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ABSTRACT
We introduce XPORT, a profile-driven distributed data dissemina-
tion system that supports an extensible set of data types, profile
types, and optimization metrics. XPORT efficiently implements
a generic tree-based overlay network, which can be customized
per application using a small number of methods that encapsu-
late application-specific data filtering, profile aggregation, and op-
timization logic. The clean separation between the “plumbing” and
“application” enables the system to uniformly support disparate
dissemination-based applications.

We first provide an overview of the basic XPORT model and ar-
chitecture. We then describe in detail an extensible optimization
framework, based on a two-level aggregation model, that facilitates
easy specification of a wide range of commonly used performance
goals. We discuss distributed tree transformation protocols that al-
low XPORT to iteratively optimize its operation to achieve these
goals under changing network and application conditions. Finally,
we demonstrate the flexibility and the effectiveness of XPORT us-
ing real-world data and experimental results obtained fromboth
prototype-based LAN emulation and deployment on PlanetLab.

1. INTRODUCTION
XPORT (eXtensible Profile-driven Overlay Routing Trees) isa

generic profile-driven distributed data dissemination system. It is
designed to provide the core dissemination infrastructurefor a grow-
ing set of dissemination-based applications and services,including
web feed dissemination (RSS/Atom), multicast-based content dis-
tribution, massively multiplayer network games, stock ticker distri-
bution, and large-scale distributed collaborative applications.

Dissemination-based applications often exhibit diverse applica-
tion logic and performance requirements. At the same time, they all
require severalcommoncore facilities, which include dissemina-
tion overlay construction, maintenance and optimization,(content-
based) routing logic, and membership management. These applica-
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tions are often developed from scratch, requiring substantial effort
and investment to “get it right” for each specific case. In contrast to
the existing approaches that provide point solutions to point prob-
lems, XPORT’s goal is to develop an application-agnostic solution
that can be easily customized and extended for a specific target
application through a small number of methods that encapsulate
application-specific behavior and optimizations.

Extensibility is the central design consideration for our system,
which supports an extensible set of data and profiles types, and op-
timization metrics. Specifically, XPORT supports two typesof ex-
tensibility. Profile-related extensibilityrefers to the ability to easily
accommodate new data and profile types, and is key to supporting
diverse applications.Cost-related extensibilityrefers to the ability
to express application-specific performance goals, and allows ap-
plications to define their own criterion of an efficient and effective
dissemination system. Given application-defined data types, pro-
file types and performance metrics, XPORT automatically builds,
maintains and optimizes an overlay dissemination tree consisting
of the available broker machines in the system.

The main focus of this paper is on the design, implementation,
and evaluation of XPORT’s basic optimization framework that uses
a novel two-level aggregation model to define system cost. The
first level computes the cost of each node as an aggregation ofmet-
rics gathered from the node’s local neighborhood. The second level
computes the system cost by aggregating the node costs. The model
allows for the uniform specification of many commonly used per-
formance measures, as well as new ones, through combinations of
different aggregation functions and local metrics.

During run time, the system iteratively applies tree transforma-
tions in order to converge to a minimal cost configuration, option-
ally subject to constraints (e.g., “minimize the total bandwidth con-
sumption in the system while ensuring that the dissemination la-
tencies do not exceed 100ms”). The transformations are guided by
a set of transformation rules, including primitive rules defined by
XPORT and application-defined composite rules obtained through
the composition of the primitive ones.

XPORT uses a tree-oriented cost model to estimate the benefit
of each potential tree reconfiguration. With the knowledge of the
semantics of the aggregation functions and transformationrules,
the system derives and automatically collects the nodes states and
statistics required. XPORT also employs an approximation tech-
nique that adjusts the statistics sampling rate at each nodeon the
basis of the node’s estimated contribution to the system cost.

Our contributions in this paper can be summarized as follows:
1. We introduce the basic design and architecture of XPORT,

which, to the best of our knowledge, is the first dissemination
system that provides profile and costextensibility.

2. We present a tree-oriented optimization framework that uses



a novel metric-independent multi-level aggregation modelto
express system cost metrics. The framework includes a gram-
mar that facilitates the specification of a large set of perfor-
mance measures and constraints, including ones that involve
multiple metrics, as well as an extensible set of transforma-
tion rules.

3. We describe distributed iterative optimization protocols that
efficiently implement the optimization framework using cost-
function specific optimization techniques.

4. We present experimental evidence, based on real-world data
(RSS feeds) and prototype-based results from both LAN em-
ulation and deployment on PlanetLab, that demonstrate the
flexibility, practicality, and effectiveness of XPORT’s opti-
mization approach.

We begin by introducing the system’s API in Section 2. We intro-
duce the optimization framework and provide a detailed discussion
of its non-operational aspects in Section 3. We describe thebasic
XPORT architecture and its run-time behavior in Section 4. We
present our experiments and results in Section 5, describe related
work in Section 6, and conclude the paper with final remarks and
plans for future work in Section 7.

2. XPORT API
In the first part of this section we motivate our API, by discussing

the common characteristics of dissemination systems. We then de-
scribe the methods an application needs to define to express its na-
tive data types, profile types and performance goals.

2.1 Dissemination-based systems
To introduce XPORT, it is helpful to review profile-driven data

dissemination systems in simple terms. The goal here is to high-
light the common functionality in these systems and accordingly
motivate the general methods used by XPORT.

Profile-driven dissemination systems typically adopt a declara-
tive, publish-subscribe API that decouples data producers(sources)
and consumers (clients), and isolates both parties from the details
of the underlying implementation. The key abstraction is that pro-
ducers generate data bypublishingand consumerssubscribeto data
through their profiles. The underlying dissemination system is re-
sponsible for delivering to clients data matching their profiles.

The dissemination infrastructure consists of a set of nodes(of-
ten calledbrokers) organized into an overlay network. Here on,
we will use the terms brokers and nodes interchangeably. This net-
work usually consists of one or more dissemination trees [3,8, 15].
Clients subscribe by forwarding their profiles to a broker. These
profiles are propagated upstream to the root of the tree, creating a
reverse routing path. Optionally, profiles aremergedwhen possible
to reduce routing state requirements and filtering costs.

Using the routing tree created, a broker can now forward incom-
ing data to the subset of its children that is interested in receiving
the data, instead of forwarding each data message to all its children,
thereby eliminating the “flooding” problem. This routing scheme
works bymatchingeach data message with the routing table entries
that represent the aggregated profile for each subtree.

Depending on the application’s data types and the complexity of
its profiles, dissemination systems may use their own algorithms
andindexing structuresfor efficiently storing profiles on every bro-
ker and matching incoming data against them. ONYX [8] uses
YFilter [7] for matching XPath profiles, whereas SIENA [3] uses a
custom index [4] for storing and matching relational profiles.

Different dissemination-based systems and applications can have
widely varying efficiency targets and constraints. Variouslatency-
related metrics (e.g., matching times, forwarding costs), bandwidth-

efficiency metrics (e.g., per-node bandwidth consumption), fairness
metrics (e.g., uniform bandwidth utilization across nodes), reliabil-
ity metrics (e.g., message loss rates), data quality metrics (e.g., fi-
delity), as well as composite metrics (e.g., product of bandwidth
and latency) have been used and studied. Moreover, many systems
have commonly limited certain metrics to maintain quality of ser-
vice (e.g., a maximum end-to-end latency constraint) or control re-
source usage (e.g., a maximum bandwidth consumption constraint).

2.2 Application-defined methods
Based on the main functionality of data dissemination systems,

we identified two types of methods an application needs to define in
XPORT,profile-relatedandcost-relatedmethods. For simplicity of
exposition, we abstractly describe these methods without providing
their full signatures or semantics.

