
Distributed Calibration of Smart Cameras

John Jannotti
Department of Computer Science

Brown University

jj@cs.brown.edu

Jie Mao
Department of Computer Science

Brown University

jmao@cs.brown.edu

Abstract
Localization in sensornets determines the location of
sensor nodes, and allows applications to make geograph-
ically sensitive queries. Smart camera networks must
not only be localized, but calibrated. Calibration goes
beyond localization to include orientation and position
information that is sufficiently fine-grained to allow fu-
sion between overlapping camera views.

This paper introduces Lighthouse, a distributed calibra-
tion system that allows wireless smart camera networks
to obtain a unified coordinate system without manual
configuration or additional hardware. The proposed
technique uses stereo cameras to obtain robust 3D fea-
ture sets which are matched using incrementally built
Geographic Hash Tables (GHTs).

Lighthouse finds matches between cameras, even be-
tween distant cameras, without centralizing observa-
tions. Lighthouse also contributes several advancements
in the cooperative creation of GHTs, including boot-
strapping, topology determination, and consistent hash-
ing for topology changes. Simulations indicate that
Lighthouse significantly outperforms simpler matching
schemes at all feature densities, and approximates the
centralized solution in all but the most feature-poor en-
vironments.

1 Introduction

For most applications, sensor networks require localiza-
tion, often through the use of special purpose hardware.
Localization determines the location of sensor nodes,
and allows geographic forwarding and location-aware
queries. Smart camera networks must go a step further
to be calibrated. The cameras of a calibrated network
have been so precisely localized that shared views of the
same object may be fused to create, for example, three-
dimensional models or super-resolution views.

Calibration requires precise positions and orientations,
beyond the limits of existing localization techniques.
Even differential GPS or Cricket [9], each with accuracy

in the centimeter range, would be unable to determine
the orientation of a small camera sensor. Even small
errors in orientation may result in large absolute errors
when estimating the position of distant objects.

This paper presents Lighthouse, a distributed calibration
technique that allows smart camera networks to obtain
a unified coordinate system without specialized hard-
ware. Only the cameras of the network are used. Further,
Lighthouse avoids centralizing all features in order to
save bandwidth and power. Lighthouse cameras obtain
features locally and then use distributed matching tech-
niques to find correspondences. These correspondences
allow nodes to agree on a common reference frame.

1.1 Traditional Approach

Multi-camera geometric calibration is an active research
topic [1, 10]—current solutions are centralized, usually
requiring factorization of very large matrices [2, 7]. The
most common approach is based on structure from mo-
tion algorithms, in which the pose of all cameras and
the location of feature points in 3D are simultaneously
estimated. Smart camera networks, on the other hand,
require a robust distributed solution based on collabo-
rative algorithms. Furthermore, networks with dynamic
nodes require incremental approaches.

1.2 Our approach

Our approach is to find pairwise correspondences be-
tween the features observed by a camera and the fea-
tures observed by another camera or group of calibrated
cameras. The fundamental challenges are finding robust
features that may be matched across cameras and doing
so in a distributed fashion.

Lighthouse solves the distributed matching problem us-
ing local search and Geographic Hash Tables (GHTs). A
Lighthouse camera begins its search for feature matches
by considering the features of geographic neighbors.
However, feature matches may occur across large dis-
tances. Two cameras may observe the same distant sky-
line, for example (See Figure 1). Geographic hash tables

A

C
F

H

I

E

G

D

B

X

Figure 1: A small misorientation of camera H would lead to
large errors in estimating the position of X, but if D and H are
aware that they both observe X, they may use that information
to orient precisely with respect to each other. Complicating this
matching problem, cameras B and D do not observe similar
features despite their proximity, while distant cameras D and
H have overlapping views.

allow distant nodes to insert features into a shared table.
When features “collide”, the observers are notified and
compute a relative transform.

