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ABSTRACT

We introduce XPORT, a profile-driven distributed data disisa-

tion system that supports an extensible set of data typesjepr
types, and optimization metrics. XPORT efficiently implertse

a generic tree-based overlay network, which can be custahmiz
per application using a small number of methods that eneapsu
late application-specific data filtering, profile aggregatiand op-
timization logic. The clean separation between the “plurgband
“application” enables the system to uniformly support dispe
dissemination-based applications.

We first provide an overview of the basic XPORT model and ar-
chitecture. We then describe in detail an extensible opttion
framework, based on a two-level aggregation model, théttites
easy specification of a wide range of commonly used perfocaman
goals. We discuss distributed tree transformation prdsatat al-
low XPORT to iteratively optimize its operation to achievese
goals under changing network and application conditiomsalfy,
we demonstrate the flexibility and the effectiveness of XFQB-
ing real-world data and experimental results obtained ftmth
prototype-based LAN emulation and deployment on PlanetLab

1. INTRODUCTION

XPORT (eXtensible Profile-driven Overlay Routing Treesais
generic profile-driven distributed data disseminatiortesys It is
designed to provide the core dissemination infrastrudtura grow-
ing set of dissemination-based applications and servigelsiding
web feed dissemination (RSS/Atom), multicast-based comtis-
tribution, massively multiplayer network games, stockeicdistri-
bution, and large-scale distributed collaborative agpions.

Dissemination-based applications often exhibit diveggliea-
tion logic and performance requirements. At the same tihas;, all
require severatommoncore facilities, which include dissemina-
tion overlay construction, maintenance and optimizat{oantent-
based) routing logic, and membership management. The$ieapp
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tions are often developed from scratch, requiring subistiaeffort
and investment to “get it right” for each specific case. Intcast to
the existing approaches that provide point solutions tatgmiob-
lems, XPORT’s goal is to develop an application-agnostiatim
that can be easily customized and extended for a specifiettarg
application through a small number of methods that encatesul
application-specific behavior and optimizations.

Extensibility is the central design consideration for oystem,
which supports an extensible set of data and profiles typesop-
timization metrics. Specifically, XPORT supports two tyjpéex-
tensibility. Profile-related extensibilityefers to the ability to easily
accommodate new data and profile types, and is key to supgorti
diverse applicationsCost-related extensibilityefers to the ability
to express application-specific performance goals, amvalbp-
plications to define their own criterion of an efficient anteefive
dissemination system. Given application-defined datastypeo-
file types and performance metrics, XPORT automaticallyolsyi
maintains and optimizes an overlay dissemination treeistng
of the available broker machines in the system.

The main focus of this paper is on the design, implementation
and evaluation of XPORT's basic optimization framework tses
a novel two-level aggregation model to define system coste Th
first level computes the cost of each node as an aggregatioetef
rics gathered from the node’s local neighborhood. The sl
computes the system cost by aggregating the node costs. dded m
allows for the uniform specification of many commonly used- pe
formance measures, as well as new ones, through combisation
different aggregation functions and local metrics.

During run time, the system iteratively applies tree transfa-
tions in order to converge to a minimal cost configuratiortjap
ally subject to constraint®(g, “minimize the total bandwidth con-
sumption in the system while ensuring that the dissemindte
tencies do not exceed 100ms”). The transformations areeduigt
a set of transformation rules, including primitive ruledided by
XPORT and application-defined composite rules obtainealign
the composition of the primitive ones.

XPORT uses a tree-oriented cost model to estimate the benefit
of each potential tree reconfiguration. With the knowledfjéhe
semantics of the aggregation functions and transformatites,
the system derives and automatically collects the nodéssséad
statistics required. XPORT also employs an approximatam-t
nique that adjusts the statistics sampling rate at each ondke
basis of the node’s estimated contribution to the systerh cos

Our contributions in this paper can be summarized as follows

1. We introduce the basic design and architecture of XPORT,

which, to the best of our knowledge, is the first dissemimatio
system that provides profile and cestensibility

2. We present a tree-oriented optimization framework tkasu



a novel metric-independent multi-level aggregation maadel

efficiency metrics€.g, per-node bandwidth consumption), fairness

express system cost metrics. The framework includes a gram-metrics €.g, uniform bandwidth utilization across nodes), reliabil-

mar that facilitates the specification of a large set of perfo
mance measures and constraints, including ones that awolv
multiple metrics, as well as an extensible set of transferma
tion rules.

3. We describe distributed iterative optimization proledbat
efficiently implement the optimization framework using tos
function specific optimization techniques.

. We present experimental evidence, based on real-wordd da

(RSS feeds) and prototype-based results from both LAN em-

ity metrics €.g, message loss rates), data quality metrécg,(fi-
delity), as well as composite metrics.§, product of bandwidth
and latency) have been used and studied. Moreover, margnsyst
have commonly limited certain metrics to maintain qualifyser-
vice (e.g, a maximum end-to-end latency constraint) or control re-
source usagee(g, a maximum bandwidth consumption constraint).

2.2 Application-defined methods

Based on the main functionality of data dissemination syste

ulation and deployment on PlanetLab, that demonstrate the we identified two types of methods an application needs toedfi

flexibility, practicality, and effectiveness of XPORT's top
mization approach.
We begin by introducing the system’s APl in Section 2. Wedntr
duce the optimization framework and provide a detailedwdision
of its non-operational aspects in Section 3. We describdase
XPORT architecture and its run-time behavior in Section 4& W
present our experiments and results in Section 5, desclbeed
work in Section 6, and conclude the paper with final remarks an
plans for future work in Section 7.

2. XPORT API

In the first part of this section we motivate our API, by dissing
the common characteristics of dissemination systems. @edkR-
scribe the methods an application needs to define to expisass-i
tive data types, profile types and performance goals.

2.1 Dissemination-based systems

To introduce XPORT, it is helpful to review profile-driventda
dissemination systems in simple terms. The goal here isgio- hi
light the common functionality in these systems and acogigi
motivate the general methods used by XPORT.

Profile-driven dissemination systems typically adopt aatee
tive, publish-subscribe API that decouples data produsersce$
and consumersclients, and isolates both parties from the details
of the underlying implementation. The key abstraction & firo-
ducers generate data pyblishingand consumersubscribeo data
through their profiles. The underlying dissemination sysie re-
sponsible for delivering to clients data matching theirfites.

The dissemination infrastructure consists of a set of n¢des
ten calledbrokerg organized into an overlay network. Here on,
we will use the terms brokers and nodes interchangeably etk
work usually consists of one or more dissemination tree8,[35].
Clients subscribe by forwarding their profiles to a brokehe3e
profiles are propagated upstream to the root of the treeticgea
reverse routing path. Optionally, profiles anergedvhen possible
to reduce routing state requirements and filtering costs.

Using the routing tree created, a broker can now forwardnmco
ing data to the subset of its children that is interested deikng
the data, instead of forwarding each data message to diliitsen,
thereby eliminating the “flooding” problem. This routingh&me
works bymatchingeach data message with the routing table entries
that represent the aggregated profile for each subtree.

Depending on the application’s data types and the complexit
its profiles, dissemination systems may use their own alyos
andindexing structuresor efficiently storing profiles on every bro-
ker and matching incoming data against them. ONYX [8] uses
YFilter [7] for matching XPath profiles, whereas SIENA [3jagsa
custom index [4] for storing and matching relational prafile

Different dissemination-based systems and applicatianhave
widely varying efficiency targets and constraints. Varitaiency-
related metricsd.g, matching times, forwarding costs), bandwidth-

XPORT,profile-relatedandcost-relatednethods. For simplicity of
exposition, we abstractly describe these methods withawiging
their full signatures or semantics.