2.2.1 Profile-related methods
These methods describe how the matching of data and profiles

will be performed. Optionally, the application can specifyhow pro-
files should be stored, indexed and maintained at each node.

• match(m, p): Given a data messagem and a profilep, it
returns true ifm matchesp, or false otherwise.

• merge(p, q): Given two profilesp andq, it returns a more
general profile coveringp andq. This function can merge
profiles received from clients or children, reducing the rout-
ing state maintained in a node and the matching costs.

• Index-related methods: XPORT allows applications to inte-
grate an index structure by specifying the following methods:

– init() : declares and initializes the index structure

– add(p): adds a profilep to the index

– remove(p): removes a profilep from the index

– match(m, ind): Given a data messagem and a profile
indexind, it returns the set of profiles matchingm.

By default, XPORT stores every new profile as a separate routing
entry, and uses a disjunction operator for profile merging.

2.2.2 Cost-related methods
XPORT allows applications to specify their own performance

criteria for the dissemination network created. Our systemuses
a two-level aggregation modelto specify the system cost. The
first level computes the cost of each node as an aggregation ofan
application-defined metric collected from the node’s localneigh-
borhood. The second level computes the cost of the system by
aggregating the node costs. Both aggregations are defined bythe
general signature:

aggregate (function, value, set).

Similarly, applications can also specify constraints for each node.
Figure 1 shows the grammar for defining the performance criteria.

XPORT nodes maintain some built-in performance metrics like
path latency, incoming data rate, etc. Moreover, they maintain
some profile-related state,e.g., the client profiles, its children’s ag-
gregated profiles. These are denoted in the grammar by the terms
METRICS andSTATE, respectively. We now describe our gram-
mar and the two-level aggregation model in a top-down manner,
starting from its second level.

System cost. An application defines the system performance
metric, which we refer to as thesystem cost. This is an aggregation
of the node cost values over all nodes (or clients):

aggregate (system cost function, node cost, system cost set).



<CONSTR METRIC>: <SYSTEM COST> |<NODE COST>

<CONSTRAINT>: <CONSTR METRIC> <OP> threshold

<OP>: < | > | <= | >= | !=

<STATE>: profile set | merged profile | ... 

<METRICS>: path latency | incoming data rate | ...

<NODE COST SET>: path | children 

<NODE COST FUNCTION>: MIN | MAX | SUM | AVERAGE 

<NODE COST>: aggregate(<NODE COST FUNCTION>,

               <NODE COST SET>) |
               <LOCAL VALUE>|

<NODE COST>,

<SYSTEM COST SET>)

               <LOCAL VALUE>,

               g({<NODE COST>})

<SYSTEM COST>: aggregate(<SYSTEM COST FUNCTION>, 

<SYSTEM COST SET>: brokers | clients | brokers−clients 

<SYSTEM COST FUNCTION>:MIN | MAX | SUM | AVERAGE | 
PRODUCT | VARIANCE | STD 

            link | node, <NODE COST SET>) |<LOCAL VALUE>:f(<STATE>|<METRICS>, 

           f( link | node, <NODE COST SET>)

Figure 1: Cost metric grammar.

In order to generalize the aggregation technique and make the pre-
sentation more succinct, we categorize the aggregation functions
into three classes: (i)additive functions(SUM, AVERAGE), (ii) bot-
tleneck functions(MIN,MAX) and (iii)holistic functions(VARIANCE,
STANDARD DEVIATION,PRODUCT). This categorization is based
on the state required by the nodes for optimization purposes. In par-
ticular, for the holistic functions, nodes can identify beneficial op-
timizations by estimating changes on the cost of the nodes affected
by the optimization, while for the additive and bottleneck functions,
nodes need to estimate changes on some aggregated state for these
nodes. Moreover, the state required for the additive functions can
be restricted even further (see Section 3.2). Our definitionpermits
applications to define a variety of system cost measures, like min-
imum bandwidth capacity, total bandwidth consumption, average
path latency, etc.

Node cost. The node cost can be defined as (i) an application-
defined local metric, (iii) a combination of metrics defined as the
node cost, or (ii) an aggregation of the local metrics of someneigh-
boring nodes. In the last case the aggregation function is:

aggregate (node cost function, local value, node cost set).

Thenode cost functioncan be either an additive function or a bot-
tleneck function.Node cost setdefines which neighbors’ local met-
rics we will aggregate. It could be either the nodes on the path to
the root (referred asaggregation over path), or the immediate chil-
dren in the tree (referred asaggregation over children). The above
method allows applications to define a large set of metrics, used
frequently for the evaluation of dissemination-based systems. An
example metric defined as aggregation over the path is the path la-
tency; this is the sum of the latency of every link on the path to the
root. Outgoing bandwidth consumption per node can be definedas
an aggregation over children; it is the sum of the incoming data to
each child. XPORT can also create a multi-metric overlay network
by allowing applications to specify the node cost as a combination
of multiple optimization metrics,e.g., the product of latency and
bandwidth.

Local value. The application also defines the node’s local met-
ric, which we call thelocal value. Applications can either use a
built-in metric or provide a method for computing this metric. This
method can also have as input some of the predefined state vari-
ables or metrics,e.g., the expected incoming data rate, can be a
function of the selectivities of the node’s profiles.

The local value can be a metric referring either to the node itself
(e.g., CPU usage) or to its links with its neighbors (e.g., latency to
the parent). This option is specified by the parameternodeor link
in the metric implementation method. The exact link on whichthe

Aggregation System Cost Node Cost Example
Type Function Function Metrics
Type I Additive Additive average path latency
Type II Bottleneck total path bandwidth bottleneck
Type III Bottleneck Additive maximum path latency
Type IV Bottleneck min path bandwidth bottleneck
Type V Holistic Additive variance of path latency
Type VI Bottleneck variance of bandwidth bottleneck

Table 1: Two-level aggregation examples.

local value will be calculated is determined by theNODE COST
SET term of the grammar. If this term is set topath, i.e., we have
an aggregation over path, then the local value is measured onthe
link to the node’s parent. If the node cost is an aggregation over
children, then the term is set tochildren, and the local value is
measured on the links to the children. Finally, our definition allows
the local value to be defined as a combination of multiple metrics.

Constraints. Constraints are specified as:

constraint (metric, operator, threshold)

Constraints are basically defined in the same way as the system
cost,i.e., following the two-level aggregation model, with an addi-
tional threshold for the constrained metric. For example, an appli-
cation might want to impose an upper bound on the path latencyof
every node, which is one-level aggregation over path. Similarly, a
dissemination system might try to guarantee a lower bound ofthe
maximum path latency. This is a two-level aggregation of thepath
latency over all the nodes system. XPORT customizes its function-
ality and optimization framework to respect these constraints.

Table 1 shows the different aggregation function combinations
along with some example metrics.

2.3 Cost metric examples
In this section, we provide some example metrics. We start with

the average path latency. Here, every node measures the link la-
tency to its parent and adds this to the path latency of its parent:

system cost = aggregate (AVERAGE, path latency,BROKERS)
path latency = aggregate (SUM, link latency,PATH)

If the system cost is thebandwidth bottleneck, every broker mea-
sures the bandwidth of its path to the root (i.e., the link with the
minimum bandwidth capacity) and the cost is defined as:

system cost = aggregate (MIN, bandwidth,BROKERS)
bandwidth = aggregate (MIN, link bandwidth,PATH)

An example of a metric with no aggregation for the node cost
is thetotal redundant incoming data. In this case, the application
aims to minimize the undesired data each broker receives andfor-
wards. This is the data the broker is not interested in receiving
itself, but has to do so in order to forward it to its descendants who
are interested.

system cost = aggregate (SUM, superfluous data,BROKERS)
superfluous data = (extraIncoming(),PARENT)

The functionextraIncoming()estimates the difference between
the incoming data rate and the matching rate of the client profiles.

