[21] M. Ghobadi, S. H. Yeganeh, and Y. Ganjali. Rethinking End-to-End
Congestion Control in Software-Defined Networks. In HotNets ’12.

[22] https://github.com/blog/
1346-network-problems-last-friday.

[23] S. Godik and T. M. (editors). eXtensible Access Control Markup
Language, version 1.1, Aug. 2003.

[24] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean slate 4D approach to
network control and management. SIGCOMM CCR, 35:41–54, 2005.

[25] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker. NOX: Towards an Operating System for Networks.
SIGCOMM CCR, 38:105–110, July 2008.

[26] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker.
Practical Declarative Network Management. In WREN ’09.

[27] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: Wait
free coordination for Internet-scale systems. In USENIX ATC ’10.

[28] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High
Bandwidth-Delay Product Networks. In SIGCOMM ’02.

[29] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J. Lee, and
P. Yalagandula. Automated and Scalable QoS Control for Network
Convergence. In INM/WREN ’10.

[30] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix:
A Distributed Control Platform for Large-scale Production Networks.
In OSDI ’10.

[31] L. Lamport. The Part-Time Parliament. ACM Trans. Comput. Syst.,
16(2):133–169, May 1998.

[32] B. Lantz, B. Heller, and N. McKeown. A Network in a Laptop: Rapid
Prototyping for Software-Defined Networks. In HotNets ’10.

[33] J. Manner, G. Karagiannis, and A. McDonald. NSIS Signaling Layer
Protocol (NSLP) for Quality-of-Service Signaling. RFC 5974, Oct.
2010.

[34] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM CCR,
38:69–74, 2008.

[35] J. Naous, R. Stutsman, D. Mazières, N. McKeown, and N. Zeldovich.
Enabling delegation with more information. In WREN ’09.

[36] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark. Resonance:
dynamic access control for enterprise networks. In WREN ’09.

[37] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and
S. Krishnamurthi. The Margrave tool for firewall analysis. In LISA
’10.

[38] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurth, S. Ratnasamy,
and I. Stoica. FairCloud: Sharing The Network In Cloud Computing.
In SIGCOMM ’12.

[39] B. Raghavan, K. V. Vishwanath, S. Ramabhadran, K. Yocum, and
A. C. Snoeren. Cloud Control with Distributed Rate Limiting. In
SIGCOMM ’07.

[40] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and
N. Zeldovich. Energy Management in Mobile Devices with the
Cinder Operating System. In EuroSys ’11.

[41] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar. Can the Production Network Be the
Testbed? In OSDI ’10.

[42] A. Shieh, E. G. Sirer, and F. B. Schneider. Netquery: A Knowledge
Plane For Reasoning About Network Properties. In SIGCOMM ’11.

[43] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh,
D. Williams, and F. B. Schneider. Logical Attestation: An
Authorization Architecture For Trustworthy Computing. In SOSP
’11.

[44] I. Stoica, H. Zhang, and T. S. E. Ng. A hierarchical fair service curve
algorithm for link-sharing, real-time and priority services. In
SIGCOMM ’97.

[45] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. Wetherall, and
G. Minden. A Survey of Active Network Research. In IEEE
Communications Magazine, January 1997.

[46] A. Voellmy and P. Hudak. Nettle: Taking the Sting Out of
Programming Network Routers. In PADL ’11.

[47] G. Wang, T. S. E. Ng, and A. Shaikh. Programming Your Network at
Run-time for Big Data Applications. In HotSDN ’12.

[48] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron. Better never
than late: meeting deadlines in datacenter networks. In SIGCOMM
’11.

[49] H. Yan, D. A. Maltz, T. S. E. Ng, H. Gogineni, H. Zhang, and Z. Cai.
Tesseract: A 4D Network Control Plane. In NSDI ’07.

[50] Z. Yang, D. Wetherall, and T. Anderson. A DoS-limiting Network
Architecture. In SIGCOMM ’05.

[51] Yap, Kok-Kiong and Huang, Te-Yuan and Dodson, Ben and Lam,
Monica S. and McKeown, Nick. Towards Software-Friendly
Networks. In APSys ’10.

[52] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica. Delay Scheduling: A Simple Technique for Achieving
Locality and Fairness in Cluster Scheduling. In EuroSys ’10.

https://aws.amazon.com/message/65648/
https://github.com/blog/1346-network-problems-last-friday
https://github.com/blog/1346-network-problems-last-friday

	Introduction
	Overview
	Interacting with PANE
	Requests
	Queries
	Hints

	Privilege Delegation
	Conflict Resolution
	Conflict-resolution Operators
	Strict vs Partial Fulfillment
	Compiler Complexity

	The PANE Controller
	Network Information Base
	Fault Tolerance and Resilience
	Additional Features

	Evaluation
	Application Usage
	Ekiga
	SSHGuard
	ZooKeeper
	Hadoop

	Implementation Practicality

	Discussion and Future Work
	Related Work
	Conclusion
	References