2.2.1 Profile-related methods

These methods describe how the matching of data and profiles
will be performed. Optionally, the application can spedifyw pro-
files should be stored, indexed and maintained at each node.

e match(m, p): Given a data message and a profilep, it
returns true ifm matche9, or false otherwise.

e merge(p, q): Given two profilesp andg, it returns a more
general profile covering andq. This function can merge
profiles received from clients or children, reducing thetrou
ing state maintained in a node and the matching costs.

e Index-related methods XPORT allows applications to inte-
grate an index structure by specifying the following method

init(): declares and initializes the index structure

add(p): adds a profile to the index

removep): removes a profile from the index

match(m, ind): Given a data message and a profile
indexind, it returns the set of profiles matching.

By default, XPORT stores every new profile as a separatenguti
entry, and uses a disjunction operator for profile merging.

2.2.2 Cost-related methods

XPORT allows applications to specify their own performance
criteria for the dissemination network created. Our systemas
a two-level aggregation modeab specify the system cost. The
first level computes the cost of each node as an aggregatian of
application-defined metric collected from the node’s lagaigh-
borhood. The second level computes the cost of the system by
aggregating the node costs. Both aggregations are defingueby
general signature:

aggregate (function, value, set).

Similarly, applications can also specify constraints facte node.
Figure 1 shows the grammar for defining the performanceriite

XPORT nodes maintain some built-in performance metrias lik
path latency, incoming data rate, etc. Moreover, they raaint
some profile-related state,g, the client profiles, its children’s ag-
gregated profiles. These are denoted in the grammar by tims ter
METRI CS and STATE, respectively. We now describe our gram-
mar and the two-level aggregation model in a top-down manner
starting from its second level.

System cost An application defines the system performance
metric, which we refer to as thegystem costThis is an aggregation
of the node cost values over all nodes (or clients):

aggregate (system cost function, node cost, system cst set



<SYSTEM COST SET>: brokers | clients | brokers—clients

<SYSTEM COST FUNCTION>:MIN | MAX | SUM | AVERAGE |
PRODUCT | VARIANCE | STD

<SYSTEM COST>: aggregate(<SYSTEM COST FUNCTIONNODE COST>,
<SYSTEM COST SET>)
<NODE COST SET>: path | children
<NODE COST FUNCTION>: MIN | MAX | SUM | AVERAGE
<NODE COST>: aggregate(<NODE COST FUNCTIONs| OCAL VALUE>,
<NODE COST SET>) |
<LOCAL VALUE>|
g({<NODE COST>})
<LOCAL VALUE>:f(<STATE>|<METRICS>, link | node, <NODE COST SET>
f( link | node, <NODE COST SET>)
<CONSTR METRIC>: <SYSTEM COST> |[<NODE COST>
<CONSTRAINT>: <CONSTR METRIC> <OP> threshold
<OP>: <|>|<=|>=|I=
<METRICS>: path latency | incoming data rate | ...
<STATE>: profile set | merged profile | ...

Figure 1: Cost metric grammar.

In order to generalize the aggregation technique and makprtt
sentation more succinct, we categorize the aggregatioctifuns
into three classes: (gdditive functiongSUM AVERAGE), (ii) bot-
tleneck functionéM N, MAX) and (iii) holistic functiongVARI ANCE,
STANDARD DEVI ATI ON, PRODUCT). This categorization is based
on the state required by the nodes for optimization purpdsgsar-
ticular, for the holistic functions, nodes can identify béoial op-
timizations by estimating changes on the cost of the nodestatl
by the optimization, while for the additive and bottleneakdtions,
nodes need to estimate changes on some aggregated stétesfor t
nodes. Moreover, the state required for the additive fonetican
be restricted even further (see Section 3.2). Our definfiemmits
applications to define a variety of system cost measures nhiik-
imum bandwidth capacity, total bandwidth consumption,rage
path latency, etc.

Node cost The node cost can be defined as (i) an application-
defined local metric, (iii) a combination of metrics definedthe
node cost, or (ii) an aggregation of the local metrics of sogigh-
boring nodes. In the last case the aggregation function is:

aggregate (node cost function, local value, node cost set).

Thenode cost functioan be either an additive function or a bot-
tleneck functionNode cost sedefines which neighbors’ local met-
rics we will aggregate. It could be either the nodes on thé pat
the root (referred aaggregation over path or the immediate chil-
dren in the tree (referred aggregation over childrén The above
method allows applications to define a large set of metrisedu
frequently for the evaluation of dissemination-basedeyist An
example metric defined as aggregation over the path is thegat
tency; this is the sum of the latency of every link on the patthe
root. Outgoing bandwidth consumption per node can be defised
an aggregation over children; it is the sum of the incominig da
each child. XPORT can also create a multi-metric overlayogk
by allowing applications to specify the node cost as a coathin
of multiple optimization metricse.g, the product of latency and
bandwidth.

Local value. The application also defines the node’s local met-
ric, which we call thelocal value Applications can either use a
built-in metric or provide a method for computing this metrThis

Aggregation | System Cost| Node Cost Example
Type Function Function Metrics

Type | Additive Additive average path latency
Type Il Bottleneck | total path bandwidth bottleneck]
Type Il Bottleneck Additive maximum path latency
Type IV Bottleneck | min path bandwidth bottleneck
Type V Holistic Additive variance of path latency
Type VI Bottleneck | variance of bandwidth bottlenec!

Table 1: Two-level aggregation examples.

local value will be calculated is determined by tNeDE COST
SET term of the grammar. If this term is set path i.e., we have
an aggregation over path, then the local value is measuregkbeon
link to the node’s parent. If the node cost is an aggregati@r o
children, then the term is set @hildren, and the local value is
measured on the links to the children. Finally, our definitdlows
the local value to be defined as a combination of multiple iTetr
Constraints. Constraints are specified as:

constraint (metric, operator, threshold)

Constraints are basically defined in the same way as thensyste
cost,i.e, following the two-level aggregation model, with an addi-
tional threshold for the constrained metric. For exampheaapli-
cation might want to impose an upper bound on the path latefhcy
every node, which is one-level aggregation over path. @ityila
dissemination system might try to guarantee a lower bourtteof
maximum path latency. This is a two-level aggregation ofitath
latency over all the nodes system. XPORT customizes itgifamc
ality and optimization framework to respect these constsai

Table 1 shows the different aggregation function combamesti
along with some example metrics.

2.3 Cost metric examples

In this section, we provide some example metrics. We stdrt wi
the average path latencyHere, every node measures the link la-
tency to its parent and adds this to the path latency of itsrgar

system cost = aggregat&\(ERAGE, path latencyBROKERS)
path latency = aggregat8M link latency, PATH)

If the system cost is theandwidth bottleneglevery broker mea-
sures the bandwidth of its path to the robe( the link with the
minimum bandwidth capacity) and the cost is defined as:

system cost = aggregat®l (N, bandwidth BROKERS)
bandwidth = aggregatéV N, link bandwidth,PATH)

An example of a metric with no aggregation for the node cost
is thetotal redundant incoming dataln this case, the application
aims to minimize the undesired data each broker receive$oand
wards. This is the data the broker is not interested in reogiv
itself, but has to do so in order to forward it to its descenslaho
are interested.

system cost = aggregat8yM superfluous dat8ROKERS)
superfluous data = (extralncomingPARENT)

The functionextralncoming()estimates the difference between
the incoming data rate and the matching rate of the clierftipso

Our last example uses a combination of metrics for the nosie co
We define the node cost as the bandwidth-delay product o&its p
This metric provides an estimation of the amount of dataenily

method can also have as input some of the predefined state variin transit on the path. The performance goal is to minimize th

ables or metricse.g, the expected incoming data rate, can be a
function of the selectivities of the node’s profiles.

