
Wait-Free Data Structures
in the Asynchronous PRAM Model

James Aspnes *
School of Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract
A wad-free implementation of a data object in shared
memory is one that guarantees that any process can
complete any operation in a finite number of steps, re-
gardless of the execution speeds of the other processes.
Much of the literature on wait-free synchronization has
focused on the construction of atomic registers, which
are memory locations that can be read 01 written in-
stantaneously by concurrent processes. This model,
in which a set of asynchronous processes communicate
through shared atomic registers, is sometimes known
as asynchronous PRAM. It is known, however, that the
asynchronous PRAM model is not sufficiently powerful
to construct wait-free implementations of many simple
data types such as lists, queues, stacks, test-and-set reg-
isters, and others. In this paper, we give an algebraic
characterization of a large class of objects that do have
wait-free implementations in asynchronous PRAM, as
well as a general algorithm for implementing them.

1 Introduction
A concurrent object is a data structure shared by asyn-
chronous concurrent processes. An implementation of a
concurrent object is wait-free if it guarantees that any
process will complete any operation in a finite number
of steps, regardless of the execution speeds of the other
processes. The wait-free condition is a natural prop-
erty to require of asynchronous systems. It guarantees
that no process can be prevented from completing an
operation by variations in other processes’ speeds, or by

‘J. Aspnes is funded by an NSF graduate fellowship.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

Maurice Herl:ihy
Digital Equipment Corporation
Cambridge Research Laboratory

One Kendall Square
Cambridge MA, 02139

undetected halting failures. Even in a failure-free sys-
tem, a process can encounter unexpected delay by tak-
ing a page fault or cache miss, exhausting its schedul-
ing quantum, or being swapped out. Similar problems
arise in heterogeneous architectures, where some pro-
cessors may be inherently faster than others, and some
memory locations may be slower to access. The wait-
free condition rules out many conventional algorithmic
techniques such as busy-waiting, conditional waiting, or
critical sections, since the failure or delay of a single pro-
cess within a critical section will prevent the non-faulty
processes from making progress.

The fundamental problem in this area is the follow-
ing: under what circumstances can we construct a wait-
free implementation of one concurrent object from an-
other? Elsewhere [lo, 111, we have shown that any ob-
ject X can be assigned a consensus number, which is
the largest number of processes (possibly infinite) that
can achieve asynchronous consensus [8] by applying op-
erations to a shared X. No object with consensus num-
ber n can be implemented by an object with a lower
consensus number in a system of n or more processes,
but any object with consensus number n is universal
(it implements any other object) in a system of n or
fewer processes. By computing the consensus numbers
of existing synchronization primitives, one can derive
an infinite hierarchy of successively more powerful syn-
chronization primitives.

In this paper, we extend our earlier results by inves-
tigating the class of objects that have wait-free imple-
mentations using only atomic read and write operations
applied to individual memory cells. This model is some-
times known as asynchronous PRAM [7, 91. Many re-
searchers have investigated techniques for constructing
such memory cells, called atomic Tegisiers, from sim-
pler primitives [5, 6, 14, 17, 19, 21, 22, 241. Despite the
impressive amount of i:ntellectual energy that has been
applied to these constructions, it is not difficult to show

that atomic registers have consensus number 1, and thus
the asynchronous PRAM model is too weak to support

0 1990 ACM 089791-370-l/90/0007/0340 $1 SO 340

wait-flee implementations of any object with a higher
consensus number, including common data types such
as sets, queues, stacks, priority queues, or lists, most if
not all the classical synchronization primitives, such as
test-and-set, compare-and-swap, and fetch-and-add, and
simple memory-to-memory operations such as move or
swap. These observations raise an intriguing question:
what, if anything, are atomic registers good for?

In this paper, we give a new characterization of a wide
class of objects that do have wait-free implementations
in the asynchronous PRAM model. This characterisa-
tion is algebraic in nature, in the sense that it is ex-
pressed in terms of simple commutativity and overwrit-
ing properties of the data type’s sequential specifica-
tion, We present a technique for transforming a sequen-
tial object implementation into an n-process wait-free
implementation requiring a worst-case synchronization
overhead of O(n2) reads and writes per operation. Ex-
amples of objects that can be implemented in this way
include counters, logical clocks [15], and certain kinds
of set abstractions.

2 The Model
Informally, our model of computation consists of a
collection of sequential threads of control called pro-
cesaea that communicate through shared data struc-
tures called objects. Each object has a type, which de-
fines a set of possible states and a set of primitive oper-
ations that provide the only means to manipulate that
object. Each process applies a sequence of operations
to objects, issuing an invocation and receiving the as-
sociated response. The basic correctness condition for
concurrent systems is linearizability [12, 131: although
operations of concurrent processes may overlap, each
operation appears to take effect instantaneously at some
point between its invocation and response. In particu-
lar, operations that do not overlap take effect in their
“real-time” order.

