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Abstract

We present a framework for rendering multivalued volumes interactively and flexibly. Users can

explore these volumes more effectively, particularly relationships among the multiple data values de-

fined at each spatial location, because the renderer provides interactive control over the visual relation

of the values.

The four steps of our framework transform multivalued datasets into interactive visualizations that

can be explored and manipulated. We first derive new values from the primary datasets. We then ab-

stract both the primary and derived values into visual representations. In the third step we map the data

through transfer functions that produce color and opacity. Finally, we render the layers interactively as

users manipulate the transfer functions.

Contributions of this work include the conceptual framework, the interactive rendering of multival-

ued volumes, a thread-like density volume to represent continuous directional information, a comple-

mentary volume to generate a halo around each thread, a derived exploratory culling volume interac-

tively to control control the complexity of a layer, and an interactive implementation using commodity

PC graphics hardware. We demonstrate these contributions with a series of example visualizations of

2nd-order-tensor-valued MRI data and with simulated 3D fluid flow data.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism; I.4.10 [Computer

Graphics]: Image Processing and Computer Vision—Image Representation Volumetric J.3 [Computer

Applications]: Life and Medical Sciences

Keywords: Scientific Visualization, Diffusion Tensor Imaging (DTI), Diffusion, Fluid Flow, Medical

Imaging, Direct Volume Rendering, Volume Graphics, Volume Shading, Multi-textures, PC Graphics
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Figure 1: Interactive volume rendering of [update entire to detail info we see when we have real image]

one hemisphere of a human brain dataset. At each point in the dataset a tensor-valued diffusion-rate mea-

surement captures how fast water diffuses in all directions (different directions can have different rates).

The rendering shows correlations among components of the tensor field and with an additional scalar

field. The volume renderings permit interactive exploration of these multivalued volumes and enhance

understanding of the data and the underlying white-matter structures.

1 Introduction

We describe a new multilayer interactive volume-rendering approach to exploring multivalued 3D scien-

tific data. Our volume-rendering work has been driven primarily by two scientific applications: under-

standing anatomy, development, and pathology in the brain from neuroimaging and understanding blood

flow in coronary arteries using direct numerical simulation data. These driving applications provide the

2



Online Submission ID: 0

problems; the extent to which our application facilitates their solution helps to evaluate and guide the

algorithm and tool development [Brooks 1996].

We believe that data exploration is essential to the scientific process. A scientific hypothesis can often be

evaluated with a distillation of acquired data; but understanding the support for a hypothesis or developing

a new one can best be done through a more complete understanding of the data. This is particularly true

for multivalued scientific data, in which relationships among values make the problem more complex.

Creating comprehensive and accurate visualizations for exploring 3D multivalued data is challenging.

The first challenge is to create visualizations in which the data nearer to the viewer does not excessively

obscure that farther away: choices must be made about what to show and how to leave visual bandwidth

for things farther away. The second challenge is to represent many values and their interrelationships at

each spatial location. As an example, our neuroimaging data has seven primary values at each point and

additional derived values can further illuminate the underlying biology. Similarly, the flow data has four

primary values at each point, as well as another three to six useful derived values. The multiple values

exacerbate the obscuration problem not only because more values must be shown at each spatial location,

but also because important relationships among the different data values require even more of the precious

visual bandwidth. The third challenge is to convey relationships among different spatial locations – arrows

at different points can show velocity, but a streamline connecting these velocities at many points shows

an important spatial relationship. The fourth challenge is to render the large datasets interactively – for

our examples, datasets sufficient to address the scientific questions under study generally contain 2563

samples. Polygonal representations conveying as much complexity as volume rendering for datasets that

large are difficult to render interactively.

1.1 Interactive Complementary Volume Layering

We build on the idea of multilayer 2D visualizations [Laidlaw et al. 1998c; Laidlaw et al. 1998b; Kirby

et al. 1999], implementing an interactive 3D analog to 2D compositing. Figure 1 shows a volume rendering

of seven-valued brain-imaging data. One layer of this rendering is a direct volume rendering conveying

tissue type; two complementary layers show connectivity information with a thread-like representation,

and halos augmenting the thread that give a better sense of depth relationships. Figure 2 shows how layers
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Figure 2: Left: a direct-volume-rendered layer showing regions with different diffusion anisotropy. Right:

a hair layer showing both the anisotropy and diffusion direction. The two layers are combined in the center

image. Combining the multiple layers requires little additional visual bandwidth and conveys significantly

more information.

can combine. Our conceptual framework breaks the design process into four steps: deriving additional data

values from the primary ones, abstracting the values visually, mapping the abstractions through transfer

functions to hardware primitives, and interacting with the visualizations. We demonstrate images created

from combinations of scalar, vector, and tensor fields, using a new ‘thread and halo’ implementation in

our visual representation for vector fields. Figure 3 illustrates the thread represention with and without

halos. We also describe data-driven culling of the visualization. The system is implemented on a PC using

a commodity graphics card, and users can interactively control parts of the visual mapping through 1D

and 2D transfer functions.

In the next section we discuss related work. We then describe each of the main contributions of the work

in individual sections: layering complementary volumes, specifying and creating layers, complementary

thread and halo layers, interactive culling, and editing one- and two-valued transfer functions. Results for

our two driving applications are then presented and discussed, and a discussion of some of the lessons

learned and issues raised precedes the summary and conclusions. Finally, we give hardware-specific

details of the implementation.
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Figure 3: A threads volume showing brain connectivity information (the front of the head points right in

both images). Halos, rendered only in the right image, clarify the depth ordering and 3D structure.