The local value can be a metric referring either to the noifit
(e.g, CPU usage) or to its links with its neighboesd, latency to
the parent). This option is specified by the paramatefeor link
in the metric implementation method. The exact link on whitoh

average product over all nodes.

system cost = aggregat&(ERAGE, node costBROKERS)
node cost = (path latency bandwidth)

path latency = aggregat8M link latency, PATH)
bandwidth = aggregatéV N, link bandwidth,PATH)
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Figure 2: Optimization unit of n;. Nodes inside the dashed box belong
to the unit.

3. OPTIMIZATION FRAMEWORK

XPORT strives to create overlay trees that minimize appitoa
specified cost functions. Periodically, XPORT modifies treet
structure using local transformations to adapt to timeAmar net-
work or workload conditions. We informally definel@cal trans-
formationas one that requires interactions among only the “nearby”
brokers on the overlay tree. In our current implementatibase
brokers are at most three levels from each other. Thesedadcu
brokern;, its parentn,, its children and grandchildren, as shown
in Figure 2. We refer to these nodes collectively asapigmization
unit of n;.

A local transformation igransparentoutside its optimization
unit; i.e., the transformation does not affect the optimization snit’
interface with the rest of the network. This implies that fath
from n,, to the root and the subtrees below the last level of the unit
will not be affected in terms of their topology and (merged)-p
files. Thus, both the parent af, and the brokers at the last level
will continue forwarding the same data to the same nodedess t
did before the transformation. The only nodes that migheexp
ence a change in their connections and profiles are thosa\lith
optimization unit. However, any node’s cost might be a#edby a
transformation. Keeping the topological and profile-redagffects
of our transformations local reduces the cost of networkmégu-
ration, as fewer nodes are affected by each transformation.

3.1 Local transformations

A brute-force approach for identifying the best transfatioraof
an optimization unit would be to consider all possible rdigma-
tions of the unit’s structure. There are two main drawbadkhis
approach. The first is the exponential humber of configunatio

Definition
demote(ny, nj)
promote(n;, )
promote(n;,)”
promote(n;) —
demote(n;, nj) —
promote(n;, )" —
demote(nj ,n;)"
promote(n;, )" —
demote(nj,,ng)”
promote(n; )T —
demote(nj,,ng)* —
promote(ng, )" —
demote(ny, ,n;)"

Transformation
Child demotion
Child promotion
Subtree promotioifn ;)
Parent-child swagn ;)

Subtree migratiorfn,, n;)

Sibling swap(n;, ny)

Table 2: Primitive transformation rules and how they are composed to
create complex rules (' indicates the ordering between operations;
“*" indicates that the operation will be performed repeatedly for all
nodes whose parent is specified as the first parameter. The namg of
nodes refers to their position in the original unit).

with its subtreesub;, under its grandparent;. This increases the
number of subtrees of;, leavingn; with one less subtree.

The transformation set of XPORT is extensible. Applicagion
can define their ownompositgransformations by using the primi-
tive ones. Allowing composite transformations is impot@asthey
improve convergence times and also could prevent XPORT from
settling in local minimums. In our implementation, we detiribe
following composite transformations.

Subtree promotion. In this operation the subtree:b; of a node
n; is moved under its parent;. This will increase the children
of n;, leavingn; with an empty subtree (shown in Figure 3(c)).
This transformation can be derived by applying the promabtklc
operation to every child,;, of n;.

Parent-child swap. In this transformation, the owner of the op-
timization unitn; and its childn; swap positions, without moving
the subtree of; (Figure 3(d)). This will force every subtree previ-
ously undem; or n; to have a different parent. Parent-child swap
is derived by combining child promotion and demotion.

Subtree migration. In this case the subtree of a node mi-
grates under its sibling node;, (Figure 3(e)). Node:; remains
with no children, while the subtree af; increases by the subtree
of ny. Subtree migration can be derived from the two primitive
transformations, by first promoting all the childrensof undern;
and then demoting the same nodes under

Sibling swap. Here, two siblings:;, andn; swap positions. This
will change the root node of their subtrees, as shown in Eig(f).
Sibling swap can be expressed as promoting the children ah-
dern;, and then demoting them undeg and performing the same
for the children ofns,.

that need to be considered. The second is the increased commu Table 2 shows how these transformations are created from the

nication overhead—exchanging information to quantify bleme-
fit of each transformation may be prohibitively expensivestéad
of performing an exhaustive search of all configurationsORF
limits its search to a smaller set of “promising” transfotioas.
This set contains a number of built4mmimitive transformationgs
well as other composite transformations defined by the eafdin.
Our experimental results show that a small number of wedlseh
transformations can be very effective while incurring lovethead.

XPORT'’s primitive transformations arhild demotiorandchild
promotion(Figure 3(a) and (b)). We explain these transformations
with respect to the optimization unit in Figure 2.

Child demotion. This transformation picks a node, from the
second level of the unit, and moves it along with its subtneden
one of its siblingsy;. This increases the number of subtrees pf
leavingn; with one less subtree.

Child promotion. This transformation moves a nodg, along

primitive ones. Similar tree transformations were alsausgpre-
vious work [2, 20].

We note that optimization units can be defined differentiypar-
ticular, they can be extended to more than three levels.nd8iig
the optimization scope in this manner increases the flébjilof
the system, as it facilitates a larger number of more powadns-
formations. On the downside, such an extension also inesghg
maintenance traffic and the size of the state nodes needlé&ztcol
and maintain. Investigating the cost vs. effectivenestewn#{s for
varying optimization scope sizes is an interesting issaeithout-
side the scope of this paper.

3.2 System Cost Improvement

The goal of the local transformations is to improve the olera
system cost. XPORT calculates the cost benefit of every dateli
transformation and applies the best one. Since the syststrisco



subj, suby subj,  subj,

(a) child demotion  (b) child promotion (c) subtree promotion (d) parent-child swap (e) subtree migration (f) sibling swap

Figure 3: Local transformation rules: (a) and (b) are primitive and (c)-(f) are composite transformations.

an aggregation of the node costs, the exhaustive approaghda- Figure 2). For an aggregation over childreh,is the root of the
tifying this cost benefit is to estimate the cost of every nafter optimization unit. We refer to the union of the dependentsilbf
the transformation and aggregate them to get the new sysistn ¢ nodes inS; as thedependence sdt; of the unit ofn;. That is, the
This approach may have prohibitively high communicatioerev set of nodes that do not belong in the optimization unitpbut

head. However, XPORT can avoid this overhead as it undelstan may be affected by its transformation.

the semantics of the aggregation functions. This knowledigevs Finally, we denote\cost; as the cost change af due to atrans-

XPORT to efficiently quantify the cost effect of a transfotioa. formation in its unitcost; as its new cost value, ardas the bene-

Furthermore, XPORT can automatically identify the statpined fit of the transformation with respect to the system cost. Yieide

by each node, as well as the information to be exchanged amongnow the equations that quantify the cost benefit of a transition

nodes during the optimization. In the rest of the section,dee in the optimization unit of;.

scribe this approach in detail. Additive functions. Consider the case where the system cost is

. . . the SUMof the node costs. Then; is the sum of theost change

3.2.1 Quantifying a transformation’s benefit of only the nodes affected by the transformatioe, nodes inside
In this section we provide the general equations that egtithe the unit and the unit's dependents:

cost benefit of a transformation. We start with some defingtiand ’

continue with our metric-independent equations for the: lsesefit. bi= ]EZU_ (cost; = costy) + k; Acost(Dr) @)
DEFINITION 1. Letcost; denote the cost of node.. Thede- If the AVERAGE function is used, theb; is divided by the number

pendence seb; of n; is the set of nodes whose cost is affected by of nodes in the system. This general equation holds for evang-
a change ircost;. In particular, D; includes the nodes of the sub-  formation. However, depending on the transformation, nwrits

tree defined by.; (respectively the nodes of the path fremto the terms are zero, so simpler equations can be obtained. Erarapl
root) whencost; is calculated as aggregation over path (respec- these equations are given in Table 3.

tively aggregation over children). We refer to member®phs the Bottleneck functions We assume that the system cost function
dependentsfn;. isM N. Thenn; estimates the new minimum cost among all nodes.