GHTs presuppose the use of geographic forwarding,
such as GPSR [4], which requires a shared coordinate
system. Yet until correspondences are found, the nodes
do not share a coordinate system. Lighthouse includes
bootstrapping techniques that allow adjacent GHTs to
share features without geographic routing between them.
When correspondences are found, the adjacent GHTs
are merged into a single, large GHT.

2 Pairwise Feature Matching

Distributed calibration requires that sensors find simi-
lar features in other cameras. Unfortunately, low-level
two-dimensional features are very difficult to match be-
tween the images of uncalibrated cameras. Instead, we
advocate smart cameras with two image sensors. Us-
ing two sensors with a known (short) baseline allows for
local stereo reconstruction, producing 3D features from
the individual 2D images. 3D features are more robust
for matching across nodes because they are immune to
differences in color and brightness sensitivity.

We have prototyped pairwise 3D feature matching us-
ing several camera pods. Each camera pod includes four
rigidly mounted network cameras capable of small base-
line feature matching and stereo reconstruction. Our ex-
periments used two cameras in each pod. First, simple
two-dimensional features (corners) were detected sepa-
rately in the images of each camera. Next, correspon-
dences between the features of the two images were de-
termined. This task was greatly simplified by the short,
known base-line between the images. From these corre-
spondences, three-dimensional locations for the features
were determined. Closer features exhibit greater paral-
lax in the twin images. In a smart camera network, this

work would be accomplished locally in a dual-imaged
smart camera.

2.1 Three-dimensional matching

Once each camera pod possessed a set of three-
dimension features (points, really), we considered the
task of matching those points between pairs of camera
pods. In this prototype, all of the features of two pods
were brought together, and RANSAC [5] was employed
to find the transformation that brought the largest num-
ber of 3D points into correspondence.

In a large sensor network, it would be infeasible to share
all points between all pairs of cameras. Section 3 de-
scribes how features can be detected without wholesale
feature exchange.

2.2 Geometric Hashing

Lighthouse advocates a move away from sharing all low-
level features detected by a cameras toward a strategy
that shares a few, robust high-level features. A robust
feature is one that can be recognized easily by various
cameras, regardless of pose. Geometric hashing maps a
complicated low-level feature set to a single, more ro-
bust feature or category.

For example, rather than sharing all 3D feature points,
Lighthouse might select triples of three-dimensional
points and their relative distances. Such a triple can be
recognized regardless of camera pose.

The use of Scale Independent Feature Transforms [6] is
a more powerful implementation of the same idea. Ob-
jects are reduced to (an unfortunately large) number of
SIFT keys. These keys may be viewed as geometric
hashes of the object in question, and are little affected
by scale, rotation, or noise.

As we describe Lighthouse’s operation, we assume the
existence of some geometric hashing function that is ca-
pable of finding robust, high-level features, and reducing
them to a form that can be used for matching. The effec-
tiveness of these features is abstracted away by assuming
that each match may confer some certainty that a partic-
ular transform is appropriate to bring two cameras into a
common reference frame. Lighthouse may operate with
any threshold level of certainty required to complete a
match.

3 Matching with GHTs

Using robust three-dimensional features reduces the
problem of distributed calibration to the detection of

non-empty set intersection among the features of all
camera pairs. This is, if node A observes features
{a1,a2,a3...}, and B observes features {b1,b2,b3...} we
must discover any ai that is the same feature as some b j.
If so, nodes A and B should learn of the intersection in
order to agree upon a shared reference frame. In order
to control errors, it may be important for a given node
to learn of many shared features with a set of cameras
in a given reference frame. Multiple matches may be
required to eliminate errors caused by, for example, the
repetition of many similar features in real-world settings,
such as the seats of a stadium.