Our last example uses a combination of metrics for the node cost.
We define the node cost as the bandwidth-delay product of its path.
This metric provides an estimation of the amount of data currently
in transit on the path. The performance goal is to minimize the
average product over all nodes.

system cost = aggregate (AVERAGE, node cost,BROKERS)
node cost = (path latency× bandwidth)
path latency = aggregate (SUM, link latency,PATH)
bandwidth = aggregate (MIN, link bandwidth,PATH)
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3. OPTIMIZATION FRAMEWORK
XPORT strives to create overlay trees that minimize application-

specified cost functions. Periodically, XPORT modifies the tree
structure using local transformations to adapt to time-varying net-
work or workload conditions. We informally define alocal trans-
formationas one that requires interactions among only the “nearby”
brokers on the overlay tree. In our current implementation,these
brokers are at most three levels from each other. These include a
brokerni, its parentnp, its children and grandchildren, as shown
in Figure 2. We refer to these nodes collectively as theoptimization
unit of ni.

A local transformation istransparentoutside its optimization
unit; i.e., the transformation does not affect the optimization unit’s
interface with the rest of the network. This implies that thepath
from np to the root and the subtrees below the last level of the unit
will not be affected in terms of their topology and (merged) pro-
files. Thus, both the parent ofnp and the brokers at the last level
will continue forwarding the same data to the same nodes, as they
did before the transformation. The only nodes that might experi-
ence a change in their connections and profiles are those within the
optimization unit. However, any node’s cost might be affected by a
transformation. Keeping the topological and profile-related effects
of our transformations local reduces the cost of network reconfigu-
ration, as fewer nodes are affected by each transformation.

3.1 Local transformations
A brute-force approach for identifying the best transformation of

an optimization unit would be to consider all possible reconfigura-
tions of the unit’s structure. There are two main drawbacks of this
approach. The first is the exponential number of configurations
that need to be considered. The second is the increased commu-
nication overhead—exchanging information to quantify thebene-
fit of each transformation may be prohibitively expensive. Instead
of performing an exhaustive search of all configurations, XPORT
limits its search to a smaller set of “promising” transformations.
This set contains a number of built-inprimitive transformationsas
well as other composite transformations defined by the application.
Our experimental results show that a small number of well-chosen
transformations can be very effective while incurring low overhead.

XPORT’s primitive transformations arechild demotionandchild
promotion(Figure 3(a) and (b)). We explain these transformations
with respect to the optimization unit in Figure 2.

Child demotion. This transformation picks a nodenk from the
second level of the unit, and moves it along with its subtree under
one of its siblingsnj . This increases the number of subtrees ofnj ,
leavingni with one less subtree.

Child promotion. This transformation moves a nodenj1 along

Transformation Definition
Child demotion demote(nk, nj)
Child promotion promote(nj1

)
Subtree promotion(nj) promote(njs )∗

Parent-child swap(nj) promote(nj) →
demote(ni, nj) →
promote(nis )∗ →
demote(njs , ni)

∗

Subtree migration(nk, nj) promote(njs )∗ →
demote(njs , nk)∗

Sibling swap(nj , nk) promote(njs )∗ →
demote(njs , nk)∗ →
promote(nks )∗ →
demote(nks , nj)

∗

Table 2: Primitive transformation rules and how they are composed to
create complex rules (’→’ indicates the ordering between operations;
‘*’ indicates that the operation will be performed repeatedly for all
nodes whose parent is specified as the first parameter. The naming of
nodes refers to their position in the original unit).

with its subtreesubj1 under its grandparentni. This increases the
number of subtrees ofni, leavingnj with one less subtree.

The transformation set of XPORT is extensible. Applications
can define their owncompositetransformations by using the primi-
tive ones. Allowing composite transformations is important as they
improve convergence times and also could prevent XPORT from
settling in local minimums. In our implementation, we defined the
following composite transformations.

Subtree promotion. In this operation the subtreesubj of a node
nj is moved under its parentni. This will increase the children
of ni, leavingnj with an empty subtree (shown in Figure 3(c)).
This transformation can be derived by applying the promote child
operation to every childnjs of nj .

Parent-child swap. In this transformation, the owner of the op-
timization unitni and its childnj swap positions, without moving
the subtree ofnj (Figure 3(d)). This will force every subtree previ-
ously underni or nj to have a different parent. Parent-child swap
is derived by combining child promotion and demotion.

Subtree migration. In this case the subtree of a nodenj mi-
grates under its sibling nodenk (Figure 3(e)). Nodenj remains
with no children, while the subtree ofnj increases by the subtree
of nk. Subtree migration can be derived from the two primitive
transformations, by first promoting all the children ofnj underni

and then demoting the same nodes undernk.
Sibling swap.Here, two siblingsnk andnj swap positions. This

will change the root node of their subtrees, as shown in Figure 3(f).
Sibling swap can be expressed as promoting the children ofnj un-
derni, and then demoting them undernk and performing the same
for the children ofnk.

Table 2 shows how these transformations are created from the
primitive ones. Similar tree transformations were also used by pre-
vious work [2, 20].

We note that optimization units can be defined differently; in par-
ticular, they can be extended to more than three levels. Extending
the optimization scope in this manner increases the flexibility of
the system, as it facilitates a larger number of more powerful trans-
formations. On the downside, such an extension also increases the
maintenance traffic and the size of the state nodes need to collect
and maintain. Investigating the cost vs. effectiveness tradeoffs for
varying optimization scope sizes is an interesting issue that is out-
side the scope of this paper.

3.2 System Cost Improvement
The goal of the local transformations is to improve the overall

system cost. XPORT calculates the cost benefit of every candidate
transformation and applies the best one. Since the system cost is
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Figure 3: Local transformation rules: (a) and (b) are primitive and (c)-(f) are composite transformations.

an aggregation of the node costs, the exhaustive approach for quan-
tifying this cost benefit is to estimate the cost of every nodeafter
the transformation and aggregate them to get the new system cost.
This approach may have prohibitively high communication over-
head. However, XPORT can avoid this overhead as it understands
the semantics of the aggregation functions. This knowledgeallows
XPORT to efficiently quantify the cost effect of a transformation.
Furthermore, XPORT can automatically identify the state required
by each node, as well as the information to be exchanged among
nodes during the optimization. In the rest of the section, wede-
scribe this approach in detail.

3.2.1 Quantifying a transformation’s benefit
In this section we provide the general equations that estimate the

cost benefit of a transformation. We start with some definitions and
continue with our metric-independent equations for the cost benefit.

DEFINITION 1. Let costi denote the cost of nodeni. Thede-
pendence setDi of ni is the set of nodes whose cost is affected by
a change incosti. In particular, Di includes the nodes of the sub-
tree defined byni (respectively the nodes of the path fromni to the
root) whencosti is calculated as aggregation over path (respec-
tively aggregation over children). We refer to members ofDi as the
dependentsof ni.

For example, for aggregation over path, an increase on the la-
tency of the link betweenni and its parent will increase the path
latency of all nodes in its subtree. Similarly, for aggregation over
children, a change on a child’s profile could affect the outgoing
bandwidth consumption of the nodes on its path to the root, asthey
may need to forward different data messages downstream.

If XPORT uses only one level of aggregation,i.e., there is no
aggregation for calculating the node cost, the dependence set of a
node may include all nodes in the network. Since the node cost
is defined as a local value, XPORT limits, whenever possible,the
dependence set based on the definition of this metric. For example,
if the local value is defined as a function of the profile ofni, then
the dependents ofni are the nodes of its path, since a change in this
profile could affect only these nodes.