2 Related Work

Below we survey relevant work in diffusion tensor field visualization, vector field visualization, hardware-

accelerated volume rendering, and thread rendering.

2.1 Visualization of Di�usion Tensor Fields

Several approaches have been made to visualizing diffusion tensor imaging (DTI) datasets. Since a diffu-

sion tensor is a symmetric matrix with positive eigenvalues, an ellipsoid is a natural geometric represen-

tation for it. Pierpaoliet al [Pierpaoli and Basser 1996] used a 2D array of ellipsoids to visualize a 2D

diffusion tensor field. To give a more continuous visual appearance, Laidlawet al [Laidlaw et al. 1998a]

normalized the ellipsoids. Additionally, they used concepts from oil painting – mapping data components

onto brush strokes and building up the strokes in multiple layers – to represent more of the data, creating

a second kind of 2D visualization showing all of the multiple values simultaneously.

None of the 2D methods generalize well to 3D. Placing the ellipsoids in 3D to visualize a 3D dataset has
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two drawbacks. First, placing an ellipsoid at every data point in three-space means that only the outermost

layer of ellipsoids is visible; all the others are obscured. Second, continuity cannot be shown in an ellipsoid

representation, and without continuity information, neural connectivity is difficult to understand.

Kindlmannet al [Kindlmann and Weinstein 1999] overcame the problem of obscuring data points in 3D

with a direct-volume-rendering approach: to every data point they assign a certain opacity and color based

on the underlying diffusion tensor dataset, using the concept of a “barycentric map” for the opacity and

“hue-balls” and “lit-tensors” for coloring and lighting. However, it is still difficult to pick out anatomically

distinct regions and understand their connectivity. Our similar direct-volume-rendering technique makes

connectivity more apparent by using a coloring and lighting concept based on the diffusion magnitude

and the diffusion anisotropy. We also expand the use of the barycentric opacity map to generate color in

addition to opacity.

Basseret al [Basser et al. 2000] calculated the trajectories of neural fibers in brain white matter that

were generated from the diffusion tensor field by integrating along the eigenvector with the largest eigen-

value. Zhanget al [Zhang et al. 2000] used this method to generate streamtubes to visualize continuous

directional information in the brain (the streamtubes are calculated during a preprocessing step). The

streamtubes solve the problem of representing continuity but at the cost of the information in areas with-

out streamtubes. We extend Zhang et al.’s algorithm to continue streamtubes through areas with planar

anisotropy. Additionally, we filter the streamtube paths into a thread density volume rather than represent-

ing them as polygonal models.

2.2 Visualization of Vector Fields

Of the extensive work on creating effective visualizations of vector fields, the following two papers are

closely related to our work. Interrante and Grosch [Interrante and Grosch 1997] visualized 3D flow

with volume line integral convolution (LIC). Adapting artistic techniques, they introduced 3D visibility-

impeding halos to improve the perception of depth discontinuities in a static volume renderer. As they

demonstrated with offline rendering, halos improve depth perception and help make complex 3D struc-

tures easier to read. Our technique for achieving this halo effect in real time uses a texture-based volume

renderer that makes complex 3D structures easier to read in the visualizations.
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Zöckleret al [Zöckler et al. 1996] introduced illuminated field lines to visualize 3D vector fields. Our

illuminated tube representation is similar, but our volumetric rendering approach renders at a rate indepen-

dent of the tube or line complexity, and combines with our other volumetric layers to create visualizations

that can convey more information.

2.3 Hardware-Accelerated Volume Rendering

Hardware-accelerated volume rendering often uses texture memory to store 3D volumes. The data is then

mapped onto slices through the volume and blended together to render an image.

Cabralet al [Cabral et al. 1994] introduced a 2D texture approach for such rendering. Three stacks

of 2D slices are generated through the volume, one perpendicular to each of coordinate axes. As the

viewpoint changes, the renderer chooses the best stack to render. This approach exploits hardware-based

bilinear interpolation in the plane of the slice. However, three copies of the volume must be stored in

texture memory.

Van Gelder and Kim [Van Gelder and Kim 1996] avoid the redundant data copies by rendering with 3D

textures. Generally view-aligned slices are used, exploiting trilinear interpolation in hardware. Our imple-

mentation uses 3D textures with view-aligned slices. In addition, we use hardware texture compression to

further reduce texture memory consumption.

Several volume-rendering implementations use commodity graphics cards [?] or distributed hard-

ware [?]. However, these approaches have not targeted visualizing multivalued datasets.

Kniss et al [Kniss et al. 2001] use interactive transfer functions operating on directional derivative

values to select boundaries in scalar-valued datasets. We use this technique to visualize our scalar-valued

datasets, although our interactive manipulation widgets are less sophisticated than theirs. We extend this

technique to multivalued datasets by deriving a scalar value from the original dataset and then calculating

the directional derivative from the derived value.

Engelet al [Engel et al. 2001] rendered more quickly with fewer slices by using additional precalcu-

lated volumes. We use the same hardware they do, but target multivalued datasets and do not use their

precalculated volumes to reduce slice count.

Lum and Ma [Lum and Ma 2002] implemented a hardware-accelerated parallel nonphotorealistic vol-
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ume renderer that uses multi-pass rendering on consumer-level graphics cards. Their system emphasizes

edges or depth ordering using artistically motivated techniques. Our system also implements a multi-pass

volume renderer; like Lum and Ma, we utilize multiple rendering passes to enhance visual cues, but our

rendering is targeted to exploratory visualization of multivalued data.