As implied by the previous section, a simple way to find
many shared features is to attempt pairwise matches be-
tween neighbor nodes. Many wireless protocols require
periodic beacons in order to establish neighbor tables
used during routing. Lighthouse augments these bea-
cons with feature announcements. When a node hears
of a feature that it has also observed, a match has been
found. Of course, this technique might be extended to
announce features over multiple hops. However, extend-
ing this technique to flood all features throughout the
network would be infeasible for even moderately large
networks. We compare Lighthouse to each of these tech-
niques in the following section.

Lighthouse uses a Geographic Hash Table (GHT) to
match common features at greater distances. A GHT,
like the distributed hash tables of wired networking, al-
lows cooperating nodes to store data at arbitrary nodes
in a network, based on the hash of the data’s key value.
In a GHT, the hash function computes a geographic co-
ordinate, and the data item is stored at the node nearest
to that coordinate.

Finding matches in a smart camera network that has al-
ready formed a GHT is straightforward. A node first
computes a geometric (not geographic) hash of its fea-
tures. The category is used as the key to insert the feature
into the GHT. Two nodes with similar features will hash
the feature to the same category, and then geographically
hash the category to the same coordinate. The same node
will therefore be responsible for storing both features,
the “collision” may be noted, and the observing nodes
notified. Figure 2 illustrates the matching process.

Unfortunately, GHTs rely on geographic forwarding
which needs localization—which we intended to accom-
plish through feature matching. The goal of Lighthouse
is to bootstrap the construction of ever larger GHTs us-
ing only the information gained during the construction
of smaller GHTs, using data-directed calibration. The
key insight is that any node within radio range of a GHT
may use it for matching, even if the node in question
is outside the GHTs coordinate space. Geographic for-
warding is not needed for the first hop.

��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

����������������������

	�	�	
	�	�	

�

�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�

�
�

�����
�����

A

C

H

I

E

G

D

B

J

K

L

M
N

O

P

Q

R

h(g(X))

h(g(X))

h(g(X))

X

Figure 2: The feature X is observed by the two separate cam-
era nodes. The feature is categorized through a geometric hash
function, g(), and then a storage location is selected with a ge-
ographic hash, h(). Each camera routes the feature toward the
designated location, where the closest node, N, stores the fea-
ture, detects matches, and informs the observers.

3.1 Singleton GHTs

We begin by considering the network at the beginning
of a simultaneous startup. Each camera node is able to
observe visible features, transmit in a local radio range,
and listen for broadcasts from nearby nodes. We con-
sider each of these nodes to be a singleton GHT with its
own coordinate space. The GHT consists of one node,
located at the origin and oriented in the direction of the
camera’s view. The known baseline between the node’s
image sensors allows a single camera to determine the
scale of features in absolute terms.

Of course, a singleton GHT is a degenerate case. All
inserts are stored at the single node, and no feature
matches will be discovered.

3.2 GHT Maintenance

In order to support feature matching, a GHT should
contain the features observed by each of its constituent
nodes. Although the constituent nodes of a given GHT
have already agreed upon a coordinate system, new fea-
ture matches among nodes of the GHT may allow the
nodes to eliminate errors that might otherwise build up
through pairwise matching. More importantly, we will
soon see that these inserts are critical to allow merges
with adjacent GHTs.

3.3 Merging GHTs

Adjacent GHTs are GHTs that contain nodes within ra-
dio range of one another. We call the set of nodes that
are within radio range of a GHT, but are located within
another GHT, the neighbor set. A neighbor node may
constitute an entire GHT, as in the case of singletons, or
simply a single member of a multi-node GHT.

Neighbor exchange

Nodes from the neighbor set attempt to find matches
between the adjacent GHTs by inserting features from
their home GHT into the neighboring GHT. These fea-
tures may have been directly observed by the neighbor,
or they may have be stored at the neighbor by another
member of the neighbor’s GHT. In extreme cases, the
neighbor may actively query its GHT to find additional
features to share with the adjacent GHT. As an optimiza-
tion, the proxy may respond immediately without insert-
ing the feature if it contains a local feature match.