For example, for aggregation over path, an increase on the la This can be computed by aggregating only the new cost of the af
tency of the link betweem; and its parent will increase the path ~ fected nodes and the minimum cost of all nodes not affected by

latency of all nodes in its subtree. Similarly, for aggrégaiver the transformation. It denotes the current system cost, then the
children, a change on a child’s profile could affect the oitgo ~ benefit of the transformation is:

bandwidth consumptio_n of the nodes on its path to the rodheys b = c— min {cost;,cost’(Dk), min  {costm}} (2)
may need to forward different data messages downstream. JEU; kES; m¢U;,m¢L;

If XPORT uses only one level of aggregatidre., there is no where cost'(Dy) = cost(Dy) + Acost(Dy,). To estimate the

aggregation for calculating the node cost, the dependestosf & minimum cost of all nodes not affected by the transformasitate

pode may include all nodes in the n.et\./vork. Since the node cost of constant size is required at every node. Details can bedfou
is defined as a local value, XPORT limits, whenever possibie, in [13]

dependence set based on the definition of this metric. Fonjebea
if the local value is defined as a function of the profilengf then
the dependents of; are the nodes of its path, since a change in this

Holistic functions. In this casen; calculates the new cost of
every node affected, and estimates the difference with thesict
cost, using its estimations of all the nodes costs. Thusiher

profile could affect only these nodes. VARl ANCE function:

DEFINITION 2. Thedependence set cosist(D;) of n; is the b — o 1 Z(cost’. — Cost)?
aggregation ofcost;,n; € D;, over D;, using the system cost T [V]—1 - < 7
function. We denote a change @afst; that affectscost(D;) as €
Acost(D;), and the new dependence set cost@g’ (D;). —c— ﬁ{ Z (cost); — cost')?+

For example, if the system cost functionVEN, then Vi- €u 3)

cost(D;) = neliDIl{COStj}. Z ((cost; + Acost;) — cost’)*+
J i ;

Let U; denote the set of nodes in the optimization unitbofind JEL:

S; denote the set of nodes in the last level of this unit, when the Z (cost; — cost’)2}

node cost is an aggregation over paghg( nodes of Level 3 in i@U.. 2L,



Child demotion

(cost], — costy) + Acost(Dy,)

Child promotion

(cost} — costj,) + Acost(Dj,)

Subtree promotion

ZkEchildrcnj Acost(Dy) + Zk€childrcnj (cost}, — costy,)

Subtree migration

ZkEchildrcnj Acost(Dy) + Zk€childrcnj (cost), — costy)

Sibling swap

Zseah,ildTenk Uchildren ACO‘St(DS) + ZSEC}VlerenkUchildTenj (COSts - CO‘StS)

Table 3: Simplified cost equations for local transformations (when he system cost function iSUM).

wherecost’ is the average node cost after the transformation and pendentsi(e., every node in its subtree). Given this, we describe

V is the set of nodes.

Note that some holistic functions can be evaluated (or agppro
mated) more efficiently than the naive approach presentezitiye
leveraging the semantics of the specific function underidens-
tion. We refer the reader to [13] for examples.

Extending the optimization framework. We mentioned earlier
that the scope of the optimization unit and the transforomasiet

of XPORT can be extended. Here, we describe the impact of thes

extensions to the way XPORT quantifies the benefit of evenstra
formation. Obviously, increasing the size of the optimi@atunit
will simply increase the number of terms in Equations 1, 2 and
adapting them to include the extra nodes.

Defining new transformations is simple from the user perspec
tive. The user simply defines which transformations will lbene
bined along with the desired parameters. From the systespeer
tive, defining a new transformation requires the definitiérihe
equation that quantifies its cost benefit. This equation @aded
rived by aggregating, with the system cost function, theatiqns
for each of the transformations that define the composite Boe
example, itis straightforward to see that, for the subtreenotion,
the equation is simply the sum of the equations for the premot
child operation, over all children of node;. For more compli-
cated composite transformations, like sibling swap, moragact
equations will be derived, as many of their terms cancel Bub-
viding compact equations implies less traffic during optiation,
due to the smaller state exchanged among nodes in the oatiamiz
unit.

3.2.2 Quantifying cost changes on nodes

The equations that quantify the benefit of a transformat@n r
quire estimating the cost effect on the unit’s nodes and ©det
pendents. Moreover, for the additive and bottleneck famstithe
effect on the dependents can be estimated by calculatingfthe
fect on their aggregated cosk., the dependence set cost. XPORT
strives to incur the minimum communication overhead whein es
mating these cost changes. Therefore, it limits the comeatioin

among nodes of the same unit and thus avoids any metadata ex-

change with the unit’'s dependents, as they lie outside ttimiza-
tion unit. Instead, nodes maintain some metadata for thetisu
dependents. We refer to this state astthasformation state

XPORT exploits the semantics of the aggregation functions t
identify both the minimum transformation state required mde-
rive generic equations that quantify the cost change of thsu
dependents. We provide the details of our approach in thexfel
ing paragraphs, for different types of node cost functidfis.note
that if no aggregation is used for the node cost, XPORT useaEq
tions 1, 2 and 3 to quantify the result of a transformation &iy-e
mating the new cost of the dependents of the unit.

Additive node cost functions. For the purpose of illustration,
we focus on the case of tf@JMfunction and an aggregation over
path to the root. An example metric is path latency. Our tesarke
similar for the case of thAVERAGE function and aggregation over
children. In this case, a change of a node’s cost, path latency
to the root) will incur the same change on the costs of all &s d

the different cases of system cost functions, when the dost o
changes byAcost;. Note that for the additive and bottleneck func-
tions we need to compute the change of the dependence sef cost
a noden;, while for the holistic functions we need to estimate the
cost change of each dependentof Since each dependent’s cost
change isAcost;, the total change of the dependence set cost for
the SUMsystem cost function is :
Acost(D;) = Acost; X |Dj|

Thus, nodex; needs to maintain only the size of its dependence set.

Consider the case of bottleneck functions. Here, the systein
function is eithetM Nor MAX. Thus, we are only interested in the
change on the minimum (or maximum) node cost among the de-
pendents. Thus:

Acost(D;) = Acost;

Moreover, based on Equation 2, every node simply needs te-mai
tain an estimation of the current system cost and its depeedset
cost.

For the holistic functions, the cost change of every depenide
defined as:

Acost; = Acost;

For this case, every node stores an estimation of the cisystegm
cost, as well as the cost of every node in the system. Givesethe
equations, node; can estimate the benefit of a transformation us-
ing Equations 1, 2 and 3.

Bottleneck node cost functionsWe focus here on thisl Nag-
gregation function, for the purpose of illustrating ourade Our
results can be easily extended for X function. Again, we as-
sume that an aggregation over path is used for the definifitimeo
node cost, and for simplicity we assume that the local vafue o
node is measured over the link to its parent. An example mistri
the bandwidth bottleneck of a nodeg., the minimum bandwidth
capacity over all links on its path. Here on, we will refer kost
bandwidth capacity as the bottleneck value of the node, hed t
link with this capacity as the bottleneck link. For simpticiwe
will present our approach with respect to this metric.