DEFINITION 2. Thedependence set costcost(Di) of ni is the
aggregation ofcostj , nj ∈ Di, over Di, using the system cost
function. We denote a change ofcosti that affectscost(Di) as
∆cost(Di), and the new dependence set cost ascost′(Di).

For example, if the system cost function isMIN, then

cost(Di) = min
j∈Di

{costj}.

Let Ui denote the set of nodes in the optimization unit ofni and
Si denote the set of nodes in the last level of this unit, when the
node cost is an aggregation over path (e.g., nodes of Level 3 in

Figure 2). For an aggregation over children,Si is the root of the
optimization unit. We refer to the union of the dependents ofall
nodes inSi as thedependence setLi of the unit ofni. That is, the
set of nodes that do not belong in the optimization unit ofni but
may be affected by its transformation.

Finally, we denote∆costi as the cost change ofni due to a trans-
formation in its unit,cost′i as its new cost value, andbi as the bene-
fit of the transformation with respect to the system cost. We provide
now the equations that quantify the cost benefit of a transformation
in the optimization unit ofni.

Additive functions. Consider the case where the system cost is
theSUM of the node costs. Then,bi is the sum of thecost change
of only the nodes affected by the transformation,i.e., nodes inside
the unit and the unit’s dependents:

bi =
X

j∈Ui

(cost′j − costj) +
X

k∈Si

∆cost(Dk) (1)

If the AVERAGE function is used, thenbi is divided by the number
of nodes in the system. This general equation holds for everytrans-
formation. However, depending on the transformation, manyof its
terms are zero, so simpler equations can be obtained. Examples of
these equations are given in Table 3.

Bottleneck functions. We assume that the system cost function
isMIN. Thenni estimates the new minimum cost among all nodes.
This can be computed by aggregating only the new cost of the af-
fected nodes and the minimum cost of all nodes not affected by
the transformation. Ifc denotes the current system cost, then the
benefit of the transformation is:

bi = c − min
j∈Ui,k∈Si

{cost′j , cost
′(Dk), min

m/∈Ui,m/∈Li

{costm}} (2)

wherecost′(Dk) = cost(Dk) + ∆cost(Dk). To estimate the
minimum cost of all nodes not affected by the transformationstate
of constant size is required at every node. Details can be found
in [13].

Holistic functions. In this caseni calculates the new cost of
every node affected, and estimates the difference with the current
cost, using its estimations of all the nodes costs. Thus, forthe
VARIANCE function:

bi = c −
1

|V | − 1

X

j∈V

(cost′j − cost′)2

= c −
1

|V | − 1
{

X

j∈Ui

(cost′j − cost′)2+

X

j∈Li

((costj + ∆costj) − cost′)2+

X

j /∈Ui,j /∈Li

(costj − cost′)2}

(3)



Child demotion (cost′k − costk) + ∆cost(Dk)
Child promotion (cost′j1

− costj1
) + ∆cost(Dj1

)

Subtree promotion
P

k∈childrenj
∆cost(Dk) +

P

k∈childrenj
(cost′k − costk)

Subtree migration
P

k∈childrenj
∆cost(Dk) +

P

k∈childrenj
(cost′k − costk)

Sibling swap
P

s∈childrenk∪childrenj
∆cost(Ds) +

P

s∈childrenk∪childrenj
(cost′s − costs)

Table 3: Simplified cost equations for local transformations (when the system cost function isSUM).

wherecost′ is the average node cost after the transformation and
V is the set of nodes.

Note that some holistic functions can be evaluated (or approxi-
mated) more efficiently than the naive approach presented here by
leveraging the semantics of the specific function under considera-
tion. We refer the reader to [13] for examples.

Extending the optimization framework. We mentioned earlier
that the scope of the optimization unit and the transformation set
of XPORT can be extended. Here, we describe the impact of these
extensions to the way XPORT quantifies the benefit of every trans-
formation. Obviously, increasing the size of the optimization unit
will simply increase the number of terms in Equations 1, 2 and3,
adapting them to include the extra nodes.

Defining new transformations is simple from the user perspec-
tive. The user simply defines which transformations will be com-
bined along with the desired parameters. From the system perspec-
tive, defining a new transformation requires the definition of the
equation that quantifies its cost benefit. This equation can be de-
rived by aggregating, with the system cost function, the equations
for each of the transformations that define the composite one. For
example, it is straightforward to see that, for the subtree promotion,
the equation is simply the sum of the equations for the promote
child operation, over all children of nodenj . For more compli-
cated composite transformations, like sibling swap, more compact
equations will be derived, as many of their terms cancel out.Pro-
viding compact equations implies less traffic during optimization,
due to the smaller state exchanged among nodes in the optimization
unit.

3.2.2 Quantifying cost changes on nodes
The equations that quantify the benefit of a transformation re-

quire estimating the cost effect on the unit’s nodes and on its de-
pendents. Moreover, for the additive and bottleneck functions the
effect on the dependents can be estimated by calculating theaf-
fect on their aggregated cost,i.e., the dependence set cost. XPORT
strives to incur the minimum communication overhead when esti-
mating these cost changes. Therefore, it limits the communication
among nodes of the same unit and thus avoids any metadata ex-
change with the unit’s dependents, as they lie outside the optimiza-
tion unit. Instead, nodes maintain some metadata for their unit’s
dependents. We refer to this state as thetransformation state.

XPORT exploits the semantics of the aggregation functions to
identify both the minimum transformation state required and to de-
rive generic equations that quantify the cost change of the unit’s
dependents. We provide the details of our approach in the follow-
ing paragraphs, for different types of node cost functions.We note
that if no aggregation is used for the node cost, XPORT uses Equa-
tions 1, 2 and 3 to quantify the result of a transformation by esti-
mating the new cost of the dependents of the unit.

Additive node cost functions. For the purpose of illustration,
we focus on the case of theSUM function and an aggregation over
path to the root. An example metric is path latency. Our results are
similar for the case of theAVERAGE function and aggregation over
children. In this case, a change of a node’s cost (i.e., path latency
to the root) will incur the same change on the costs of all its de-

pendents (i.e., every node in its subtree). Given this, we describe
the different cases of system cost functions, when the cost of ni

changes by∆costi. Note that for the additive and bottleneck func-
tions we need to compute the change of the dependence set costof
a nodeni, while for the holistic functions we need to estimate the
cost change of each dependent ofni. Since each dependent’s cost
change is∆costi, the total change of the dependence set cost for
theSUM system cost function is :

∆cost(Di) = ∆costi × |Di|

Thus, nodeni needs to maintain only the size of its dependence set.
Consider the case of bottleneck functions. Here, the systemcost

function is eitherMIN or MAX. Thus, we are only interested in the
change on the minimum (or maximum) node cost among the de-
pendents. Thus:

∆cost(Di) = ∆costi

Moreover, based on Equation 2, every node simply needs to main-
tain an estimation of the current system cost and its dependence set
cost.

For the holistic functions, the cost change of every dependent is
defined as:

∆costj = ∆costi

For this case, every node stores an estimation of the currentsystem
cost, as well as the cost of every node in the system. Given these
equations, nodeni can estimate the benefit of a transformation us-
ing Equations 1, 2 and 3.

Bottleneck node cost functions.We focus here on theMIN ag-
gregation function, for the purpose of illustrating our ideas. Our
results can be easily extended for theMAX function. Again, we as-
sume that an aggregation over path is used for the definition of the
node cost, and for simplicity we assume that the local value of a
node is measured over the link to its parent. An example metric is
the bandwidth bottleneck of a node,i.e., the minimum bandwidth
capacity over all links on its path. Here on, we will refer to this
bandwidth capacity as the bottleneck value of the node, and the
link with this capacity as the bottleneck link. For simplicity, we
will present our approach with respect to this metric.

