e

——
N\

e ——
A N

ol BROWN

Multithreaded Servers

* Servers must take advantage of concurrency to handle
their client loads

* Usual approach is multithreading
* Performance at the cost of correctness

% 7/ Cache /
: I :
1 Connection
r & Table
-

L]

% Statstics
Counters

* Thread accesses to every shared resource must be
properly synchronized

* Miss one! Non-deterministic, hard-to-find “heisenbug”

* Locking is dangerous too--deadlock, livelock, priority
Inversion, convoying, starvation, etc.

. Static Program Analysis

* Conservative: may = will
* Enables default safety

handle send(..., Context ctxt, ...)

handle read(...,

{ {
éiéb_ctr++; * .
é%%t->state = DONE; < .

} }

Conflict on global:

John Jannotti and Kiran Pamnany
Department of Computer Science, Brown University
{ij,kiran}@cs.brown.edu

Event-driven Servers

* Program registers interest in events (callbacks)
* Event loop waits for events; invokes handlers

* State stored in “context” which is passed as an argument
when a handler is invoked

Event
Loop

il

Event Handlers

* No synchronization required

* Handlers are atomic blocks

* Single threaded

* Must use asynchronous calls; blocking stops progress
* Difficult to exploit multiprocessors

Approach

* Add concurrency without requiring synchronization
* Run event handlers in parallel when safe to do so

Static Program Analysis:

* Conservatively determine whether handlers share data
unsafely

* Generate constraints on concurrent execution of
handlers

* Provide detailed feedback--why do handlers conflict?

Runtime System:

* Run handlers concurrently subject to the constraints
generated by the analysis

* Programmer removes constraints to increase
performance

2. Constraints

Context ctxt, ...)

Handler AQ)| BO)| CO| D()
A() | |

B() 10| |

C() 00| 00 Ol

D() 10] Ol OO0 | |

if (glob ctr > 0)

ctxt->state = SEND;

* handle_send() reads and writes a global; handle read() accesses the same global

* Unsafe to run concurrently under any circumstances

Conflict through context:
* Both handlers update the same element

* Unsafe to run concurrently only if contexts are the same

* Two bits per cell

* Bit O is on if conflict on global

* Bit | is on if conflict through context

* A() conflicts with B() through the context; they can run
concurrently if their contexts are known to be different

* C() conflicts only with itself on a global; it can run concurrently
with every other handler

* B() conflicts with D on a global; they can never run concurrently

To be presented at 4:30 pm at the 2nd Workshop on Hot Topics in System Dependability (HotDep)
Safe at Any Speed: Fast, Safe Parallelism in Servers

Philosophy

The Wrong Way:
* Start with concurrent, incorrect application

* Apply deve
* Incrementa

opment effort until all races are fixed
gains in correctness

* Miss somet

ning? Unsafe parallelism;incorrect program

The Right Way:
* Parallel applications should be safe by default

* Start with serial, correct application

* Apply deve

* [Incrementa

opment effort to add concurrency

gains in performance

* Miss somet
problem

ning? Loss of parallelism; performance

* Maintain correctness throughout

Future

Work

* Program analyzer and runtime system in active
development (using CIL and libevent)

* Evaluation (on thttpd)

* Beyond event-driven programs--multithreading

3. Hue/Color Scheduling

* Conservative approximation of constraints

* Queue per hue and queue per color

* Hue queues feed color queues

* Only one pending handler invocation of a given hue in the
color queues at any time

Hue Queues

C D E
D,2
C2 D, 1 E, 4

Color Queues
2 3 4

