
On-line Bipartite Matching Made Simple

Benjamin Birnbaum∗ Claire Mathieu†

Abstract

We examine the classic on-line bipartite matching problem studied by Karp, Vazirani, and
Vazirani [8] and provide a simple proof of their result that the Ranking algorithm for this
problem achieves a competitive ratio of 1− 1/e.

Introduction

Introduced in 1990 by Karp, Vazirani, and Vazirani [8], on-line bipartite matching was one of the
first problems to receive the attention of competitive analysis. The input to the problem is a
bipartite graph G = (U, V,E), in which the vertices in U arrive in an on-line fashion and the edges
incident to each vertex u ∈ U are revealed when u arrives. When this happens, the algorithm may
match u to a previously unmatched adjacent vertex in V , if there is one. Such a decision, once
made, is irrevocable. The objective is to maximize the size of the resulting matching.

In their paper, Karp et al. first show that the competitiveness of the problem is trivial in
the deterministic case. Any algorithm that always matches a vertex in U if a match is possible
constructs a maximal matching, and therefore such an algorithm has a competitive ratio of 1/2.
On the other hand, given any deterministic algorithm, it is easy to construct an input (in which
each vertex u ∈ U has one or two neighbors in V) that forces that algorithm to find a matching of
size no greater than half of the optimum.

The competitiveness of the problem in the randomized case is more interesting. The authors
show that the naive randomized algorithm, which flips a coin each time a vertex u ∈ U arrives
and chooses a random match for u based on this coin flip, does no better than the deterministic
algorithms. However, an equally simple, but subtly different, algorithm does significantly better,
achieving a competitive ratio of 1− 1/e ≈ 0.63. This algorithm, called Ranking, initially chooses a
single random ranking on the vertices in V that is used to choose matches throughout the entire
run of the algorithm, in a way described more precisely below.

Ranking Algorithm:
Initialization:
Choose a random permutation (ranking) σ of the vertices of V .
Online Matching:
Upon arrival of vertex u of U :

Let N(u) be the set of neighbors of u that have not been matched yet.
If N(u) 6= ∅, match u to the vertex v ∈ N(u) that minimizes σ(v).

∗Department of Computer Science, University of Washington. Email: birnbaum@cs.washington.edu.
†Computer Science Department, Brown University. Email: claire@cs.brown.edu.

1

The paper concludes by showing that Ranking’s competitive ratio of 1 − 1/e is the best possible
(asymptotically) for any randomized algorithm for the problem.

Since the publication of this initial paper, on-line bipartite matching has received considerable
attention. For example, Azar, Naor, and Rom [3] use the idea of the Ranking algorithm to obtain
an optimally-competitive randomized algorithm for an on-line assignment problem. As in on-line
bipartite matching, the input to this problem is a bipartite graph G = (U, V,E) in which the vertices
in U arrive on-line. However, unlike the matching problem, every vertex in U must be assigned to a
vertex in V , and the goal is to minimize the maximum load on a vertex in V . The authors provide
the following algorithm for this problem: For 1 ≤ j ≤ |U |, choose a separate random ranking σj of
the vertices in V . When a vertex u ∈ U arrives, let j be the lowest load of a vertex in V that is
adjacent to u. Out of the vertices adjacent to u that have load j, choose the one that minimizes
σj+1. They then use the result that Ranking achieves a competitive ratio of 1− 1/e to show that
their algorithm has a competitive ratio of 1 + ln(|U |), a result which is optimal up to an additive
constant of 1.

In a more recent paper, Azar and Richter [4] make use of the Ranking result in their analysis
of a switch routing problem. In the “unit-version” of this problem, a network switch consists of
several input FIFO queues. At each time step, some number of packets arrive on-line, each destined
for one of the input queues. A packet is lost if the queue to which it is sent is full. After each time
that packets arrive, the algorithm must choose one of the input queues to transmit one packet.
The authors provide a randomized algorithm for this problem that can be shown to be equivalent
to Ranking on a bipartite graph, thereby proving that their algorithm achieves a competitive ratio
of 1− 1/e.

Azar and Chaiutin [2] reduce another switch routing problem to on-line bipartite matching in
order to apply its results to their problem. In their model, the switch contains some number of
output ports, each of which has a buffer for packets. At each time step, some number of packets
arrive and some set of the output buffers transmit a packet. (Both events are controlled by the
adversary). The algorithm must match each incoming packet to an output port that is not full,
and the goal is to maximize the number of packets transmitted.