Changing the bandwidth capacity of a link may affect the band-
width bottleneck of the downstream nodes that have this linkas
their bottleneck link. Consequently, a change of the cost ofni may
affect the cost of every dependentnj (i.e., all nodes in its subtree).
This effect depends on the links lying between the nodesni andnj ,
since there may be similar bottlenecks between them. The follow-
ing definition allows us to identify these links.

DEFINITION 3. The cost of a dependentnj of ni relative to
ni, hi(j), is the aggregation of the local values of all nodes lying
on the path connectingni and nj , using the node cost function.
Moreover, the aggregation ofni’s local value andhi(j),∀nj ∈
Di, is referred to as theminimum local value ofni, gi.

For the bandwidth bottleneck metric,hi(j) is the minimum band-
width capacity link betweenni and its descendantnj , while gi is
the minimum bandwidth capacity of the links in the subtree ofni,
including the local value ofni.

Each node maintains the above metric for all its dependents.In
the case of additive functions, we can reduce the amount of state by



Aggregation T Size O Size
Type I |Di| O(1) |Di| O(1)

costi, cost′i O(1)
Type II |Di| O(1) |Di| O(1)

Ti O(|Di|) hi(j), j ∈ Di O(|Di|)
costi, cost′i O(1)

Type III cost(Di) O(1) cost(Di) O(1)
c O(1) costi, cost′i O(1)

Type IV cost(Di) O(1) cost(Di) O(1)
gi O(1) gi O(1)
c O(1) costi, cost′i O(1)

Type V costj , j ∈ V O(|V |) costi O(|1|)
c O(1) cost′i O(1)

Type VI costj , j ∈ V O(|V |) costi, cost′i O(1)
hi(j), j ∈ Di O(|Di|) hi(j) O(|Di|)

Table 4: Transformation state T and optimization stateO for node ni

(V is the set of nodes in the system).

storing only the uniquehi(j) values along with the frequency for
each distinct value:

Ti = {(λ, α)}, whereλ = |{nj |nj ∈ Di, hi(j) = α}|.

We now describe the equations based on whichni can calculate
a change in its dependence set cost, when its cost change is∆costi

and we use an additive function for the system cost. Similar equa-
tions can be derived for the bottleneck and holistic functions [13].

We assume again the system cost function isSUM and we are
interested in the total cost change over all the dependents.We dis-
tinguish two cases; one where the cost ofni decreases and one
where it increases. For the first case, the cost change is:

∆cost(Di) =



∆costi × |Di| gi ≥ costi

γ otherwise

where

γ =
X

α

(cost′i −min{costi, α})×λ, s.t. (λ, α) ∈ Ti, α ≥ cost
′
i

In the first case,ni and its dependents share the same bottle-
neck link, so their cost is affected by∆costi. The second option
refers to the case where some dependents with a different bottle-
neck value before the transformation share the same bottleneck link
with ni after the transformation. The termγ calculates their total
cost change.

In the second case,costi increases:

∆cost(Di) =



∆costi × |Di| gi > costi andgi > cost′i
ω otherwise

where

ω =
X

α

∆costi × λ +
X

α′

(α′ − costi) × λ
′ s.t.

(λ, α) ∈ Ti, α ≥ cost
′
i and

(λ′
, α

′) ∈ Ti, α
′
< cost

′
i andα > costi

The termω calculates the total cost change of the dependents that
experience the same cost change asni, and the cost change of the
nodes that have a lower bottleneck value after the transformation.
Given this estimation of∆cost(Di), ni uses Equation 1 to estimate
the benefit of a transformation. Thus, the state required forthis case
is simply the size of the dependence set and the setTi.

3.2.3 Multi-metric cost functions
XPORT can create multi-metric overlay trees by defining ei-

ther the node cost or the local value of a node as a combination
of multiple metrics. For both of these cases, the individualmet-
rics used in the definition of the combined metric are calculated
independently. Each node combines these metrics, based on the
application-specified function, to obtain the final local value or
node cost, respectively. Moreover, for multi-metric node costs, the

optimization procedure is somewhat different. For each transfor-
mation, the node calculates the effect of the transformation on its
dependents separately for each individual metric. It then combines
these metrics to derive the final impact on its dependents’ costs.
Since there are no restrictions on the combination functions, the to-
tal benefit of a transformation is calculated similarly to the holistic
functions,i.e., each node uses its estimation of the new node costs
to calculate the new system cost and compares it with the current
cost value.

3.2.4 Statistics approximation
In the previous section, we argued that maintaining state for the

dependents of the optimization unit ofni (e.g., dependence set cost)
allowsni to quantify the benefit of a transformation. In order forni

to calculate this state, its peers need to periodically broadcast some
metadata. This metadata includes the cost and local value ofeach
node. For the additive and bottleneck system cost functions, ni

needs to collect this data only from its dependents, while inthe case
of the holistic functions, it needs to know the cost of every node in
the system. To reduce the high overhead of these broadcasts,we
vary their frequency.

XPORT broadcasts the cost of nodes that have higher impact on
the system cost more frequently. Each nodeni is assigned a weight
wi depending on this impact and broadcasts its metadata inbroad-
cast phases. During each phase, only a subset of the nodes will
send their metadata, depending on their weight. Nodeni partici-
pates in the broadcast phases with period:

wi × p (4)

wherep > 1 is a predefined constant.
The weight of a node depends on the node cost function. We

distinguish two cases; the first one refers to the additive functions.
In this case, the larger the dependence set of a node is, the more
nodes it can affect if its own local value changes. To reflect anode’s
impact on the system cost, we set the weight ofni to bewi = |V |

|Di|
.

An example metric is a node’s path latency. In this case, changes on
the links closer to the root affect more nodes than the links closer
to the leaf nodes.

The second case is for the bottleneck functions. Here, the closer
the local value ofni is to its dependents’ cost, the more likely it is
to become their new bottleneck value (assuming no drastic changes
on the local values of the nodes). Thus, we set the weight ofni

to wi = local valuei − gi, wheregi represents the minimum (or
maximum) bottleneck value of all the dependents ofni. An exam-
ple metric is the bandwidth bottleneck of a node, where a change
on a link’s capacity could potentially affect the bandwidthof all its
descendants. ants.

4. RUN-TIME FUNCTIONALITY
In this section, we describe the run time functionality of XPORT.

We start by describing the basic system model and architecture. We
then describe the details of the distributed optimization protocol.

4.1 System model
XPORT consists of a set of nodes organized into an application-

level overlay tree. In order to join the system, a new node selects
an existing node as its parent. No specific attempt to find a “good”
parent is made at this point with the expectation that subsequent
optimization steps will move the node to a more optimal and valid
(wrt. to the constraint, if any) network location.

The high-level usage is based on the publish/subscribe paradigm,
where sources publish their data and clients express their data in-
terests through their profiles. A client connects to an XPORTnode
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Figure 4: XPORT’s high-level node architecture.

and registers its profile. Nodes add a new profilep as a new rout-
ing entry, optionally indexing it as described in Section 2.The new
profile is merged with the existing ones, using the merge function
if it exists. The profile is then propagated up the tree towards the
root, until it reaches either a node with a more general “covering”
profile or eventually the root.

Upon the receipt of a data messagem, a broker checks all the
entries in its routing table to determine whetherm should be for-
warded to a downstream broker (or a client) using the appropriate
matching function.