2.4 Hair Rendering

Kajiya and Kay [Kajiya and Kay 1989] introduced texels to render realistic-looking fur. Texels are 3D

texture maps in which both a surface frame (normal and tangent) and the parameters of a lighting model

are distributed throughout a volume; they thus represent a complex collection of surfaces with a volumetric

abstraction. Kajiya and Kay also developed a Phong-like lighting model for thread; our similar approach

for our thread density volume defines free-floating threads. Instead of providing parameters for lighting,

we store derived values from the multivalued datasets along with tangent and density values throughout

the volume.

Lengyel [Lengyel 2000] uses a volumetric texture approach to render short threads in real time that

is based on a stack of partially transparent 2D texture layers. In a preprocessing step, procedurally de-

fined threads are filtered into layers and blended together. By contrast, our data-defined threads remain

individually distinguishable. In Lengyel’s approach, lighting calculations are performed at run time using

Banks’ [Banks 1994] hair-lighting model. We use the same lighting model with a different implementation

appropriate for volume rendering.

3 A Layered Volume-Rendering Framework

Our visualization framework has four steps. We begin with primary multivalued volumetric data from two

sources: the brain imagery datasets were acquired experimentally using DTI and the flow datasets were

created using direct numerical simulation.
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3.1 Calculate Derived Datasets

Since the primary data is often difficult to interpret directly, our first step is to calculate derived volumes

of data with more intuitive interpretations. For example, DTI datasets are second-order tensor fields. It is

often useful to decompose these into several scalar and vector fields to reduce the problem of rendering

a tensor field into one of rendering several simpler fields. Speed, derived from velocity, is such a de-

rived quantity. Some derived quantities are not simpler, but instead provide a different view of a dataset.

Vorticity, a vector derived from velocity, is an example; it captures the rotational component of velocity.

3.2 De�ne Visual Abstractions

In the abstraction step, we group the data volumes into layers of volume-based visual representations.

While some layers consist of a direct mapping of derived values to a volume, others consist of a calculated

visual effect that helps portray the underlying data; the effect is filtered or scan-converted into a volume.

The visual abstractions chosen depend on characteristics of the derived data and the problem at hand. For

example, neural connectivity can be portrayed with a set of thread-like fibers derived from the data and

then scan-converted into a volume. Anatomical references, such as the skull or eyes, are another example;

they can help give context to a visualization.

Our layered approach provides flexibility in rendering and manipulating multivalued datasets. However,

simultaneously visualizing two or more layers requires devising representations that complement one an-

other. Even elegantly structured representations can be difficult to comprehend: they may be too densely

populated to show regions of interest or may lack adequate depth cues. Designing good abstractions or

visual effects and good ways to combine them is a difficult but essential part of the visualization process.

3.3 Map Data with Interactive Transfer Functions

The mapping step defines transfer functions that assign color an opacity to data values and shader programs

that control lighting parameters. Color and opacity mappings can be defined independently from the

lighting model for each layer. The mapping step allows us to decouple the data values from their visual

representation, so that we can mainpulate the visual charateristics of the data without changing the data
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Figure 4: At left, the virtual light that passes through the red thread and its dark halo travels a long distance

through the dark cloud of the halo towards the silhouette and a shorter distance through the thread itself.

At right, using the same color for the halo as for the background generates a gap.

itself.

Our framework currently provides three types of transfer functions: 1D, 2D, and 2D barycentric. The 1D

transfer function takes a scalar data value and returns a color and opacity. Both the 2D and 2D barycentric

transfer functions take two input values and return a color and opacity.

3.4 Visualize and Explore

In the final step of the framework, we render the multiple volumes and use interaction widgets to con-

trol the visual appearance of each layer. Our texture-based volume renderer allows our system to run

interactively on a PC with a commodity graphics card.

Our system uses view-aligned slices through a 3D texture. We need multiple rendering passes in order

to draw all the volumetric layers. Thus, as we render the volume, we iterate through the slices from farthest

to nearest and execute multiple shader programs per slice, one for each volumetric layer.

We use the mouse and 2D widgets placed in screen space to manipulate visual attributes of each layer

while exploring the dataset. The widgets are linked directly to the transfer functions defined in the mapping

step.

4 Threads and Halos

Inspired by hair-rendering techniques such as Kajiya and Kay’s texels [Kajiya and Kay 1989] and Lengyel’s

shell textures [Lengyel 2000], we represent continuous directional information using thread (see Fig. 2
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Figure 5: Filtering a path into a volume (2D view). For each voxel within a radius of two voxels from a

path, we use the shortest distance to the path as the input to the filter (at right). The grid on the left shows

single-voxel spacing, as does the horizontal axis on the right.

Figure 6: Filtering a halo into a volume (2D view); red depicts the thread and black the halo around it.

The red curve is the filter for the thread and the black curve is the filter with which the halo is generated.

above). In general, we densely populate the volume with paths so as to represent as much of the under-

lying data as possible. The choice of a dense and representative set of paths displays the data faithfully

and completely. To clarify individual paths, we visually augment each path with a “halo”; our interaction

mode called exploratory culling selectively displays paths meeting certain criteria. Figure 3 above shows

a thread density volume with and without halos: without the halos, it is particularly difficult to identify

individual threads. Figure 4 shows the effect of a halo in clarifying the depth relationship.

The thread and halo volumes are precalculated and each thread in the volume corresponds to one path.

Note that since the paths are represented in a volume, the rendering time is independent of the number of

paths displayed. However, the diameter of the paths is limited by the resolution of the volume.