2.1 I/O Automata

Formally, we model objects and processes using a sim-
plified form of I/O automata [18]. Because the wait-free
condition does not require any fairness or liveness con-
ditions, and because we consider only finite sets of pro-
cesses and objects, we do not make use of the full power
of the I/O automata formalism. (For brevity, our algo-
rithms are expressed using pseudocode, although it is
straightforward to translate this notation into automata
definitions.)

An I/O automaton A is a non-deterministic automa-
ton with the following componentsl: States(A) is a fi-

‘To remain consistent with the terminology of [13], we use
“event” where Lynch and Tuttle use “operation,” and “history”
where they use %chedule.”

nite or infinite set of states, including a distinguished
set of starting states, In(A) is a set of input events,
Out(A) is a set of output events, Int(A) is a set of in-
ternal events, Steps(A) is a transition relation given by
a set of triples (s’, e, a), where s and s’ are states and e
is an event. Such a triple is called a step, and it means
that an automaton in state s’ can undergo a transition
to state a, and that transition is associated with the
event e. If (s’, e, s) is a step, we say that e is enabled
in s’. I/O automata must satisfy the additional con-
dition that inputs cannot be disabled: for each input
event e and each state s’, there exist a state s and a
step (a’, e, a).

An execution fragment of an automaton A is a fi-
nite sequence so, el, $1,. . .e,, sn or infinite sequence
80, Ed, 81, . . . of alternating states and events such that
each (ai, ei+r, si+l) is a step of A. An ezec&ionis an ex-
ecution fragment where sc is a starting state. A history
fragment of an automaton is the subsequence of events
occurring in an execution fragment, and a history is the
subsequence occurring in an execution.

A new I/O automaton can be constructed by compoa-
ing a set of compatible I/O automata. (In this paper we
consider only finite compositions.) A set of automata
are compatibleif they share no output or internal events.
A state of the composed automaton S is a tuple of com-
ponent states, and a starting state is a tuple of compo-
nent starting states. The set of events of S, Events(S),
is the union of the components’ sets of events. The
set of output events of S, Out(S), is the union of the
components’ sets of output events; the set of internal
events, Int(S), is the union of the components’ sets of
internal events; and the set of input events of S, In(S),
is In(S) - Out(S), all the input events of S that are not
output events for some component. A triple (a’, e, a) is
in Steps(S) if and only if, for all component automata
A, one of the following holds: (1) e is an event of A,
and the projection of the step onto A is a step of A, or
(2) e is not an event of A, and A’s state components are
identical in s’ and a. Note that composition is associa-
tive. If H is a history of a composite automaton and A
a component automaton, H (A denotes the subhistory
of H consisting of events of A.

2.2 Concurrent Systems

A conczlrrent system is a set of processes and a set of
objects. Processes represent sequential threads of con-
trol, and objects represent data structures shared by
processes. A process P is an I/O automaton with out-
put events INVOKE(P, op, X), where op is an operation
2 of object X, and input events RESPOND(P, yes, X),
where rea is a result value. We refer to these events

’ Op may also include argument values.

341

as invocations and Tesponses. Two invocations and re-
sponses match if their process and object names agree.
To capture the notion that a process represents a single
thread of control, we say that a process history is well-
formed if it begins with an invocation and alternates
matching invocations and responses. An invocation is
pending if it is not followed by a matching response. An
object X has input events INVOKE(P, op, X), where P
is a process and op is an operation of the object, and
output events RESPOND(P, Tes, X), where resis a result
value. Process and object names are unique, ensuring
that process and object automata are compatible.

A concurrent system {PI,. . . , P,,; Al,. . ., Am} is an
I/O automaton c0mp0sed from processes PI, . . . , P,
and objects Al,. . . , A,, where processes and objects
are composed by identifying corresponding INVOKE and
RESPOND events. A history of a concurrent system is
well-formed if each H) Pi is well-formed, and a concur-
rent system is well-formed if each of its histories is well-
formed. Henceforth, we restrict our attention to well-
formed concurrent systems.

An execution is sequential if its first event is an in-
vocation, and it alternates matching invocations and
responses. A history is sequential if it is derived from
a sequential execution. (Notice that a sequential exe-
cution permits process steps to be interleaved, but at
the granularity of complete operations.) If we restrict
our attention to sequential histories, then the behavior
of an object can be specified in a particularly simple
way: by giving pre- and postconditions for each oper-
ation. We refer to such a specification as a sequential
specification. In this paper, we consider only objects
whose sequential specifications are total and deteTmin-
istic: if the object has a pending invocation, then it
has a unique matching enabled response. We consider
only total operations because it is unclear how to in-
terpret the wait-free condition for partial operations.
For example, the most natural way to define the effects
of a partial deq in a concurrent system is to have it
wait until the queue becomes non-empty, a specification
that clearly does not admit a wait-free implementation.
We consider only deterministic operations because one

can always use a deterministic implementation to sat-
isfy a non-deterministic specification, e.g., using the deq
operation for queues to implement a non-deterministic
choose operation for sets.