Node architecture. The high-level architecture of an XPORT
node is shown in Figure 4. Applications customize two main sys-
tem components. The first component is thedata/profile handler
that is responsible for storing, indexing and maintaining profiles as
well as matching them against incoming data messages. Theopti-
mizeridentifies and applies network transformations on the basisof
application-specified performance criteria and constraints. The tree
transformations to be performed are given to theconnection man-
ager, which establishes and manages the node’s connections with
its parent and children. Both the optimizer and the profile/data han-
dler communicate with the node’srouter, which handles all the data
and metadata communication.

Node State.Each node maintains four state types:profile-based,
cost-based, transformation, and optimizationstate. The profile-
based state includes the profiles the node receives from its children
and clients, and the merged profile it derives from them. Thus, the
size of the profile-related state for nodeni is O(|childreni|). This
state resides in the profile/data handler. The cost-based state in-
cludes the local metric value of the node and its cost. This state is
of constant size,O(1). The transformation state refers to the data
every node has to maintain in order to participate in the local trans-
formations. This state allows a node to quantify the cost benefit
of local transformations. Optimization state refers to theinforma-
tion nodes need to exchange with their neighbors during optimiza-
tion and resides in the optimizer. Optimization and transformation
states and their size estimations are given in Table 4.

4.2 Distributed optimization protocols

4.2.1 Bottleneck optimization
XPORT uses abottleneck-basedapproach for optimization in

which the system focuses only oneffectivetransformations that
have the potential to reduce the overall system cost. Other trans-
formations, even though they might yield smaller local costs, are
ignored. For example, if the optimization goal is to minimize the
maximum CPU load in the system, then XPORT will focus solely
on the most loaded node and attempt to decrease its cost.

To implement this approach, we rely on the notion of acritical
node. A node is considered critical if a change in its cost may
potentially affect the system performance. Similarly, we define a
critical optimization unitas a unit that may affect the cost of a

critical node, and, thus, by definition the system cost.
In XPORT, optimization proceeds overoptimization periods. At

each optimization period, each node that owns a critical optimiza-
tion unit exchanges data (i.e., optimization state) with the nodes
in its unit, and quantifies the benefit of the candidate transforma-
tions. It then identifies the most effective transformationand sends
it to the root of the tree. The root simply identifies the transforma-
tion with the maximum expected benefit and informs the selected
unit about the new configuration to which it should switch. This
bottleneck-based approach ensures cost improvement in every op-
timization period, assuming that at least one beneficial transforma-
tion is identified. In addition to the candidate transformations, the
system also considers (with low probability) an additionalrandom
transformation to avoid getting stuck in a local optimum.

During tree reorganization, nodes maintain their old connections
while they establish their new connections. This approach allows
the nodes to keep receiving data from the current tree duringopti-
mization periods. To ensure the correctness of tree reorganization
and avoid losing messages, however, care must be taken regarding
when the nodes should switch to the new sub-tree. One solution is
to wait until all connections are set up and then use a distributed
protocol to make the switch in a coordinated fashion, starting from
the root of the new sub-tree proceeding downstream.

XPORT implements an alternative approach that is based on the
use ofsequence numbersand a TCP-like window-based message
request and retransmit scheme implemented at the application level.
In this approach, each message injected to the system is assigned
a unique monotonically-increasing sequence number by the root.
Nodes simply cache the messages they receive until they run out of
space. Whenever a node establishes a new connection (eitherdur-
ing reorganization or after a disconnection/failure), it requests from
its parent the messages that it has not yet received, which itcan de-
termine on the basis of the sequence numbers it has seen. If the
parent node does not have those messages in its cache, it willfor-
ward the request to its own parent and the process will iterate. This
approach not only eliminates the need for coordinated switching
but also allows XPORT to deal uniformly with other problematic
cases such as failures and temporary disconnections. The details of
the protocol are outside the scope of this paper.

An alternative to bottleneck-based optimization is an approach
we refer to asopportunisticoptimization. If the optimization goal
is to minimize the maximum CPU load, then the opportunistic ap-
proach will attempt to reduce the load of the most loaded node
in each optimization unit, as opposed to the bottleneck-based ap-
proach that will only consider the critical unit(s). Even though the
opportunistic approach will lead to many “useless” transformations
(wrt. the system cost metric), it also has the potential to indirectly
lead the system to a globally good configuration over time. Inves-
tigating the tradeoffs between the two approaches is an interesting
future research direction.

4.2.2 Concurrent transformations
A related issue is the choice of the number of optimization units

that can be optimized concurrently. Strictly serializing transforma-
tions is easier to reason about and implement, as we do not need
to consider potentially negatively interfering concurrent transfor-
mations across multiple optimization units. At the same time, se-
rialization often slows down the converge rate to a minimal cost
configuration.

We now discuss how XPORT facilitates multiple concurrent trans-
formations by reasoning about the scope and semantics of thetrans-
formations. This reasoning is based on the notion ofindependence
for optimization units and transformations.



DEFINITION 4. The optimization units ofni andnj are inde-
pendentif

(Ui ∪ Si) ∩ (Uj ∪ Sj) = ⊘.

DEFINITION 5. Lettransi andtransj denote transformations
of the optimization units ofni andnj , respectively. Furthermore,
let trans seti and trans setj be the set of nodes affected topo-
logically (i.e., have a different parent or different children set) by
transi and transj , respectively. We say thattransi and transj

are independentif the optimization units ofni andnj are indepen-
dent, or

(trans seti ∩ trans setj) = ⊘.
XPORT allows two transformations to be applied in parallel during
the same optimization period if they are independent. This ensures
that these transformations can both be defined correctly on their
overlapping optimization units.

Identifying which transformations can be parallelized is the first
step for supporting concurrent transformations. The second step
involves quantifying the cost effect of these transformations when
applied in parallel. This cost effect will have to be compared with
the effect of applying only one of the two transformations, in order
to decide the best combination.

If two transformations are applied on independent units, then
they cannot negatively interfere with each other. Otherwise, one of
the transformations might potentially affect the cost of some of the
nodes in the other optimization unit. Thus, we need a way to quan-
tify the benefit of parallel independent transformations when their
corresponding optimization units overlap. We denote this benefit
asbij and estimate it as follows.

Additive functions. Assuming the system cost function isSUM,
then, if the two units are independent, the total benefit is the sum
of the benefit of each transformation. For overlapping units, the
total benefit is calculated in the same way since each node’s change
affects its dependents equally. Thus:

bij = bi + bj .

Bottleneck functions. If the two units are independent and the
system cost function used isMIN, then the total benefit is:

bij = min{bi, bj}.

When the units overlap, assuming thatni is in a higher level in the
tree thannj , the total benefit of the parallel transformations is:
bij = c − min

m∈Uj ,k∈Sj

{cost′j + x, cost
′
m + x, cost

′(Dk), minnet}

wherecost′(Dk) = cost(Dk) + ∆cost(Dk) and x is the cost
increase ofnk ’s first ancestor that belongs in the unit ofni but not
the unit ofnj . Also we defineminnet as :

minnet = min
y /∈Ui,y /∈Si,y /∈Uj ,y /∈Sj

costy

We omit for brevity the estimations for holistic functions,which
can be found in [13].

5. PERFORMANCE EVALUATION
We implemented an initial XPORT prototype [14] in Java. For

experimentation purposes, we also built an RSS feed dissemina-
tion application using the XPORT API and deployed it across the
PlanetLab testbed.

For this application, XPORT automatically builds an overlay tree,
where the root of the tree polls the RSS sources and forwards only
new items to the other nodes in the tree. Using XPORT for dissem-
inating the requested feeds allows RSS sources to receive HTTP
requests only from the root instead of each individual client. Thus,
the bandwidth requirements of hosting an RSS feed decreases. More-
over, since XPORT alleviates the load that would have been pre-
sented by many clients, it is reasonable for the root to poll the RSS
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Figure 5: Total network latency of PlanetLab nodes. XPORT con-
verges to the optimal after approximately 8 transformations.

source more frequently that any one of the clients would haveas tra-
ditional RSS clients. In combination with XPORT’s push-style dis-
tribution, the end result is that clients receive more timely updates
while presenting less load on the RSS source. FeedTree [18] pos-
sesses a similar structure, though it is unable to perform XPORT’s
wide variety of optimizations.