The paths and halos are filtered into volumes using a cubic B-spline filter that has a support of four

voxels for the thread (see Fig. 5) and six voxels for the halos (see Fig. 6).

Lighting for the thread is calculated using the model in [Banks 1994], which defines intensityI as
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I = kdIt
�p

1� (T �L)2
�p

+ks

�p
1� (T �H)2

�n
: (1)

HereIt is the combined output color from the transfer functions,N the normal,T the tangent,L the light

vector,H the vector halfway between the light vector and the view vector, andp the excess-brightness

diffuse exponent.

5 Layering Volumes

Our volume-renderer implementation uses a single stack of view-aligned texture-mapped slices, rendered

back to front. Lighting for the thread and halo layers is computed as in Eq.( 1). For all other volume

layers, a Phong lighting model (Eq.( 2)) is used. As in the thread lighting model,It is the combined output

color from the transfer functions,N is the normal,L the light vector,H the halfway vector,ka the ambient

contribution,kd the diffuse contribution, andn the specular exponent:

I = kaIt +kdIt(N �L)+ks(N �H)n (2)

Our implementation of texture-based volume rendering is embedded into a rendering framework built

on top of the VR library, VR Juggler [Bierbaum et al. 2001]. VR Juggler provides a coherent application

development environment for this and other related interactive virtual-reality applications. All our datasets

are mapped to OpenGL 3D textures that have a resolution of 2563 samples. We run the volume renderer

on PCs equipped with either a NVidia GeForce4 Ti 4600 or a NVidia Quadro4 900 XGL. Both graphics

cards have 128MB of texture memory, support 3D textures and texture compression, and provide hard-

ware for programmable texture blending. Rendering is performed using OpenGL with several extensions,

including NVidia’s texture shader and register combiner and the generic texture-compression extension

ARB texturecompression. We also use NVidia’s texture-shader and register-combiner specification tool,

NVParse, which lets us quickly change the shader programs for the different layers without recompiling

the volume renderer. This tool has been particularly helpful in iterating over the visual designs for the
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Figure 7: A sequence of renderings of a thread density volume with increasing length threshold from left

to right. The rightmost image shows only long paths.

example applications in this paper. More details on the implementation of the layered volume renderer

appear in the Appendix.

Each slice is rendered multiple times, once for each volume layer. Since each layer-rendering pass

for a slice can obscure parts of the previous one, the passes must be ordered carefully to ensure that the

layers work together. We render the direct-volume-rendered layers first, the halos second, and the thread

third. The direct-volume-rendered layers tend to reveal large structures and surfaces that are easy to make

out underneath the more finely detailed thread and halo layers. Rendering the thread layer last keeps the

threads slightly brighter.

6 Exploratory Culling

Interactively culling portions of the data using data-derived criteria has proven a powerful data-exploration

tool in removing excessive detail and exposing structures of interest. By labeling structures in the visual

representation layers and assigning those labels to transfer functions, we can control the color and opacity

of entire structures. This approach is particularly useful for the thread paths. It is often unclear beforehand

how many paths to generate for the thread density volume, as there is a tradeoff between generating too

few paths to accurately represent data features and generating so many paths that the volumes become

cluttered. By labeling each thread path with a parameter, e.g., path length, and selecting with a transfer

function criteria based on these features, we can interactively cull out paths that meet certain criteria.
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Figure 8: The interactive exploration tool. Clockwise from upper left are a 2D barycentric widget, a 1D

widget, a 2D Cartesian widget, and a 2D Cartesian culling widget. The data are from a 3D second-order

tensor field and a 3D scalar field acquired with MRI. Colored threads represent the tensor; the scalar is

shown in a direct-volume-rendered layer.

In Zhanget al’s [Zhang et al. in review] approach, changing culling parameters required an entire

preprocessing step taking minutes or even hours. With the exploratory culling mechanism, we can change

those parameters interactively and better understand which parameter values are more effective. Figure 7

shows the effect of one of those parameters on a visualization.

7 Interactive Manipulation

We provide several on-screen widgets to control transfer functions and let us change the volume’s ap-

pearance in real time. Figure 8 shows the interactive application. Each of the widgets defines a texture

that corresponds to an underlying transfer function of the form 1D, 2D, or 2D barycentric. For all of the

transfer-function manipulation widgets, color is HSVα. In all cases, color is manipulated along a 1D

axis. For the transfer functions of dimension higher than one, two or three 1D color manipulators are used

to specify colors across all the axes.

The 1D manipulation widget directly specifies the colors and opacities over the entire 1D domain. The

2D manipulation widget specifies color and opacity along each of the two axes (see Fig. 9 left). The colors
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Figure 9: Two 2D transfer function manipulation widgets. On the left, the tensor-product widget combines

the output from two 1D manipulators. On the right, the barycentric widget combines the output from three,

one for each edge of the triangle. Color is specified in HSVα. The red curve shows hue, green saturation,

blue value, and whiteα.

for the 2D domain are generated by averaging the colors of the two axes, while the opacities are combined

multiplicatively. The 2D barycentric manipulation widget defines colors and opacities over a triangular

space. We use this for the brain-diffusion-imaging examples because it manipulates the anisotropy metrics

naturally. In this application, the vertices of the barycentric space represent spherical diffusionS, planar

diffusionP and linear diffusionL. The user manipulates the color along each of the three edges (see Fig. 9

right). The color and opacity over the domain are generated by the weighted average of the colors and

opacities on the three edges.