Proxy responses

A neighbor’s coordinate system is independent of the
GHT into which it will insert. Therefore, insertions are
passed through a proxy node inside the adjacent GHT.
The proxy node performs the insertion, and forwards
responses back to the neighbor. After the neighbor re-
ceives a response the neighbor may trigger a merge of
the two GHTs by broadcasting the new coordinate sys-
tem to both GHTs. This decision might be triggered only
after a threshold of matches has been met.

Consistent hashing

GHTs were proposed for sensornets of static extent. As
such, the range of the geographic hash function is pre-
determined by the geographic range of the sensornet. In
a dynamic GHT, the size of the sensornet changes, and
so the range must vary as well. The range should not
exceed the true size of the sensornet by too much, or
data items will be concentrated at the edges. The range
should not be too small, or data items will be unduly
concentrated in a few nodes.

To solve these problems, an appropriate range should be
chosen for any GHT. One such range is the convex hull
of the nodes in the GHT, though hashing to this irreg-
ular shape is not straightforward. In addition, because
the topology of a dynamic GHT changes with time, it is
important to develop a consistent [3] hash function that
leaves most data items in the same location in response
to small topology changes.

We advocate a two-phased hashing strategy, illustrated
in Figure 3, that uses a loose bounding box, a family of
hash functions, and knowledge of the true boundary of
the GHT. To determine the location for a data item, it is
hashed into the loose bounding box using the first mem-
ber of the hash-family. Using a local polygon inclusion
test, if the location is also inside the true boundary of
the GHT, the item is routed to the node closest to the
hashed location. If not, successive members of the hash-
family are used until an agreed upon limit is reached. If
the limit is reached, the item is stored at the node clos-
est to the first hashed location. A looser bounding box
leads to addition computational effort to determine the
appropriate hashed location for storage, but will lead to
fewer complete rehashings which must occur when the
bounding box is changed.

1h

h

3h

2

A

B

Figure 3: The group of gray nodes is a GHT, using the dashed
box as its loose bounding box. To store an item, X, it is
hashed repeatedly (h1,h2,h3) until a locations is found within
the perimeter. If node A joins the GHT, the loose bounding
box need not be changed, therefore only those items, like X,
that were placed in their current location after after skipping a
hash location that is in the new perimeter. If node B joins the
GHT, the loose bounding box must be expanded, requiring all
items to be rehashed.

4 Evaluation

We conduct NS [8] simulations using a simple imple-
mentation of a GHT using code from GPSR [4]. Ex-
periments are run in a 250m square with 100 randomly
placed and oriented cameras, each with a radio range of
40m. Features are randomly placed in or near the 250m
square where they may be detected by cameras if the
camera is within 125m, and oriented properly. Cameras
are assumed to have a 30◦ viewing angle. The number of
features is varied to measure the effect of feature density.

4.1 Convergence

The first metric by which to measure a calibration tech-
nique is its ability to find matches and allow for the con-
vergence of nodes into a shared coordinate space. We
compare Lighthouse against three other strategies. The
first two strategies are simple short range advertisement
schemes. In the 1-hop scheme, each camera broadcasts
the set of features it observes to all cameras within radio
range. In the 2-hop scheme, features are rebroadcast by
any camera that hears them from the direct observer.

Figure 4 shows that Lighthouse improves upon the per-
formance of each of these schemes, allowing the 100
cameras to converge into approximately half the number
of independent coordinate systems as the 2-hop scheme.
The final scheme is an impractical flooding protocol that
propagates all features to all reachable nodes. It shows
the absolute minimum number of isolated groups that
exist when all cameras are aware of the features of all
other cameras. For example, when only 100 features are
detected throughout the network there are approximately
14 sets of camera that share no features in common.