5.1 Experimental results
We studied XPORT’s performance through real-world RSS data

and results from both prototype-based LAN emulation and deploy-
ment in the PlanetLab testbed. In our PlanetLab experiments, we
used dissemination trees with up to 40 randomly chosen PlanetLab
sites. For our prototype-based LAN emulation, we used up to 100
nodes, but artificially controlled the network latency and bandwidth
capacities between nodes. We obtained these metrics from actual
PlanetLab measurements, but “replayed” these conditions for mul-
tiple experiments in order to obtain repeatable results.

We also created 100 clients and attached them randomly to the
XPORT nodes. Each client picks its profile from a set of 700 RSS
feeds using the Zipf distribution, with the skew parameter set to
0.97. The total size of RSS feeds was around 19MB, and the av-
erage RSS feed size was 27.7KB. For the experiments, we set our
optimization period to two minutes. This choice is a compromise
between rapid adaptivity to network changes and minimizingop-
timization traffic. The minimal practical interval dependson the
metrics being optimized. For example, it takes longer to assess
available bandwidth than latency.

We have used XPORT to implement distribution trees that opti-
mize a variety of metrics including total path latency, variance of
path latency, average bandwidth consumption, bandwidth bottle-
neck, and total received redundant data. Our experiments demon-
strate XPORT’s flexibility and effectiveness, as it managesto im-
prove each of these metrics significantly through its local transfor-
mations.

Convergence.Figure 5 shows the sum of the network path la-
tencies of 20 PlanetLab sites. This is an example of an aggregation
using additive functions for both the node and system cost. We
compare XPORT’s performance with the optimal tree, which isthe
star topology when no constraints are imposed and assuming the
triangle inequality and lack of congestion. In the star topology, all
the nodes are connected directly to the root of the tree. XPORT
starts with a random tree and continuously applies local transfor-
mations. The figure shows that while XPORT starts with lower
performance than the star topology, after a small number of trans-
formations our tree converges to the optimal tree.

We also implemented a metric that measures the total redundant
data received by the nodes. This is a sum of the amount of data
each node receives that matches the profiles of its descendants but
not the interests of its directly connected clients. An application
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Figure 6: Superfluous incoming data per broker on 40 PlanetLab
nodes. XPORT converges to the optimal after approximately 11 trans-
formations.

might want to minimize superfluous data to eliminate disincentives
to joining a cooperative system. This is an example of a metric
where no aggregation is defined for the node cost. We used this
metric to demonstrate XPORT’s convergence to the optimal solu-
tion and also to show the effectiveness of our transformations.

For this metric we used our RSS feed application on 40 Plan-
etLab sites. Figure 6 shows three different cases for this metric,
one when all five composite transformations are applied and two
where the optimizer used only four and three composite transfor-
mations. We first remove the promote subtree transformationand
then the parent-child swap transformation from our optimization
framework. The results reveal that in the first case XPORT con-
verged to the optimal solution (where the total redundant data is
zero for every node), while for the other two cases the systemcost
improves but could not converge to the optimal case. Promotesub-
tree is the most beneficial transformation because it allowsour tree
to converge to the star topology. XPORT managed to improve its
performance, even in the absence of this transformation. More-
over, the larger the set of transformations, the better performance
XPORT achieves.

Adaptivity. While creating a star topology is optimal for the pre-
vious cases, it is not an optimal solution in terms of the resources
required from the root node. To demonstrate this, we run the exper-
iment on the total path latency metric, and included the CPU time
for processing and matching the incoming messages on every node
on this path. The more profiles a node must match and the higher
its fanout, the greater CPU latency that messages will observe when
traveling through that broker. In the case of the star topology, the
root of the tree has the overhead of matching the incoming mes-
sages to the profiles of every node. In the case of XPORT’s chosen
tree, this processing overhead is distributed across multiple nodes.

Again we started with a random tree on 20 PlanetLab sites, which
is outperformed at the beginning by the star topology. This differ-
ence is due solely to network delays. Invoking the optimizerat this
point would allow XPORT to reconfigure a random tree to match
the performance of the star topology. In this experiment we invoke
the optimizer only after the root node has fetched the RSS feeds
and completed their dissemination. When the root starts fetching
the RSS feeds requested, the total path latency increases for both
trees as shown in Figure 7. However, the increase is much higher
in the case of the star topology, as all matching is performedby the
root node. As a result, the random tree begins to outperform the
star tree. Moreover, when the optimizer starts, XPORT adapts to
the loaded nodes in the system, and after a number of local trans-
formations, obtains a tree that outperforms the original, unloaded
random tree. XPORT creates trees that avoid highly loaded nodes,
continually moving subtrees to less loaded parents.
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to increased workload and outperforms the optimal topology.
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Figure 8: Average bandwidth consumption for various latency con-
straints.

Constrained Topologies. We also studied the performance of
XPORT when constraints are imposed by the application. To demon-
strate this case, we use a metric where a node’s cost is aggregated
over its children’s local values. We optimized the average outgo-
ing bandwidth over all nodes, where the bandwidth consumption of
a node is defined as the sum of the incoming data of its children.
For this metric, we run experiments with path latency constraints
on every node. In the path latency we included the CPU time for
processing and matching the incoming messages. This constraint
is implemented as aggregation over path.

We run our experiments on 100 nodes in our LAN emulation en-
vironment. Although a better metric might be network utilization,
in which the costs of a transmission is multiplied by the number
of links in the transmission, it would be difficult to establish an
optimal benchmark to compare our tree with. The optimal topol-
ogy for this case is again a topology where all nodes with a client
profile are directly connected to the root, because each message is
emitted by a broker exactly once. Figure 8 shows XPORT’s perfor-
mance when no constraints are imposed and two cases where the
path latency threshold is set to 300ms and 200ms. In the first case,
XPORT converges to the optimal configuration. However, when
latency constraints exist, the root cannot accept direct connections
from all nodes with a client attached, as that would increaseits own
CPU latency and the path latency of its descendants, violating the
constraint. Although XPORT cannot converge to the optimal net-
work configuration, more relaxed constraints allow the system to
perform closer to the optimal case, as more nodes are allowedto
connect to the root of the tree.

We also considered a maximum fanout constraint that limitedthe
children of every broker to a constant number. We used XPORT to
maximize the lowest bottleneck bandwidth in such a distribution
tree. This is an aggregation that uses the bottleneck function MIN
for the node and system cost. Every node calculates its bottleneck
bandwidth, which is the minimum capacity of a link between any
two of a broker’s ancestors. The system cost is the minimum bot-
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Figure 9: Bandwidth bottleneck under fanout constraints. Applica-
tions impose topology constraints, which may limit XPORT’sability to
optimize.

Metric f t Performance
Total path latency 2 5 3229ms

6 8 3036ms
10 12 2670ms
∞ 14 1691ms

Redundant incoming data 2 4 1088KB
6 7 461KB

10 8 304KB
∞ 11 0KB

Table 5: Performance on a constrained network (t refers to the num-
ber of transformations and f to the fanout constraint). As constraints
are relaxed, XPORT converges to the optimal tree.

tleneck bandwidth over all brokers. The goal of XPORT is to max-
imize this cost. These results are from our prototype-basedLAN
emulation on 40 nodes. Figure 9 shows that XPORT identifies crit-
ical portions of the tree and after every transformation increases the
minimum bottleneck bandwidth in the system.