Changing the bandwidth capacity of a link may affect the band
width bottleneck of the downstream nodes that have this disik
their bottleneck link. Consequently, a change of the cost; ahay
affect the cost of every dependent (i.e., all nodes in its subtree).
This effect depends on the links lying between the nedemdn;,
since there may be similar bottlenecks between them. Thanfol
ing definition allows us to identify these links.

DEFINITION 3. Thecost of a dependent; of n; relative to
ni, hi(j), is the aggregation of the local values of all nodes lying
on the path connecting; and n;, using the node cost function.
Moreover, the aggregation of;’s local value andh;(j),Vn; €
D, is referred to as theninimum local value of;, g;.

For the bandwidth bottleneck metric; () is the minimum band-
width capacity link betweem; and its descendant;, while g; is
the minimum bandwidth capacity of the links in the subtree of
including the local value of;.

Each node maintains the above metric for all its dependénts.
the case of additive functions, we can reduce the amounatef by



Aggregation | - ; g'(zle) | g| g.(zle) optimization procedure is somewhat different. For eachsfiar-
P ' cost;. ;Ost; o(1) mation, the node calculates the effect of the transformatio its
Type i D] o) [D;] O(1) dependents separately for each individual metric. It trenhines
T; O(IDi]) | hi(3),3 € Di | O(|Ds]) these metrics to derive the final impact on its dependentstsco
e oo T (D) o C‘;Ztst(%’s)tf 88; Since there are no restrictions on the combination funstitire to-
¢ o(1) cost;, cost), o(1) tal benefit of a transformation is calculated similarly te tiolistic
Type IV cost(D;) O(1) cost(D;) O(1) functions,i.e., each node uses its estimation of the new node costs
gi o() g | oM to calculate the new system cost and compares it with thewurr
c O(1) cost;, cost) O(1)
Type V costj,j €V o([V]) cost; O([1]) cost value.
c O(1 cost’, O(1
TYpeVi | cost;,j €V 0(\(v)|) costs, cost] 0213 3.2.4 Statistics approximation
hi(j),J € Di | O(Dsi|) hi(5) O(|Di|)

In the previous section, we argued that maintaining statéhi®
dependents of the optimization unitiof (e.g, dependence set cost)
allowsn; to quantify the benefit of a transformation. In orderior
to calculate this state, its peers need to periodicallydrast some
storing only the uniqué; (j) values along with the frequency for ~ metadata. This metadata includes the cost and local valaaabf
each distinct value: node. For the additive and bottleneck system cost fungtions

T = {(\ a)}, whereX = |{n;|n; € Di, hi(j) = o}|. needs to collect this data only from its dependents, whiteércase
of the holistic functions, it needs to know the cost of eveogda in
the system. To reduce the high overhead of these broadeests,
vary their frequency.

XPORT broadcasts the cost of nodes that have higher impact on
the system cost more frequently. Each naglés assigned a weight
w,; depending on this impact and broadcasts its metaddiead-
cast phases During each phase, only a subset of the nodes will
send their metadata, depending on their weight. Nedpartici-
pates in the broadcast phases with period:

Table 4: Transformation state 7" and optimization state O for node n;
(V is the set of nodes in the system).

We now describe the equations based on whichan calculate
a change in its dependence set cost, when its cost chaigeis;
and we use an additive function for the system cost. Simdane
tions can be derived for the bottleneck and holistic funifi 3].

We assume again the system cost functioSliland we are
interested in the total cost change over all the dependevedis-
tinguish two cases; one where the costngfdecreases and one
where itincreases. For the first case, the cost change is:

Acost; X |D;| gi > cost;

Acost(Di) = { v otherwise _ e “)
wherep > 1 is a predefined constant.
where The weight of a node depends on the node cost function. We
V= 2(008t§ —min{cost;, a}) x A, s.t. (A, ) € Ti, a0 > cost; distinguish two cases; the first one refers to the additinetions.
@ In this case, the larger the dependence set of a node is, tree mo

In the first casepn, and its dependents share the same bottle- nodes it can affect if its own local value changes. To reflexide’s

neck link, so their cost is affected kixcost;. The second option impact on the system cost, we set the weightafo bew; = %_
refers to the case where some dependents with a differetie-bot o, example metric is a node’s path latency. In this Case,gﬁmi{nn
neck value before the transformation share the same bet#dimk the links closer to the root affect more nodes than the littser

with n; after the transformation. The termcalculates their total to the leaf nodes.

cost change. _ The second case is for the bottleneck functions. Here, tieecl
In the second casepst; increases: the local value of; is to its dependents’ cost, the more likely it is
Acost(Dy) = { Acost; x |Di| gi > cost; andg; > cost; to become their new bottleneck value (assuming no drastingis
’ w otherwise on the local values of the nodes). Thus, we set the weight; of
where to w; = local_value; — g;, whereg; represents the minimum (or

maximum) bottleneck value of all the dependents.ofAn exam-
ple metric is the bandwidth bottleneck of a node, where a@han
, on a link’s capacity could potentially affect the bandwidftall its
(A, @) € Ti, a > cost; and descendants. ants.

(N, ') € Ti,d < cost; anda > cost;

The termw calculates the total cost change of the dependents that4' RUN-TIME FUNCTIONALITY

w= Z Acost; X X+ Z(o/ — cost;) X N s.t.

experience the same cost changergsand the cost change of the In this section, we describe the run time functionality ofO®RT.
nodes that have a lower bottleneck value after the transftom We start by describing the basic system model and architecitle
Given this estimation af\cost(D;), n; uses Equation 1 to estimate  then describe the details of the distributed optimizatitqeol.
the benefit of a transformation. Thus, the state requirethfscase
is simply the size of the dependence set and th&set 4.1 SyStem model

. . . XPORT consists of a set of nodes organized into an applicatio
3.2.3 Multi-metric cost functions level overlay tree. In order to join the system, a new nodecss!

XPORT can create multi-metric overlay trees by defining ei- an existing node as its parent. No specific attempt to find adgjo
ther the node cost or the local value of a node as a combination parent is made at this point with the expectation that subegq
of multiple metrics. For both of these cases, the individuat- optimization steps will move the node to a more optimal ardiva
rics used in the definition of the combined metric are cateda (wrt. to the constraint, if any) network location.
independently. Each node combines these metrics, basddadeon t  The high-level usage is based on the publish/subscribeligana
application-specified function, to obtain the final localueaor where sources publish their data and clients express th&rid-
node cost, respectively. Moreover, for multi-metric nodsts, the terests through their profiles. A client connects to an XP@Bde
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and registers its profile. Nodes add a new prgfiles a new rout-
ing entry, optionally indexing it as described in SectiormBe new
profile is merged with the existing ones, using the mergetfanc
if it exists. The profile is then propagated up the tree towahe
root, until it reaches either a node with a more general “dogé
profile or eventually the root.

Upon the receipt of a data message a broker checks all the
entries in its routing table to determine whethershould be for-
warded to a downstream broker (or a client) using the apjatsr
matching function.

Node architecture. The high-level architecture of an XPORT
node is shown in Figure 4. Applications customize two mai sy
tem components. The first component is tiaa/profile handler
that is responsible for storing, indexing and maintainingfifes as
well as matching them against incoming data messagesoftiie
mizeridentifies and applies network transformations on the ludsis
application-specified performance criteria and constsaifihe tree
transformations to be performed are given to ¢banection man-

critical node, and, thus, by definition the system cost.