Typical rendering rates are four to five frames per second. Clipping planes help isolate regions of

interest and increase the frame rate so that zooming in on those sections does not significantly slow down

rendering. A high-resolution screen-capture feature lets scientists quickly navigate to interesting data

views and capture high-resolution images of them with just a few extra seconds of waiting. (Features in

high-resolution images can sometimes be more apparent than in the interactive application.)

8 Neuroimaging Results and Discussion

Our first scientific application involves using neuroimaging data to understand the brain. Our data are

acquired using magnetic resonance imaging (MRI) and are of two types: second-order tensor-valued
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water-diffusion-rate images and scalar-valued anatomical images. The scalar-valued data are typical T2-

weighted MR images.

At each point in a volume, the tensor-valued data capture the rate at which water is diffusing through

tissues. That rate is different in different areas – in regions of pure fluid, it is fast; in tissues like bone, it

is slow. The rate of diffusion can also be directionally dependent, particularly in fibrous tissues like axon

tracts and muscles, diffusing more quickly along the fibers than across them.

An ellipsoid is an effective visual representation for one diffusion-rate measurement. Its shape is analo-

gous to that of a small ink spot that has diffused in water for a fixed time: fast, isotropic diffusion yields a

big sphere; anisotropic diffusion, faster in one direction, yields a cigar-shaped ellipsoid aligned with that

direction.

These diffusion-rate measurements provide a new view into the brain. Their correlation with white-

matter structures is particularly intriguing to neurologists. This directionally dependent diffusion-rate

information thus can potentially give neurologists insight into how different parts of the brain are con-

nected, make possible a better understanding of neuropathology, and permit better treatment planning for

neurosurgery [Zhang et al. 2001].

8.1 Primary and Derived Neuroimaging Data

The first primary dataset is a second-order tensor field measuring the water diffusion rate. Each valueD is

a symmetric tensor with real, non-negative eigenvalues. FromD we derive several other measures. First,

three scalar anisotropy measures introduced by Westin [Westin et al. 1997],cl , cp, andcs, describe how

close to a line, a plane, or a sphere the corresponding ellipsoid shape is for a given measurement. These

measures are all positive and sum to one. Second, the trace ofD, Tr(D), is equivalent to the sum of the

eigenvalues ofD and gives a scalar measure of the overall diffusion rate. Third, the gradient of the trace,

∇Tr(D) and the magnitude of that gradient,j∇Tr(D)j, describe how the diffusion rate is changing and in

what direction; we use these quantities in lighting calculations.

The fourth and final derived data are a set of paths through the tensor field that represent the directions of

diffusion. These paths are calculated and distributed within the volume as described by Zhang et al [Zhang

et al. 2000; Zhang et al. 2001; Zhang et al. in review] and follow the direction of fastest diffusion in linear
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regions. In planar regions, they stay within the plane formed by the major and medium eigenvectors,

following whichever is more consistent with the path to that point. They are not present in isotropic

regions.

The second primary dataset is a T2-weighted image scalar field showing anatomy. From it we derive

the gradient of the value and the gradient magnitude, which help define how fast the value is changing and

in which directions; once again, we use these quantities in lighting calculations. We also derive the second

directional derivative to help define boundaries between homogeneous regions.

8.2 Neuroimaging Examples

In Fig. 1 above, data from a subject with a tumor is rendered so that the tumor is shown as an opaque mass

surrounded by paths showing the diffusion structure. The color of the paths shows the type of diffusion:

linear is red, planar is green.

In Fig. 8 above a diffusion dataset from a normal volunteer is rendered using three layers. The direction

of fastest diffusion is shown via thread-like tubes. Traditional direct volume rendering provides a semi-

transparent view of the T2-weighted volume in some regions and a relatively opaque portion in fluid-filled

regions, e.g., the interior of the eyes and ventricles deep in the brain.

Figure 10 shows the mapping from the scalar- and tensor-valued volumes onto a direct-volume-rendered

layer, a thread layer, and a halo layer. The first layer directly renders the T2-weighted image to give

some anatomical context for the rest of the features. The hyper-intense fluid-filled regions were selected

by interactively editing three transfer functions that are combined multiplicatively to give anα value.

The transfer functions take as input three scalars: the image value, the magnitude of its gradient, and

a directional second derivative (to give better control over the display of anatomical boundaries). The

ventricles, a fluid-filled region in the center of the brain, have turned out to be an excellent landmark for

neuroscientists studying these datasets. Color for this layer is specified through a transfer function based

on the anisotropy metrics: isotropic regions are blue, regions with linear anisotropy red, and regions of

planar anisotropy green. Lighting calculations are done usingα and the gradient of the image value as a

normal vector (see Eq. ( 2)).

The second layer renders a thread texture. The visible portions were interactively selected via anα-

17



Online Submission ID: 0

Volumetric
      Data RenderingInteractive

  Controls

2D Widget

2D Barycentric
      Widget

2D Widget

linear anisotropy

planar anisotropy

isotropy

hair

hair length

hair average
diffusion rate

scalar diffusion rate
Direct Volume Rendering

lighting normal

opacity

color

scalar diffusion gradient

halos

opacity

color

hair

halos

culling

gradient magnitude

Figure 10: A data-flow diagram of the rendering setup for Fig. 8. Inputs are a tensor-valued diffusion rate

image from which the volumes on the left are calculated. The interactive widgets in the center control

how the quantities are displayed: some quantities are used to color layers, some to cull portions, some to

show different types of diffusion, etc. The data, interactive controls, and layering are analogous for other

examples.

value calculation based on three criteria. Each criterion is the basis for anα value; the threeα values are

combined multiplicatively. First, a transfer function maps the anisotropy metrics toα. For this rendering,

areas of relatively high anisotropy are shown. Second, each path can be selected based on its length and

on the average diffusion rate along it. In this rendering all paths are shown. Third, the thread density

is directly provided asα. Lighting calculations are done using theα value created from the anisotropy

metrics and the tangent of the thread density volume (see Eq. ( 1)). The third layer renders halos for the

thread texture.α is calculated as for the thread except that the halo density volume is used in place of the

thread density volume.