We start with a maximum fanout of two, a very restrictive con-
straint, and relax the constraint to six, ten and infinite fanout. The
results reveal that the stricter the constraints, the fewertransforma-
tions XPORT can perform. For example, when the fanout is set
to two, XPORT cannot improve beyond two optimization periods.
When the fanout is set to six and ten, the system improves for three
and four periods, respectively. Table 5 shows similar results for
network latency and redundant data metrics. In both cases, when
no constraints are imposed, XPORT can converge to the optimal
solution. As the constraints become tighter, fewer transformations
can be applied and smaller improvement is achieved.

Network traffic. Figure 10 shows the average maintenance traf-
fic and the optimization traffic for the different metrics fora net-
work of 40 nodes.Maintenance trafficis the data each node ex-
changes with its parent and children, to calculate its own cost. This
state is exchanged in specific time periods (maintenance period).
Optimization trafficis the data needed to estimate the cost of candi-
date transformations and is metric specific. This state is exchanged
between nodes within the same optimization unit during an opti-
mization period. Intuitively, the optimization state is a measure of
the optimization overhead.

The results reveal that the maintenance traffic is low and similar
for all metrics. Note that, for the redundant data metric there is
no maintenance traffic. This is because this metric requiresonly
one level of aggregation, as each node’s cost is defined as a local
value. Thus, nodes do not need to request any information from
their parents or children to calculate their costs.

The optimization traffic, while higher in most cases than the
maintenance traffic (per period), has an acceptable size. Itis inter-
esting to examine the difference in the traffic required by different
metrics. In the case of the total path latency metric, each node in
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Figure 10: Maintenance and optimization traffic (S = Maintenance
period, P = optimization period).

the network is essentially a critical node. Thus, all nodes check
for possible transformations of their optimization units.This im-
plies that all nodes in the system will exchange data within their
optimization units.

On the other hand, while optimizing bottleneck bandwidth, only
the nodes that are affected by the link with the minimum band-
width capacity attempt to transform their optimization units. Thus,
only those optimization units that contain the bottleneck edge will
exchange data. As a result, the average traffic per node is much
smaller. The cases of bandwidth consumption and redundant in-
coming data are yet different. In both of these cases, the cost of
each node depends on its profile and the merged profile of its chil-
dren. Thus, the dependence set of a node is smaller, and so fewer
nodes exchange state for optimization.

Statistics Approximation. We now study the tradeoff between
traffic improvement and system performance when approximating
statistics. For this purpose, we ran an experiment where theop-
timization goal is to minimize the variance of the path latencies
across all the nodes in the system to ensure service fairness. We
also ran another version of the algorithm where statistics on the
node cost and local values are approximated. We expect that the
more frequently nodes broadcast their cost values, the better cost
estimations they can compute, leading to more effective transfor-
mations and thus faster convergence. Of course, if nodes broadcast
their costs more frequently, the maintenance traffic will behigher.

The results in Table 6 clearly demonstrate this tradeoff. Weran
our experiments using 100 nodes in the LAN emulation environ-
ment, and computed the variance when all nodes participate in ev-
ery broadcast phase. In this case, the tree converged to its final con-
figuration after 15 transformations. The average bandwidthcon-
sumption was approximately 2KB per node per period. We used
the same tree topology and ran the approximated statistics version,
where the participation of every node in the broadcast phaseis de-
fined by Formula 4, wherewi = |V |

|Di|
. In the experiments, we

also varied the period parameterp. The results reveal that even for
small period values (p = 1), approximation reduces the mainte-
nance traffic by 97%. At the same time, it takes 20 transformations
for the approximated approach to converge to a configurationwith
a cost value that is approximately only 7% more than that of the
non-approximated case. The results for larger period values reveal
similar benefits.

6. RELATED WORK
Supporting extensibility in systems engineering has oftenbeen a

key research goal for the benefits brought via modularity andsoft-
ware reuse. In the database community, concepts such as extensi-
bility and declarative specifications have long been the norm as a
result of pioneering works such as System R [1] and Starburst[19].



Statistics Period Performance difference(%) t Traffic reduction (%)
p = 1 0.07 20 0.97142
p = 2 0.14 26 0.9782
p = 3 0.22 31 0.9797

Table 6: Statistics approximation effects on performance, conver-
gence timet and network traffic, when minimizing path latency vari-
ance. The percentage values indicate relative differencesover the non-
approximated case.

Indeed, the generalization process need not be restricted to the do-
main of large DBMSs, perhaps best exemplified by GiST [9]. GiST
provides a framework generalizing the problem of implementing
search indexes in a database. In many ways, our work draws its
inspiration from GiST, striving to apply the same design principles
to distributed data dissemination applications.

Recent efforts from the networking community, such as Click[10],
MACEDON [16], and P2 [12] provide examples of systems pro-
moting the advantages of extensibility. Click provides a modular
architecture for processing packets in routers using a flow-based
configuration specification. MACEDON and P2 both address the
challenge of constructing overlay networks by abstractingover com-
monalities present in the large number of overlay algorithms de-
signed over the last few years.

To the best of our knowledge, we have yet to see extensible
data dissemination architectures capable of generalizingover the
core dissemination functionality and optimization objectives. Ex-
isting approaches such as SplitStream [5] and Bullet [11] construct
application-level multicast networks that minimize the forwarding
load of internal nodes by constructing mesh overlays, thereby en-
abling clients to receive different data segments from multiple par-
ents in the mesh. ONYX [8] and XRoute [6] introduce content-
based publish-subscribe solutions for XML data and XPath-based
profiles respectively, and they both focus on using structures for
efficiently storing profiles matching them to the incoming data.
Siena [3] investigates a publish-subscribe framework for relational
data and considers the system’s performance from a bandwidth-
oriented perspective. By abstracting over the matching functional-
ity, XPORT is able to support both the XPath and relational profiles,
in addition to supporting a superset of the optimization metrics con-
sidered by these systems.

Closely related are also those approaches that use the concept of
local transformations to perform continuous adaptive optimization
of the dissemination tree [2, 20]. These systems attempt to optimize
a specific metric, as opposed to the general optimization frame-
work provided by XPORT. Finally, AMMO [17] provides a similar
framework for constructing an adaptive multi-metric overlay net-
works. Their metric-independent framework focuses on minimiz-
ing the sum of a performance metric defined over all the overlay
edges of the dissemination tree. Compared to AMMO, XPORT’s
model is more extensible, since we allow a wider variety of cost
functions and a generic means to combine them.

7. CONCLUSIONS AND FUTURE WORK
XPORT explores routing tree extensibility in the context ofprofile-

based data dissemination systems. It is largely motivated by a
growing set of medium-large scale dissemination-based applica-
tions and services. Addressing the requirements of this broad appli-
cation domain requires robust and flexible software infrastructures
that are also highly extensible and customizable. Our work is a step
towards building such an infrastructure.

We implemented an initial XPORT prototype [14] on which we
have built two applications: a peer-to-peer RSS feed dissemination
service and a networked multiplayer game. We are currently in the

process of deploying these applications on PlanetLab. Thisexperi-
ence will allow us to better debug our system and gather real user
profiles for further experimentation.

As future work, we have a full agenda. First, we will extend
XPORT to also serve as a data collection system. The interesting
challenge here is the seamless integration and combined optimiza-
tion of the collection and dissemination tasks. Second, we will
investigate extensible profile specification languages to ease the
specification of complex, stateful profiles (e.g., aggregates, joins).
Finally, we will explore how to extend our tree-based overlays to
more general mesh-based topologies, which will further improve
the efficiency and reliability of dissemination.
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