In XPORT, optimization proceeds oveptimization periodsAt
each optimization period, each node that owns a criticahopa-
tion unit exchanges data.€., optimization state) with the nodes
in its unit, and quantifies the benefit of the candidate ti@mnsa-
tions. It then identifies the most effective transformatonl sends
it to the root of the tree. The root simply identifies the tfansma-
tion with the maximum expected benefit and informs the setect
unit about the new configuration to which it should switch.isTh
bottleneck-based approach ensures cost improvementiiy ege
timization period, assuming that at least one beneficiasfama-
tion is identified. In addition to the candidate transforioras, the
system also considers (with low probability) an additiorzaldom
transformation to avoid getting stuck in a local optimum.

During tree reorganization, nodes maintain their old catinas
while they establish their new connections. This approdichva
the nodes to keep receiving data from the current tree duiirig
mization periods. To ensure the correctness of tree reiaajzom
and avoid losing messages, however, care must be takemlirggar
when the nodes should switch to the new sub-tree. One soligtio
to wait until all connections are set up and then use a digiib
protocol to make the switch in a coordinated fashion, stgrfiom
the root of the new sub-tree proceeding downstream.

XPORT implements an alternative approach that is basedeon th
use ofsequence numbeend a TCP-like window-based message
request and retransmit scheme implemented at the applidatiel.
In this approach, each message injected to the system gnassi
a unique monotonically-increasing sequence number byabe r
Nodes simply cache the messages they receive until theyutusf o
space. Whenever a node establishes a new connection (@ither

ager, which establishes and manages the node’s connections withing reorganization or after a disconnection/failure)eguests from

its parent and children. Both the optimizer and the profétddan-
dler communicate with the node’suter, which handles all the data
and metadata communication.

Node State.Each node maintains four state typpsofile-based
cost-basedtransformation and optimizationstate. The profile-
based state includes the profiles the node receives fromiitsen
and clients, and the merged profile it derives from them. Tthes
size of the profile-related state for nodeis O(|children;|). This
state resides in the profile/data handler. The cost-basee ist
cludes the local metric value of the node and its cost. Thigss
of constant sizeQ(1). The transformation state refers to the data
every node has to maintain in order to participate in thelloeas-
formations. This state allows a node to quantify the cosefien
of local transformations. Optimization state refers toitiferma-
tion nodes need to exchange with their neighbors duringropai-
tion and resides in the optimizer. Optimization and tramsftion
states and their size estimations are given in Table 4.

4.2 Distributed optimization protocols

4.2.1 Bottleneck optimization

XPORT uses aottleneck-basedpproach for optimization in
which the system focuses only @ffectivetransformations that
have the potential to reduce the overall system cost. Othast
formations, even though they might yield smaller local spste
ignored. For example, if the optimization goal is to minimithe
maximum CPU load in the system, then XPORT will focus solely
on the most loaded node and attempt to decrease its cost.

To implement this approach, we rely on the notion afriical
node A node is considered critical if a change in its cost may
potentially affect the system performance. Similarly, vedink a
critical optimization unitas a unit that may affect the cost of a

its parent the messages that it has not yet received, whielmitie-
termine on the basis of the sequence numbers it has seere If th
parent node does not have those messages in its cache, fiomwill
ward the request to its own parent and the process will &efEtis
approach not only eliminates the need for coordinated &ivitc
but also allows XPORT to deal uniformly with other probleiat
cases such as failures and temporary disconnections. Thitsdsf
the protocol are outside the scope of this paper.

An alternative to bottleneck-based optimization is an epph
we refer to a®pportunisticoptimization. If the optimization goal
is to minimize the maximum CPU load, then the opportunispic a
proach will attempt to reduce the load of the most loaded node
in each optimization unitas opposed to the bottleneck-based ap-
proach that will only consider the critical unit(s). Evemtigh the
opportunistic approach will lead to many “useless” transiations
(wrt. the system cost metric), it also has the potential thractly
lead the system to a globally good configuration over timgesn
tigating the tradeoffs between the two approaches is arestiag
future research direction.

4.2.2 Concurrent transformations

A related issue is the choice of the number of optimizatioitsun
that can be optimized concurrently. Strictly serializirgnisforma-
tions is easier to reason about and implement, as we do ndt nee
to consider potentially negatively interfering concutrémansfor-
mations across multiple optimization units. At the sameetise-
rialization often slows down the converge rate to a mininwdtc
configuration.

We now discuss how XPORT facilitates multiple concurresms-
formations by reasoning about the scope and semantics watie
formations. This reasoning is based on the notiomdépendence
for optimization units and transformations.



DEFINITION 4. The optimization units of; andn; are inde-

pendentf
(U; US)N(U; US;) = .

DEFINITION 5. Lettrans; andtrans; denote transformations
of the optimization units ofi; andn;, respectively. Furthermore,
let trans_set; andtrans_set; be the set of nodes affected topo-
logically (i.e., have a different parent or different chideh set) by
trans; andtrans;, respectively. We say thatans; andtrans;
are independenif the optimization units of; andn; are indepen-
dent, or

(trans_set; N trans_set;) = @.
XPORT allows two transformations to be applied in parallgiinlg
the same optimization period if they are independent. Tingsiees
that these transformations can both be defined correctlynein t
overlapping optimization units.

Identifying which transformations can be parallelizedhis first
step for supporting concurrent transformations. The sgéctep
involves quantifying the cost effect of these transfororati when
applied in parallel. This cost effect will have to be comphvéth
the effect of applying only one of the two transformatiomspider
to decide the best combination.

If two transformations are applied on independent unitenth
they cannot negatively interfere with each other. Otheznime of
the transformations might potentially affect the cost ahsmf the
nodes in the other optimization unit. Thus, we need a way &meu
tify the benefit of parallel independent transformationewltheir
corresponding optimization units overlap. We denote tleisdfit
asb;; and estimate it as follows.

Additive functions. Assuming the system cost functionS&M
then, if the two units are independent, the total benefit ésstim
of the benefit of each transformation. For overlapping urifte
total benefit is calculated in the same way since each notaisge
affects its dependents equally. Thus:

bij =b; + bj.
Bottleneck functions. If the two units are independent and the
system cost function usedh4 N, then the total benefit is:
bij = min{bi, bj}.
When the units overlap, assuming thatis in a higher level in the
tree tham;, the total benefit of the parallel transformations is:
min {cost; + x, cost, + x, cost’ (Dy), minnet }

bij =C—
mGUj,kGSj

where cost’ (D) = cost(Dy) + Acost(Dy) andz is the cost
increase of,’s first ancestor that belongs in the unitrof but not
the unit ofn;. Also we definenin,.: as:

MiNnet = costy

min
y&EU; ¢S y¢U;,y¢S;
We omit for brevity the estimations for holistic functionshich
can be found in [13].

5. PERFORMANCE EVALUATION

We implemented an initial XPORT prototype [14] in Java. For
experimentation purposes, we also built an RSS feed dissemi
tion application using the XPORT API and deployed it acrdes t
PlanetLab testbed.

For this application, XPORT automatically builds an ovetize,
where the root of the tree polls the RSS sources and forwanigls o
new items to the other nodes in the tree. Using XPORT for disse
inating the requested feeds allows RSS sources to receillPHT
requests only from the root instead of each individual ¢lid@inus,
the bandwidth requirements of hosting an RSS feed decrelsloes-
over, since XPORT alleviates the load that would have been pr
sented by many clients, it is reasonable for the root to pellRSS
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Figure 5: Total network latency of PlanetLab nodes. XPORT con-
verges to the optimal after approximately 8 transformatiors.

source more frequently that any one of the clients would havea-
ditional RSS clients. In combination with XPORT's pushistgtis-
tribution, the end result is that clients receive more timgddates
while presenting less load on the RSS source. FeedTree §E3] p
sesses a similar structure, though it is unable to perfor@®@RXPs
wide variety of optimizations.