Figure 7 above shows how different length paths can be selectively displayed. All paths are present on

the left, short paths removed in the center, and short and medium paths removed on the right. As the short

paths are removed, it becomes easier to see some of the large white-matter structures, e.g., the internal

capsule and its projection through the corona radiata. Controlling this parameter interactively has made it

easier to build an overall understanding of the large structures, the more detailed small structures, and how
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they interrelate.

In Fig. 2 above the left image shows a direct volume rendering with color coding the type of anisotropy

(red for linear and green for planar) and opacity coding for the diffusion magnitude. The right image

uses the same color and alpha information, but renders it using a thread layer that shows the direction of

fastest diffusion; this additional information reveals much more of the neural structure. The figure shows a

dataset from a patient with a tumor. The left image isolates the tumor in the direct-volume-rendered layer,

the right image shows the thread and halo layers, and the center image combines both, showing a cradle

of planar anisotropy around the tumor. Our visualization work has suggested several hypotheses for how

tumor growth may create this previously unseen phenomenon.

9 Simulated Blood Flow in a Bifurcated Artery Model

Our second scientific application involves simulated fluid flow data on incompressible flow through a

simplified model of a bifurcating coronary artery. We render one time-step of a pulsatile flow.

Biologically, we have been studying how the flow structure is related to atherosclerotic lesion formation.

Lesions tend to form opposite branches in arteries. We hypothesize that upstream flow structure may

provide important insight into why this happens. Exploration of the flow structure is facilitated by a visual

representation displaying as much of the data as possible. Our volume visualization is particularly useful

in this regard both because it displays multivalued volume-filling data in each image and because it is

possible to interact with the 3D image and change how the different values are displayed.

9.1 Primary and Derived Fluid Flow Data

The primary data for this application area is a 3D velocity vector field. From this, a number of quantities

can be derived. Speed, a scalar field, is the velocity’s magnitude. Vorticity, a vector field, is a component

of the first derivative of the velocity and captures the local rotational component of the flow. The vorticity

vector points along the axis of rotation and its magnitude indicates the rate of rotation.
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Figure 11: Simulated flow, from right to left, through a model of a branching coronary artery. Several

complex structures can be seen, including reversal of flow direction, as illustrated by the blue-haloed hair

streamlines in the side branch immediately downstream from the bifurcation. The semi-transparent white

shell represents vorticity magnitude and gives near-the-wall context for the streamlines.

9.2 Flow Examples

Figure 11 shows an idealized model of a branching coronary artery. Flow is from right to left, starting

in the open end and proceeding down into the two branches. Haloed hair streamlines colored according

to speed are rendered together with a diaphanous shell showing relatively low-vorticity regions. A more

opaque pink section right at the point of bifurcation shows the region of highest vorticity.

The same flow is rendered in Fig. 12. In this image yellow hairs show vortex lines integrated through

the vorticity vector field. The semitransparent purple form shows low-speed regions.

These two images together show important flow features not seen with other visualization methods,

including near-wall kinks in vortex lines and localized looping structure in the vorticity. The kinks tended

roughly to fit into the upstream edges of separation pockets evident in velocity images. Velocity and

vorticity lines are layered together in Fig. 13 (the input data was cropped to 128�256�256 because of

limited texture memory). Visualizing the vector fields simultaneously clarifies correlations among features

quite dramatically.
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Figure 12: Integral curves through the vorticity vector field for the flow illustrated in Fig. 11. These vortex

lines give additional clues to the flow structure, particularly in areas where it curves and varies in speed.

10 General Discussion

10.1 Exploratory Culling

Exploratory culling enables users of this system quickly to generate a broad spectrum of images from the

same dataset. The three dramatically different views of the neuroimaging dataset in Fig. 7 above were

created by culling paths by length. This has proven an important task in our example applications. Long

paths often illustrate the major structures in a DTI dataset, and smoothly transitioning between a view of

just long paths to a view including all paths has helped us contextualize and understand features in the

data. Culling paths according to the average diffusion rate along each has also proven useful in helping

distinguish the most coherent paths. Since the culling operations work at interactive rates, they facilitate

quick exploratory experimentation with this relatively new kind of data.

Exploratory culling is implemented as a transfer function controlled by a manipulation widget, just like

the other transfer functions in the system. However, unlike the other transfer functions, reasonable values

for theα of the culling transfer function seem generally to be restricted to zero or one; intermediate values

do not usually give useful results. Thus, it may be possible to reduce the culling transfer function to a

single bit and still maintain most of its utility, a change that may simplify the implementation or let us
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Figure 13: Integral curves through both the velocity (yellow and green) and vorticity (purple and pink)

vector fields for the same flow as illustrated in Figure 11. Correlations among these vector fields are

typically representative of important flow structures.

implement additional functionality using the additional bits.

Culling suffers from resolution limitations, a problem arising when paths are very closely packed within

the volume. If a given voxel contains contributions from multiple paths, only one of them can be culled

correctly. This typically happens in the periphery of two paths.

10.2 2D Transfer Functions

The 2D transfer-function editing we have implemented is a simple blend of two 1D transfer functions.