Other papers, though not using the result of Karp et al. directly, examine variants of the on-line
bipartite matching problem. In the work of Agarwal and Puri [1], for example, the vertices on one
side of the graph represent requests to send files to mobile nodes before some deadline, and the
base station (algorithm) must decide on-line, for each mobile node and each time step, which file to
send. In the special case where the price per unit of data transmitted is uniform and each channel
to a mobile node has unit capacity, this reduces to on-line bipartite matching.

As another example, Blum, Sandholm, and Zinkevich [5] study a variant that arises in the
context of on-line market clearing. In their model, two types of bids for a commodity (buy and
sell) arrive on-line and are active for some amount of time. One of the objectives they study, that
of maximizing the number of buy and sell bids matched, reduces to a graph matching problem
whose main difference from on-line bipartite matching is that both sets of vertices arrive on-line.

More recently, Mehta et al. [11] illustrate a connection between on-line matching and sponsored
search auctions, the way search engines like Google choose which advertisements to show for a
search. In such an auction, companies, called bidders, bid on search terms, called keywords, in which
they are interested. The search engine, which cannot exceed the declared budgets of the bidders,
chooses which advertisements to display and how much to charge the bidders based on their bids.
The authors of this paper show that the problem of maximizing the search engine’s revenue in a

2

sponsored search auction can be modeled as a generalization of on-line bipartite matching. In this
generalization, the vertices in U represent keywords and the vertices in V represent bidders. The
keywords arrive on-line, and the bids from each bidder for a keyword u ∈ U are revealed once u
arrives. The algorithm then decides, irrevocably, which bidder to display for that keyword. At
the end of the algorithm, the revenue of the search engine from each bidder is the minimum of its
budget and the sum of its bids for the keywords for which it was chosen. It is not hard to see that
this problem, called the Adwords problem, reduces to on-line bipartite matching when every bid is
either 1 or 0 and the budget of every bidder is 1.

In their paper, Mehta et al. provide a deterministic algorithm achieving a competitive ratio of
1 − 1/e when the ratio of the maximum bid to the smallest budget approaches 0, an alternative
proof of which is given by Buchbinder, Jain, and Naor [6]. Variants of this problem are also studied
by Goel and Mehta [7] and Mahdian, Nazerzadeh, and Saberi [10]. Currently, the best competitive
ratio for the Adwords problem with large bids (up to size of the budgets) is 1/2, achieved in a
greedy deterministic algorithm from Lehmann, Lehmann, and Nisan [9] (for a generalization of the
problem).

Beating 1/2 for the Adwords problem with large bids, or showing that it is impossible to do so, is
an interesting, and so far unsolved problem. By the lower-bound for on-line bipartite matching, an
algorithm for the Adwords problem with a competitive ratio better than 1/2 must be randomized.
Therefore, to find such an algorithm, it is important to understand the proof of the result on the
competitive ratio of Ranking, stated as Theorem 1 below. Towards this goal, we try in this paper
to give an intuitive proof of this result.

Surprisingly, a mistake in a lemma of the original 1990 paper was discovered by Krohn and
Varadarajan seventeen years after it first appeared. Very recently, Goel and Mehta [7] corrected
this mistake and in the process provided a detailed proof of Theorem 1 that is simpler than the
original proof. The proof presented here is a more concise alternative analysis.

Theorem 1 ([7, 8]). The Ranking algorithm has competitive ratio at least 1 − (1 − 1/(n + 1))n,
which is asymptotically 1− 1/e.

A Simple Proof of the Theorem

Let Ranking(G, π, σ) denote the matching constructed on input G for arrival order π, when the
ranking is σ. The following Lemma is an easy structural observation, and the argument is used
in [7] and [8]. (See Figure 1 for an illustration.)

Lemma 2. Let x be a vertex, H = G \ {x}, and πH and σH be the orderings of UH and VH

induced by π and σ respectively. If the matchings Ranking(H,πH , σH) and Ranking(G, π, σ) are not
identical, then they differ by a single alternating path starting at vertex x.