 0

 10

 20

 30

 40

 50

 60

 70 100
 200

 300
 400

 500
 600

 700
 800

 900
 1000

number of groups

num
ber of features

P
erform

ance on C
onvergence

1-hop
2-hop

Lighthouse
flooding

Figure 4: Lighthouse is compared to simpler 1-hop and 2-
hop neighbor schemes, as well as a perfect matching scheme
that floods all features to all nodes. As the feature density
increases, all schemes are able to reduce the number of in-
dependent GHTs by finding shared features. At all densities
Lighthouse performs significantly better than the short-range
schemes. At reasonable feature densities, Lighthouse approxi-
mates complete flooding.

 0 5

 10

 15

 20 100
 200

 300
 400

 500
 600

 700
 800

 900
 1000

traffic in MB

num
ber of features

P
erform

ace on B
andw

idth

1-hop
2-hop

Lighthouse
flooding

Figure 5: As feature density increases, more features are ex-
changed and more bandwidth is consumed. Lighthouse is able
to grow as slowly as 2-hop, despite its ability to find wide-
spread matches.

In should be noted that the 2-hop and flooding schemes
are not viable schemes for simultaneous calibration and
GHT construction. Both schemes assume that two cam-
eras may merge into a single GHT, even if the nodes
between them cannot. In such a case, the merged nodes
would not be able to use their coordinate system for the
geographic forwarding required to implement a GHT.

4.2 Scalability

In the last section we examined Lighthouse’s ability to
find matches, we now consider the cost of doing so. Fig-
ure 5 shows the amount of bandwidth used to dissemi-
nate features for matching. The graph underestimate the
cost, in absolute terms, because our simulation uses very
compact representations of features (integers). In reality,
features are likely to be considerably larger, but the rel-
ative effect should be similar in each case.

Thinking about the costs asymptotically, 1-hop emits a
message from each node, and receives features from d
adjacent node. In 2-Hop, each node emits a feature,
and the d nodes that hear it re-emit it. The O(d2) nodes

within two hops share their features. In Lighthouse, each
node must store its feature in the GHT. A single GHT in-
sert requires O(

√
n) transmissions to cross the sensornet.

Flooding requires that each node emit its feature and that
the sensor field flood it (O(n)).

5 Conclusions

Lighthouse is a distributed solution to the problem of
sensor localization and multi-camera calibration. Light-
house builds GHTs incrementally, avoiding the need for
localization infrastructure or hardware. We look for-
ward to working with real-world data from our camera
pod prototype to develop models to control error in real-
world deployments.

References

[1] P. T. Baker and Y. Aloimonos. Calibration of a multicamera net-
work. In Proceedings of Omnivis 2003: Workshop on Omni-
directional Vision and Camera Networks, Madison, Wisconsin,
June 2003.

[2] R. I. Hartley and A. Zisserman. Multiple View Geometry in Com-
puter Vision. Cambridge University Press, 2000.

[3] D. R. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and
R. Panigrahy. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web.
In Proc. 29th ACM Symposium on Theory of Computing, May
1997.

[4] Brad Karp and H. T. Kung. GPSR: greedy perimeter stateless
routing for wireless networks. In Proc. ACM/IEEE MobiCom,
August 2000.

[5] A. J. Lacey, N. Pinitkarn, and N. A. Thacker. An Evaluation
of the Performance of RANSAC Algorithms for Stereo Camera
Calibration. In Proceedings of The Eleventh British Machine
Vision Conference, September 2000.

[6] David Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60(2),
2004.

[7] Y. Ma, S. Soatto, J. Kosecká, and S. S. Sastry. An Invitation to 3-
D Vision: From Images to Geometric Modeling. Springer-Verlag,
2004.

[8] Ns. http://www.isi.edu/nsnam/ns/.

[9] Nissanka Priyantha, Anit Chakraborty, and Hari Balakrishnan.
The cricket location-support system. In Proc. ACM/IEEE Mobi-
Com, August 2000.

[10] D. Svoboda, T. Martinec and T. Pajdla. A convenient multi-
camera self-calibration for virtual environments. PRESENCE:
Teleoperators and Virtual Environments, 14(4), August 2005.

