
Subexponential algorithm for unique games

Claire Mathieu

March 11, 2011

Abstract

A summary of the Arora-Barak-Steurer 2010 subexponential algorithm for unique games – without proofs.

1 Problem and result

Here is the unique games problem. Fix an integer p > 0.
Input: A multigraph G, each edge being labeled by an equation. Edge {i, j} is labeled by an equation of the
form: xi − xj = a mod p.
Output: An assignment of values {x1, . . . , xn} → {0, 1, . . . , p− 1}.
Objective: Maximize the fraction of edges (equations) that are satisfied.
Here is the result.

Theorem 1.1. There is an algorithm for the unique games problem that takes as input an instance of value at
least 1− ε6 and outputs an assignment with value at least 1−O(ε log(1/ε)). The runtime is 2nO(1/ε)

.

The algorithm is in three steps: preprocessing, partition, exhaustive search.

2 Preprocessing

(This algorithm is sketched in Appendix A of the paper.)
1. Scale the input, duplicating every edge of G enough times so that the minimum degree is ≥ d1.

2. Create a new graph G′ as follows:
For each vertex v of G

(a) Let d denote the degree of v. Replace v by d new vertices v0, v1, . . . , vd−1, each connected to
one of v’s old neighbors (self-loops become un-looped).

(b) Add new edges forming an expander graph over vertices {v0, v1, . . . , vd−1}, regular of degree
d0 ≥ 9, for example as follows: choose a random involution σ over dd0, and if σ(i) = j then
add an edge from vbi/d0c to vbj/d0c.

(c) Add d0 + 1 self-loops at each vertex.

3. All new edges are labeled by equality constraints, xi − xj = 0 mod p.
By (G′

i,j), we denote the scaled adjacency matrix of G′ such that each row sums to 1 and each column sums to
1: G′ is stochastic. Additionally, G′ is lazy, meaning that G′

i,i ≥ 1/2 for all i.

Lemma 2.1. (1) An assignment of G with value 1− ε yields an assignment of G′ with value at least 1− ε/20.
(2) An assignment of G′ with value 1− ε/10 yields an assignment of G with value at least 1− ε.
(3) G′ is stochastic and lazy.

Henceforth, we will assume that the input graph is stochastic and lazy.

3 Small set expansion subroutine

The second step requires solving the following problem, called the small set expansion problem. The expansion
of a set S of vertices is |E(S, V −S)|/(2|E(S)|+ |E(S, V −S)|). In other words, first pick a random vertex i ∈ S,
then pick a random neighbor j of i: the expansion of S is the probability that j is in S.



Fix ε > 0.
Input: A stochastic lazy multigraph G.
Output: A subset S of vertices with size at most n1−ε.
Objective: Minimize the expansion of S.
(This algorithm is implicit in the proof of Lemma B.3 in Appendix B of the paper.)
Small set expansion subroutine

1. For each number of steps s = 1, 2, . . . , O(log n),

(a) Compute Gs

(b) For each vertex i and for each threshold t,

(c) Let S = {j : Gs
i,j > t}.

2. Output the S of minimum expansion, among all the ones with size less than or equal to n1−ε.
The analysis relies on a new definition. The τ -threshold rank of a stochastic graph G is the number of eigenvalues
of the adjacency matrix that are greater than or equal to τ .

Lemma 3.1. If G is stochastic, lazy, and has (1− ε5)-threshold rank at least n100ε, then the small set expansion
algorithm returns a set with expansion O(ε2).

4 Partition

(This algorithm is sketched in Section 4 of the paper.)
1. S = {V } and P = ∅.

2. For t = 1, 2, . . . (10/ε) log(1/ε)

(a) For each set A in S:
While the (1− ε5)-threshold rank of A is greater than n100ε

i. S ← output of the small set expansion subroutine, executed on A. Add S to S ′.
ii. A← A− S. Add selfloops to A to make it stochastic

Add A to P.

(b) S ← S ′.

3. Output P ∪ S.

Lemma 4.1. If G is stochastic and lazy, then the Partition algorithm outputs a partition of V such that the
fraction of edges across parts is at most 1−O(ε log(1/ε)), and such that each part has (1− ε5)-threshold rank less
than n100ε.

5 Non-expanding set enumeration subroutine

The third step requires solving the following subproblem, called the non-expanding set enumeration problem.
Input: A stochastic lazy multigraph G.
Output: A collection C of subsets of vertices.
Objective: For every subset S∗ of V with expansion less than ε, some set S ∈ C should have small symmetric
difference with S∗.
(This algorithm is sketched in Section 2.1 of the paper.)



Non-expanding-set enumeration subroutine.

1. Compute the subspace U spanned by eigenvectors with eigenvalues greater than or equal to 1− η.
Let U1 denote the unit sphere of U .

2. Let N be a collection of points of U1 such that U1 ⊆ ∪x∈NB(x,
√

ε/η). For example, N could be a
random subset of U1 of size O((η/ε)r−1), where r denotes the dimension of U1.

3. For δ = 1, 2, . . . , n, for each x ∈ N ,
put in C the set S = {i : xi ≥ 1/(2

√
δ)}.

Lemma 5.1. Let C denote the output of the enumeration algorithm. Then, for every S∗ of V with expansion
less than ε, some set S ∈ C has symmetric difference with S0 less than or equal to 8(ε/η)|S∗|. The runtime is
O(erpoly(n)), where r denotes the (1− η)-threshold rank of G.

6 Exhaustive search

(This algorithm is presented in Section 5 of the paper.)

1. Let Ĝ denote the graph obtained from G by replacing each vertex i by p vertices i0, i1, . . . , ip−1,
and each edge {i, j} with label xi − xj = a mod p by p edges between ik and jk−a mod p.

2. Let C ← output of the non-expanding-set enumeration subroutine on Ĝ with η = ε5.

3. For each S ∈ C,
Define an assignment of V (G) as follows: For each i ∈ V , let xi = 0 if S contains none of
{i0, i1, . . . , ip−1}, and xi = k if k is minimum such that ik ∈ S.

4. Ouput the best assignment

Lemma 6.1. Let G be stochastic, lazy, and with (1 − ε5)-threshold rank less than n100ε. If the unique games on
G has value at least 1− ε, then the above algorithm outputs an assignment with value at least 1− 20ε/η.
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