5.1 Experimental results

We studied XPORT's performance through real-world RSS data
and results from both prototype-based LAN emulation andayep
ment in the PlanetLab testbed. In our PlanetLab experimergs
used dissemination trees with up to 40 randomly chosen ®labe
sites. For our prototype-based LAN emulation, we used u@f 1
nodes, but artificially controlled the network latency aaddwidth
capacities between nodes. We obtained these metrics fraralac
PlanetLab measurements, but “replayed” these conditimmsfil-
tiple experiments in order to obtain repeatable results.

We also created 100 clients and attached them randomly to the
XPORT nodes. Each client picks its profile from a set of 700 RSS
feeds using the Zipf distribution, with the skew parametsdrte
0.97. The total size of RSS feeds was around 19MB, and the av-
erage RSS feed size was 27.7KB. For the experiments, we set ou
optimization period to two minutes. This choice is a compszaN
between rapid adaptivity to network changes and minimizipg
timization traffic. The minimal practical interval depends the
metrics being optimized. For example, it takes longer t®@sss
available bandwidth than latency.

We have used XPORT to implement distribution trees that opti
mize a variety of metrics including total path latency, gade of
path latency, average bandwidth consumption, bandwidttiebo
neck, and total received redundant data. Our experimeni®iule
strate XPORT'’s flexibility and effectiveness, as it manaipesn-
prove each of these metrics significantly through its losfor-
mations.

Convergence. Figure 5 shows the sum of the network path la-
tencies of 20 PlanetLab sites. This is an example of an agtioeg
using additive functions for both the node and system cose W
compare XPORT's performance with the optimal tree, whidhés
star topology when no constraints are imposed and assutnéng t
triangle inequality and lack of congestion. In the star togg, all
the nodes are connected directly to the root of the tree. XPOR
starts with a random tree and continuously applies locaisfoa-
mations. The figure shows that while XPORT starts with lower
performance than the star topology, after a small numberaokt
formations our tree converges to the optimal tree.

We also implemented a metric that measures the total redtinda
data received by the nodes. This is a sum of the amount of data
each node receives that matches the profiles of its desdsnioian
not the interests of its directly connected clients. An &apilon
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Figure 6: Superfluous incoming data per broker on 40 PlanetLab
nodes. XPORT converges to the optimal after approximately 1 trans-
formations.

might want to minimize superfluous data to eliminate disitives

to joining a cooperative system. This is an example of a metri
where no aggregation is defined for the node cost. We used this
metric to demonstrate XPORT’s convergence to the optimlal so
tion and also to show the effectiveness of our transformatio

For this metric we used our RSS feed application on 40 Plan-
etLab sites. Figure 6 shows three different cases for thisiene
one when all five composite transformations are applied amd t
where the optimizer used only four and three composite foans
mations. We first remove the promote subtree transformaitish
then the parent-child swap transformation from our optatian
framework. The results reveal that in the first case XPORT con
verged to the optimal solution (where the total redundana @&
zero for every node), while for the other two cases the sysish
improves but could not converge to the optimal case. Prosudie
tree is the most beneficial transformation because it altnwsree
to converge to the star topology. XPORT managed to imprave it
performance, even in the absence of this transformationreMo
over, the larger the set of transformations, the betteroperdnce
XPORT achieves.

Adaptivity. While creating a star topology is optimal for the pre-
vious cases, it is not an optimal solution in terms of the ueses
required from the root node. To demonstrate this, we runxpere
iment on the total path latency metric, and included the CRlé t
for processing and matching the incoming messages on eves/ n
on this path. The more profiles a node must match and the higher
its fanout, the greater CPU latency that messages will ubseinen
traveling through that broker. In the case of the star togglthe
root of the tree has the overhead of matching the incoming mes
sages to the profiles of every node. In the case of XPORT’sethos
tree, this processing overhead is distributed across pieittiodes.

Again we started with a random tree on 20 PlanetLab sitegtwhi
is outperformed at the beginning by the star topology. Tifferd
ence is due solely to network delays. Invoking the optimatehis
point would allow XPORT to reconfigure a random tree to match
the performance of the star topology. In this experimentrweke
the optimizer only after the root node has fetched the RS&sfee
and completed their dissemination. When the root starthiied
the RSS feeds requested, the total path latency increaséstfo
trees as shown in Figure 7. However, the increase is muctehigh
in the case of the star topology, as all matching is perforbyetthe
root node. As a result, the random tree begins to outperfbiem t
star tree. Moreover, when the optimizer starts, XPORT adtpt
the loaded nodes in the system, and after a number of locad-tra
formations, obtains a tree that outperforms the originalpaded
random tree. XPORT creates trees that avoid highly loaddéds)o
continually moving subtrees to less loaded parents.

14000

12000

10000

8000

6000

e R v

4000

Total path latency (msecs)

2000

4
Time (optimization periods)

Figure 7: Network latency including CPU overhead. XPORT adapts

to increased workload and outperforms the optimal topology
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Figure 8: Average bandwidth consumption for various latency con-
straints.

Constrained Topologies. We also studied the performance of
XPORT when constraints are imposed by the application. Taote
strate this case, we use a metric where a node’s cost is ajgdeg
over its children’s local values. We optimized the averaggo-
ing bandwidth over all nodes, where the bandwidth conswonuif
a node is defined as the sum of the incoming data of its children
For this metric, we run experiments with path latency caists
on every node. In the path latency we included the CPU time for
processing and matching the incoming messages. This aortstr
is implemented as aggregation over path.

We run our experiments on 100 nodes in our LAN emulation en-
vironment. Although a better metric might be network uétion,
in which the costs of a transmission is multiplied by the nemb
of links in the transmission, it would be difficult to estadblian
optimal benchmark to compare our tree with. The optimal topo
ogy for this case is again a topology where all nodes withentli
profile are directly connected to the root, because eachagess
emitted by a broker exactly once. Figure 8 shows XPORT 'syerf
mance when no constraints are imposed and two cases where the
path latency threshold is set to 300ms and 200ms. In the &isst,c
XPORT converges to the optimal configuration. However, when
latency constraints exist, the root cannot accept direahections
from all nodes with a client attached, as that would incrézssvn
CPU latency and the path latency of its descendants, wigldlkie
constraint. Although XPORT cannot converge to the optined n
work configuration, more relaxed constraints allow the exysto
perform closer to the optimal case, as more nodes are alltoved
connect to the root of the tree.

We also considered a maximum fanout constraint that lintfied
children of every broker to a constant number. We used XP@RT t
maximize the lowest bottleneck bandwidth in such a distidu
tree. This is an aggregation that uses the bottleneck fumiMi N
for the node and system cost. Every node calculates itsbettk
bandwidth, which is the minimum capacity of a link betweey an
two of a broker’s ancestors. The system cost is the minimum bo
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Figure 9: Bandwidth bottleneck under fanout constraints. Applica-
tions impose topology constraints, which may limit XPORT sability to
optimize.

Metric f t | Performance
Total path latency 2 5 3229ms
6 8 3036ms
10 | 12 2670ms
oo | 14 1691ms

Redundant incoming data 2 4 1088KB
6 7 461KB

10 8 304KB

co [ 11 OKB

Table 5: Performance on a constrained network ¢ refers to the num-
ber of transformations and f to the fanout constraint). As constraints
are relaxed, XPORT converges to the optimal tree.

tleneck bandwidth over all brokers. The goal of XPORT is txia
imize this cost. These results are from our prototype-baged
emulation on 40 nodes. Figure 9 shows that XPORT identifiés cr
ical portions of the tree and after every transformatioméases the
minimum bottleneck bandwidth in the system.