More sophisticated transfer-function editing will give more control over the resulting images and is likely

to generate better understanding of the data. We would like to be able to separate out regions of differing

anisotropy more precisely or use the derivative information to display tissue boundaries more accurately.
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10.3 Avoiding Thresholding

Thresholds in visualization are often problematic because they introduce apparent boundaries where none

exist. In DTI visualization, the mapping of an anisotropy metric to a binary region of anisotropy introduces

such a boundary, as evident in earlier DTI visualization work. We avoid these boundaries here by making

smooth transitions in our transfer functions whenever possible. But some boundaries, e.g., those generated

by culling, are difficult to avoid.

10.4 Threads and Halos

We have implemented several different thread lighting models, Kajiya and Kay [Kajiya and Kay 1989],

and Banks [Banks 1994] with excess brightness exponents ofp = 2 andp = 4. The actual value ofp

introduced by Banks is around 4:8. Kajiya and Kay’s lighting model is similar to Banks’ with an excess

brightness exponent ofp= 1. The smaller the exponent, the brighter the thread and the less dramatic the

lighting. We found that the lighting model that usesp= 2 worked well: this brightens the threads and

compensates for the overall darkening effect of the halos. Another advantage of usingp = 2 is that it

requires no square-root calculation, which significantly speeds up processing.

One of the drawbacks of using a volume to represent the threads is the limited resolution. This restricts

the diameter and density of the thread paths that can be rendered without intersection, and also reduces

our ability to store normal information for hair strands.

Our halo implementation darkens the threads significantly along the silhouettes; however, it also intro-

duces some extraneous darkening along the thread centers, since it does not take the viewing direction

into account. We experimented with halos that used outward-pointing normals from the thread paths to

restrict the darkening to silhouettes. Unfortunately, the very limited spatial resolution (only a few voxels

around the cross section of a halo) made this approach impossible, since the linear interpolation of the

components of the normal was too inaccurate.

Shadows would improve visual perception of the thread volumes and thus offer an alternative to ha-

los. Unfortunately, they are very expensive to calculate and still would not always make possible a clear

perception of the depth ordering.
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10.5 Design

When rendering layers of volumes, it is important to design the layers to complement one another visually.

Just as the layers of a painting work together to convey a coherent theme, volume layers must be carefully

designed so that they function together: each one must be designed with a sense of its impact on the

appearance and effectiveness of the others.

Figure 2 shows a deconstructed layered volume. On the left is a direct-volume-rendered layer for a

brain visualization and on the right is a complementary thread layer. The center image shows the compos-

ite rendering of both layers. In order to produce a composite rendering as effective as this one, care must

be taken throughout the design process to insure that the final rendering has an effective composition and

balance. At the abstraction level of design, the thread-and-halo effect was carefully constructed to rep-

resent directional information but avoid overwhelming the image, so that a direct-volume-rendered layer

would not be obstructed. At the interactive level of design, effective composition and balance are achieved

through manipulating transfer function widgets. Careful use of color, transparency, and culling is essential

in preparing a view of the data that illustrates or locates a particular trend or anomaly. For example, a

transfer function for a direct-volume-rendered layer that uses bright orange to indicate tumorous regions

in the brain should not be used in conjunction with a transfer function that uses bright orange in a thread

layer to represent paths typically found around a tumor – the two layers will be too difficult to distinguish.

In general, transfer functions that work well in representing a single variable do not necessarily work

without modification within a layered rendering approach. Thus, the visual design aspect of scientific

visualization, with special emphasis on color and balanced composition, is particularly important within

this framework.

10.6 Hardware Observations

We constantly work against the limits of texture memory and eagerly await new hardware. In the mean-

time, texture compression has been very helpful. We also found that the approaches we are interested

in require more hardware arithmetic support. We anticipate that nine combiner stages are likely to be

sufficient for these new approaches.

24



Online Submission ID: 0

11 Summary and Conclusion

We have presented a volume-rendering approach for visualizing multivalued datasets. Our framework has

four steps: calculating derived datasets, defining visual abstractions, mapping the datasets through inter-

active transfer functions, and exploring interactively. A key component of our approach is the abstraction

of the derived values into separate layers of visual representations. This allows us to provide interactive

manipulation of the visual attributes of each volume layer.

We also introduced thread and halo density volumes as an example of complementary volumes. To-

gether, they provide an interactive visual representation of continuous directional information.

Labeling the thread volume according to some culling criterion, e.g., path length, allows us to control

culling interactively. By manipulating a transfer function we can remove portions of a volume to expose

interesting structures that might otherwise be occluded. Users can quickly generate many different im-

ages of multivalued datasets using this mechanism. Thus, scientists can quickly explore large regions

of a volumetric dataset and, through this exploration, arrive at a better overall understanding of complex

multivalued data.

We also introduced a technique for rendering visibility occluding halos within a volume in real time.

These halos increase the depth perception of our thread path representations and help achieve the 3D

understanding that is so crucial when examining volumetric data.

We showed that we can interactively render and manipulate multivalued volumetric datasets on PCs

equipped with commodity graphics cards. We implemented a texture-based multi-pass volume renderer

that composites the different layers together in a final image. To visualize and interactively manipulate the

individual layers we rely heavily on programmable texture blending.

Additionally, we showed how two or more complementary visual representation layers, for example

the direct-volume-rendered DTI and the thread paths, can be used to effectively explore multivalued vol-

umetric datasets. The anatomical context provided by multiple layers enhances understanding of the data.