Thus, for every σ, Ranking(G, π, σ) has at least as many edges as Ranking(H,πH , σH). Applying
this repeatedly to remove vertices which are not in the maximum matching, it follows that the
competitive ratio is determined by graphs that have a perfect matching. Fix a graph G and an
arrival order π. Henceforth we assume that G has a perfect matching m∗ : U → V , and let n = |U |.
To simplify notation, we write Ranking(σ) to mean Ranking(G, π, σ).

Since the Ranking algorithm constructs a maximal matching, it has at least half as many edges
as the maximum matching. The well-known one-line proof of this argues that for every edge {u, v}

3

U

random
ranking σ

arrival
order π

V UH VH

x xarrival
order πH

random
ranking σH

Figure 1: Illustration of Lemma 2. On the left is the original matching constructed by the al-
gorithm, Ranking(G, π, σ), and on the right is the matching constructed by the algorithm after
vertex x is removed, Ranking(H,πH , σH) (with the edges from Ranking(G, π, σ) that are not in
Ranking(H,πH , σH) shown as dashed lines). The two matchings differ by at most a single alter-
nating path.

of the maximum matching, if v is not matched by Ranking then u must be matched by Ranking.
The following Lemma refines this structural observation slightly by focusing on the ranks of the
matched vertices. The arguments of this Lemma, as well as the next, are used in [7] and [8].

Lemma 3. Fix u ∈ U and let v = m∗(u). If v is not matched by Ranking(σ), then u is matched
by Ranking(σ), to a vertex v′ whose rank σ(v′) is less than t = σ(v).

Proof. If v is not matched by Ranking(σ), then, when u arrives, it has some eligible neighbors since
v is one; so u gets matched to the eligible neighbor v′ with minimum rank.

With the help of Lemma 3, we can give an intuitive but incorrect “proof” of Lemma 5 below,
from which the Theorem easily follows. Here is a slightly technical variant that yields a less intuitive
but correct proof of Lemma 5.

Lemma 4. Let u ∈ U and v = m∗(u). Let σ′ be a permutation1 and let σi be the permutation
obtained from σ′ by removing vertex v and putting it back in so that its rank is i. If v is not matched
by Ranking(σ′), then, for every i, u is matched by Ranking(σi) to a vertex vi whose rank σi(vi) is
at most t = σ′(v).

Proof. Let m = Ranking(σ′) and mi = Ranking(σi). As in Lemma 2, matchings m and mi, if not
identical, differ along a single alternating path starting at vertex v with an edge of mi. Moreover, it

1The reason for the change of notation from σ to σ′ will become clear in the proof of Lemma 5.

4

is easy to see that the path is monotone: the vertices of V traversed have increasing rank in σi. So,
mi matches u to a vertex vi whose rank is σi(vi) ≤ σi(v′), where v′ = m(u). (See Figure 2 for an
illustration.) By definition of σi, |σi(v′)−σ′(v′)| ≤ 1. By Lemma 3, σ′(v′) < t. Thus σi(vi) < 1 + t,
and by integrality σi(vi) ≤ t.

Lemma 5. Let xt denote the probability over σ that the vertex of V of rank t is matched by the
algorithm. Then 1− xt ≤ (1/n)

∑
1≤s≤t xs.

Before doing the proof, let us see how, equipped with this Lemma, it is now easy to complete
the proof of Theorem 1. Since G has a perfect matching, the competitive ratio is the infimum
of (1/n)

∑
1≤s≤n xs. We rewrite Lemma 5 as St(1 + 1/n) ≥ 1 + St−1, where St =

∑
1≤s≤t xs. It

is easy to see that the infimum occurs when all inequalities are tight equalities. This yields St =∑t
s=1(1−1/(n+1))s for all t. Hence, the competitive ratio is at least (1/n)

∑n
s=1 (1− 1/(n+ 1))s =

1− (1− 1/(n+ 1))n, which approaches 1− 1/e as n approaches infinity.
We now conclude the proof of Theorem 1 with a proof of Lemma 5.