We start with a maximum fanout of two, a very restrictive con-
straint, and relax the constraint to six, ten and infiniteof#n The
results reveal that the stricter the constraints, the féemesforma-
tions XPORT can perform. For example, when the fanout is set
to two, XPORT cannot improve beyond two optimization pesiod
When the fanout is set to six and ten, the system improves$ifeet
and four periods, respectively. Table 5 shows similar tesialr
network latency and redundant data metrics. In both casesnw
no constraints are imposed, XPORT can converge to the optima
solution. As the constraints become tighter, fewer tramsédions
can be applied and smaller improvement is achieved.

Network traffic. Figure 10 shows the average maintenance traf-
fic and the optimization traffic for the different metrics famet-
work of 40 nodes.Maintenance traffids the data each node ex-
changes with its parent and children, to calculate its ovat. Cthis
state is exchanged in specific time periodg{ntenance period
Optimization traffids the data needed to estimate the cost of candi-
date transformations and is metric specific. This statedhaxged
between nodes within the same optimization unit during ai op
mization period. Intuitively, the optimization state is @asure of
the optimization overhead.

The results reveal that the maintenance traffic is low andaim
for all metrics. Note that, for the redundant data metriaahis
no maintenance traffic. This is because this metric requirdg
one level of aggregation, as each node’s cost is defined asah lo
value. Thus, nodes do not need to request any information fro
their parents or children to calculate their costs.

The optimization traffic, while higher in most cases than the
maintenance traffic (per period), has an acceptable sizeiriter-
esting to examine the difference in the traffic required Hfedint
metrics. In the case of the total path latency metric, eaderio
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Figure 10: Maintenance and optimization traffic (S = Maintenance
period, P= optimization period).

the network is essentially a critical node. Thus, all nodesck
for possible transformations of their optimization unithis im-
plies that all nodes in the system will exchange data with@irt
optimization units.

On the other hand, while optimizing bottleneck bandwidtilyo
the nodes that are affected by the link with the minimum band-
width capacity attempt to transform their optimizationtaniThus,
only those optimization units that contain the bottlenedgeswill
exchange data. As a result, the average traffic per node ik muc
smaller. The cases of bandwidth consumption and redundant i
coming data are yet different. In both of these cases, theafos
each node depends on its profile and the merged profile ofilts ch
dren. Thus, the dependence set of a node is smaller, and so few
nodes exchange state for optimization.

Statistics Approximation. We now study the tradeoff between
traffic improvement and system performance when approxigat
statistics. For this purpose, we ran an experiment wherephe
timization goal is to minimize the variance of the path laies
across all the nodes in the system to ensure service fairiéas
also ran another version of the algorithm where statistitshe
node cost and local values are approximated. We expectitbat t
more frequently nodes broadcast their cost values, therbetst
estimations they can compute, leading to more effectivesfoa-
mations and thus faster convergence. Of course, if nodeslbast
their costs more frequently, the maintenance traffic wilhkggher.

The results in Table 6 clearly demonstrate this tradeoff.r&vie
our experiments using 100 nodes in the LAN emulation environ
ment, and computed the variance when all nodes participate-i
ery broadcast phase. In this case, the tree converged tasats€in-
figuration after 15 transformations. The average bandwidiir
sumption was approximately 2KB per node per period. We used
the same tree topology and ran the approximated statistiisson,
where the participation of every node in the broadcast pizade-
fined by Formula 4, where; %. In the experiments, we
also varied the period paramejerThe results reveal that even for
small period valuesp( = 1), approximation reduces the mainte-
nance traffic by 97%. At the same time, it takes 20 transfaonat
for the approximated approach to converge to a configuratitm
a cost value that is approximately only 7% more than that ef th
non-approximated case. The results for larger period saleacal
similar benefits.

6. RELATED WORK

Supporting extensibility in systems engineering has dfieen a
key research goal for the benefits brought via modularity soft
ware reuse. In the database community, concepts such asiexte
bility and declarative specifications have long been themas a
result of pioneering works such as System R [1] and StarfL@t



Statistics Period | Performance difference(%) t Traffic reduction (%)
p=1 0.07 20 0.97142
p=2 0.14 26 0.9782
p=3 0.22 31 0.9797

Table 6: Statistics approximation effects on performance, conver-
gence timet and network traffic, when minimizing path latency vari-
ance. The percentage values indicate relative differencewer the non-
approximated case.

Indeed, the generalization process need not be restrictibe do-
main of large DBMSs, perhaps best exemplified by GiST [9].1GiS
provides a framework generalizing the problem of implenmnt
search indexes in a database. In many ways, our work draws its
inspiration from GiST, striving to apply the same desigmgpiples

to distributed data dissemination applications.

Recent efforts from the networking community, such as €K,
MACEDON [16], and P2 [12] provide examples of systems pro-
moting the advantages of extensibility. Click provides adoiar
architecture for processing packets in routers using a fflased
configuration specification. MACEDON and P2 both address the
challenge of constructing overlay networks by abstraativey com-
monalities present in the large number of overlay algorithie-
signed over the last few years.

To the best of our knowledge, we have yet to see extensible
data dissemination architectures capable of generaliaieg the
core dissemination functionality and optimization obijees. Ex-
isting approaches such as SplitStream [5] and Bullet [1Lhftract
application-level multicast networks that minimize thewarding
load of internal nodes by constructing mesh overlays, theen-
abling clients to receive different data segments from iplelipar-
ents in the mesh. ONYX [8] and XRoute [6] introduce content-
based publish-subscribe solutions for XML data and XPaibed
profiles respectively, and they both focus on using strestdor
efficiently storing profiles matching them to the incomingada
Siena [3] investigates a publish-subscribe framework dtational
data and considers the system’s performance from a bartdwidt
oriented perspective. By abstracting over the matchingtfanal-
ity, XPORT is able to support both the XPath and relationafifes,
in addition to supporting a superset of the optimizationrrogton-
sidered by these systems.

Closely related are also those approaches that use theptarice
local transformations to perform continuous adaptiverojaation
of the dissemination tree [2, 20]. These systems attemittmze
a specific metric, as opposed to the general optimizatiomedra
work provided by XPORT. Finally, AMMO [17] provides a simila
framework for constructing an adaptive multi-metric oagrhet-
works. Their metric-independent framework focuses on miz
ing the sum of a performance metric defined over all the oyerla
edges of the dissemination tree. Compared to AMMO, XPORT's
model is more extensible, since we allow a wider variety aftco
functions and a generic means to combine them.

7. CONCLUSIONS AND FUTURE WORK

XPORT explores routing tree extensibility in the contexpuadfile-
based data dissemination systems. It is largely motivated b
growing set of medium-large scale dissemination-basedicapp
tions and services. Addressing the requirements of thescbappli-
cation domain requires robust and flexible software infrestires
that are also highly extensible and customizable. Our woakstep
towards building such an infrastructure.

We implemented an initial XPORT prototype [14] on which we
have built two applications: a peer-to-peer RSS feed dissdion
service and a networked multiplayer game. We are currentlye

process of deploying these applications on PlanetLab. &xpsri-
ence will allow us to better debug our system and gather =& u
profiles for further experimentation.

As future work, we have a full agenda. First, we will extend
XPORT to also serve as a data collection system. The integest
challenge here is the seamless integration and combinedingt
tion of the collection and dissemination tasks. Second, e w
investigate extensible profile specification languagesatse e¢he
specification of complex, stateful profiles (e.g., aggregafoins).
Finally, we will explore how to extend our tree-based owesl&o
more general mesh-based topologies, which will furtherrone
the efficiency and reliability of dissemination.
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