Understanding is also achieved through interaction; providing manipulation widgets for each of the layers

makes possible exploration of the individual layers and, more importantly, of the relationships among the

data values of the individual layers.
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Our layered complementary volumes approach was successful in both application areas we explored.

For the visualization of diffusion characteristics of the human brain, we can represent both planar and

linear anisotropy at the same time as well as smooth transitions between the two. We also provide an

anatomical reference for the data that is essential in contextualizing the diffusion information.

For the exploration of blood flow in a bifurcated artery, our layered volumes approach was successful in

representing anatomical references. The thread paths and halos representation was particularly useful in

representing streamlines and vorticity lines. Correlating this layer of representation with a direct-volume-

rendered layer helped locate regions of vorticity change and other interesting flow features. As in the brain

diffusion application, exploratory culling and the interactive manipulation widgets were instrumental in

quickly creating many different images of the data, leading to a better understanding of the 3D flow.

Feedback from fluids researchers and neuroimaging researchers suggests that they will find our inter-

active volume renderer effective in exploring both kinds of multivalued datasets. Currently these data are

often not well understood and exploring them will help develop and evaluate new scientific hypotheses

about the data and the physical phenomena they represent.
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T2-weighted MRI

gradientx R

gradienty G

gradientz B

gradient magnitude R

2nd directional derivative G

T2 value A

Direct-volume-rendered DTI

gradientx R

gradienty G

gradientz B

gradient magnitude R

cl G

cp B

diffusion magnitude A

Streamtubes

tangentx R

tangenty G

tangentz B

density A

average diffusion R

cl G

cp B

length A

Direct-volume-rendered fluid flow

Halos

density A

Table 1: Mapping from data values onto texture channels.
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A Implementation Speci�cs

A.1 Mapping Visual Representations into 3D Textures

To make volumetric data available for hardware-accelerated rendering it must be packaged into OpenGL

3D textures. Even though textures normally consist of the three colors RGB and sometimes an additional

transparency or alpha value A, we need not store color information in the four channels. In fact, we use the

four channels to store the data values from our visual representations. We are restricted to eight bits per

channel due to texture-memory limitations on commodity PC graphics cards. Therefore, the data must be

quantized to fit in the range 0 . . . 255. Table 1 shows how the data values from our examples are mapped

into the RGBA channels.

A.2 Compression of Volumetric Datasets

The volumetric data is stored in compressed OpenGL 3D textures. For a 2563 RGBA texture with eight bits

per channel the data is 64MB. A GeForce 4 has available 128MB of texture memory that must be shared

with the frame buffer, the textures for the transfer functions, and display lists. It would thus be impossible

to show more than one layer at a resolution of 2563 without some type of data compression. Using the

generic OpenGL texture compression extension ARBtexturecompression provides a 4:1 compression

ratio, which reduces the 64MB to 16MB for a single 2563 3D texture. This improved memory efficiency

allows us to store multiple layers in texture memory, which is imperative for interactive rendering.

A.3 Texture-Shader Program

The texture-shader program specifies the textures to fetch, how to fetch them, and the assignment of the

interpolated fragments to registers. Four textures and fetched and assigned to registerstex0 to tex3.

In order to achieve interactive frame rates, manipulating large, compressed 3D textures must be avoided.

Thus, we do all our texture manipulation with transfer function textures. We rely heavily on the dependent

texture lookup capabilities of modern graphics cards, i.e. the capability to use the output of one texture

lookup as the coordinates to another texture lookup. The following texture-shader program in the NVParse
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format is typical for our system.

!!TS1.0

texture_3d(); // load texture 0

texture_3d(); // load texture 1

dependent_gb(tex1);

dependent_ar(tex1);

First we fetch two 3D textures and assign the interpolated fragment to the registerstex0 andtex1. Then

we perform two dependent-texture lookups, the first based on the green and blue channels of registertex1

and the second based on the alpha and red channels of registertex1. As an example, the green and blue

channels of the 3D texture assigned to the registertex1 might hold the two diffusion anisotropy metrics.

We use those two values as the coordinates for a texture lookup into the texture of the 2D barycentric

transfer function assigned to registertex2. The output is a color and opacity for the current fragment

based on diffusion anisotropy.

A.4 Register-Combiner Program

The register-combiner program defines how textures are blended together. The register-combiner stage

on a GeForce3 or higher provides eight general combiners and one final combiner to calculate the final

fragment color from the data in the register set. For each combiner we can define input mappings on

the input registers and scale and bias on the output registers. The combiner itself lets us perform simple

operations such as dot product, elementwise multiplication, and sum.

The volume renderer performs texture blending as well as lighting calculations using the register com-

biners. We have implemented two lighting models in the register combiners, one based on Eq. (1) and one

based on Eq. (2). The light vectorL and halfway vectorH needed in the lighting calculations are passed in

through the constant registersconst0 andconst1 of the first general combiner. These two registers must

be processed in the first combiner if we want to use the light and halfway vector in any of our calculations.

This is the only convention necessary for our shader programs and introduces no major restrictions.
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A.5 Compositing Volume Layers

The pseudocode below describes the rendering process.

for all slices back to front

for all layers/shader programs

activate the appropriate texture units

bind textures

bind texture shader program

bind register combiner program

set current light and half-way vector

push texture transform on the texture stack

render the slice

end

end

It is particularly important that the pseudocode be executed on an ordered sequence of view aligned

slices. The slices must be arranged in order from back to front. When the blending function is set to

GL SRC ALPHA andGL ONE MINUS SRC ALPHA, this sequence produces the desired rendering containing

information from all layers.
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