Proof of Lemma 5. We first give an intuitive but incorrect “proof” based on Lemma 3. Let v
denote the vertex of V whose rank is t. The probability that v is not matched by the algorithm
is 1 − xt. Let u be such that v = m∗(u). Let Rt−1 ⊂ U denote the set of vertices of U matched
by the algorithm to the vertices of V who have rank less than or equal to t − 1. The expected
cardinality of Rt−1 is

∑
1≤s≤t−1 xs. By Lemma 3, if v is not matched by the algorithm then u is an

U

random
ranking σ'

arrival
order π

V U V

v

arrival
order π ranking σi

v

v'

vi

v'

rank i

u u

Figure 2: Illustration of Lemma 4. On the left is the matching m and on the right is the matching
mi (with the edges from m that are not in mi shown as dashed lines.) The two matchings can
differ by at most one alternating path starting at v, and this alternating path is monotone. Hence,
in mi, vertex u must be matched to a vertex whose rank is no greater than the rank of v′ in mi.

5

element of Rt−1. If only u and Rt−1 were independent, we would write that, conditional on Rt−1,
the event that u ∈ Rt−1 would have probability |Rt−1|/n for a random u ∈ U , and this would imply
1− xt ≤ (1/n)

∑
1≤s≤t−1 xs. Unfortunately, u and Rt−1 are not independent.

Here is a corrected argument based on Lemma 4. Given a random permutation σ, define a new
random permutation σ′ obtained by choosing a vertex v of V uniformly at random, taking it out
of σ, and moving it back in so that its rank is t. Consider the matching Ranking(σ′). Let u be
such that v = m∗(u). By Lemma 4 (applied for i defined appropriately so that σi = σ), if v is
not matched by Ranking(σ′) (as before, this event has probability 1 − xt), then u is matched by
Ranking(σ) to a vertex ṽ such that σ(ṽ) ≤ t, or in other words, u ∈ Rt. Now, u is independent of
σ, hence independent of Rt. So, conditional on σ, the event that u ∈ Rt has probability |Rt|/n.
Taking expectations over σ, this equals (1/n)

∑
1≤s≤t xs, hence the proof.

Acknowledgements

The authors wish to thank Anna Karlin, under whose direction Ben Birnbaum started this project,
Yossi Azar, for insightful discussions, and Elisa Celis and Alex Jaffe, for comments on an early
version of this paper.

References

[1] M. Agarwal and A. Puri. Base station scheduling of requests with fixed deadlines. In INFO-
COM 2002: twenty-first annual joint conference of the IEEE Communications Societies, pages
487–496. IEEE, 2002.

[2] Yossi Azar and Yoel Chaiutin. Optimal node routing. In Proceedings of STACS ’06 (Lecture
Notes in Computer Science 3884, pages 596–607. Springer, 2006.

[3] Yossi Azar, Joseph (Seffi) Naor, and Raphael Rom. The competitiveness of on-line assignments.
In SODA ’92: Proceedings of the third annual ACM-SIAM symposium on discrete algorithms,
pages 203–210, Philadelphia, PA, USA, 1992. Society for Industrial and Applied Mathematics.

[4] Yossi Azar and Yossi Richter. Management of multi-queue switches in QoS networks. Algo-
rithmica, 43(1-2):81–96, 2005.

[5] Avrim Blum, Tuomas Sandholm, and Martin Zinkevich. Online algorithms for market clearing.
J. ACM, 53(5):845–879, 2006.

[6] Niv Buchbinder, Kamal Jain, and Joseph (Seffi) Naor. Online primal-dual algorithms for
maximizing ad-auctions revenue. In Proceedings of ESA ’07 (Lecture Notes in Computer
Science 4698), pages 253–264. Springer, 2007.

[7] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with
applications to adwords. In SODA ’08: Proceedings of the nineteenth annual ACM-SIAM
symposium on discrete algorithms, pages 982–991, Philadelphia, PA, USA, 2008. Society for
Industrial and Applied Mathematics.

6

[8] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite
matching. In STOC ’90: Proceedings of the twenty-second annual ACM symposium on Theory
of computing, pages 352–358, New York, NY, USA, 1990. ACM Press.

[9] Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreasing
marginal utilities. In EC ’01: Proceedings of the 3rd ACM conference on electronic commerce,
pages 18–28, New York, NY, USA, 2001. ACM.

[10] Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi. Allocating online advertisement
space with unreliable estimates. In EC ’07: Proceedings of the 8th ACM conference on elec-
tronic commerce, pages 288–294, New York, NY, USA, 2007. ACM.

[11] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and generalized
online matching. J. ACM, 54(5):22, 2007.

7