If H is a history, let complete(H) denote the max-
imal subsequence of H consisting only of invocations
and matching responses. Each history H induces a par-
tial “red-time” Order +H On its Operations: p +I q if
the response for p precedes the invocation for q. Op-
erations unrelated by 4~ are said to be concurrent.
If H is sequential, +H is a total order. A concurrent
system {PI, . . . , P,; Al, . . . , Am} is linearizable if, each

history H can be extended to a well-formed history H’,
by adding zero or more responses, for each history H,
there exists a sequential history S such that:

l For all Pi, compZete(H’)IPi = S(Pi

. +HC-tS

In other words, the history “appears” sequential to each
individual process, and this apparent sequential inter-
leaving respects the real-time precedence ordering of op-
erations. Equivalently, each operation appears to take
effect instantaneously at some point between its invoca-
tion and its response. A. concurrent object A is linea&-
able if, for every history H of every concurrent system
(PI, . . . , Pn; Al, . . . , Ai,. . . , A,}, HI Aj is linearizable.
A linearizable object is thus “equivalent” to a sequential
object, and its operations can also be specified by sim-
ple pre- and postconditions. We restrict our attention
to linearizable concurrent systems.

Unlike related correctness conditions such as sequen-
tial consistency [16] or strict serializability 1201, lineariz-
ability is a local property: a concurrent system is lin-
earizable if and only if each individual object is lineariz-
able [12, 131. Henceforth, we restrict our attention to
systems and histories that involve a single object.

2.3 Implementations

An implementation of an object A is a concurrent sys-
tem (Fi, . . . , Fn; R}, where the Fi are called front-ends,
and R is called the representation. Informally, R is
the data structure that implements A, and Fi is the
procedure called by process Pi to execute an opera-
tion. Each INVOKE(Pi, op, A) is an input event of Fi,
and each RESPOND(P;, Tes, A) is an output event of Fi.
Each input event INVOKE(F~, op, R) of R is composed
with the matching output event of Fi, and each out-
put event RESPOND(Fi, res, R) of R is composed with
the matching input event of Fi. An implementation Ii
of Aj is correct if the two systems are indistinguish-
able to the ensemble of processes: for every history H
of {PI,. . ., P,;Al,. . -1 Ij,. . ., A,}, there exists a his-
tory H’ of (PI,. . . , P,,;Al,. . . , Aj, . . ., A,}, such that

Ht{Pl,. . . , P,) = H’I(Pl, . . . , P,).

In the rest of the paper, we assume the object R is
an array of registers that provide only Tead and w&e
operations. The sequential specification for registers is
simple: each write takes a value, and each read returns
the last value written. Values can be of unbounded size.

An implementation is wait-free if:

l It has no history in which an invocation of Pi re-
mains pending across an infinite number of steps
of Fi.

342

l If Pi has a pending invocation in a state s, then
there exists a history fragment starting from s, con-
sisting entirely of events of Fi and R, that includes
the response .to that invocation.

The first condition rules out unbounded busy-
waiting: a front-end cannot take an infinite number of
steps without responding to an invocation. The second
condition rules out conditional waiting: Fi cannot block
waiting for another process to make a condition true.

2.4 Commuting and Overwriting Invocations

We are now ready to state the algebraic conditions an
object must satisfy for us to provide a wait-free im-
plementation. If p is an operation, pi denotes p’s in-
vocation, and p, its response. We use “a” to denote
concatenation, and H . p to denote H . p; . pr .

Definition 1 Two sequential histories H and H’ are
equivalent iif, for all sequential histories G, H . G is
legal if and only if H’ . G is legal.

Definition 2 Invocations pi and 4; commute if, for all
sequential histories H, if H . p and H . q are legal then
H . p. q and H . q + p are legal and equivalent.

Definition 3 Invocation qi overwrites pi if, for all se-
quential histories H, if H . p and H . q are legal then
H . p - q is legal and equivalent to H . q.

This particular notion of commutativity is due to Weihl
[25]. For brevity, we say that two operations commute
when their invocations commute.

We will show how to construct a wait-free asyn-
chronous PRAM implementation for any object whose
sequential specification satisfies the following property:

Property 1 For all operations p and q, either p and q
commute, or one overwrites the other.

For example, one data type that satisfies these condi-
tions is the following counter data type, providing the
following operations:

inc(c: counter, amount: integer)
dec(c: counter, amount: integer)

respectively increment and decrement the counter by a
given amount,

reset(c: counter, amount: integer)

reinitializes the counter to amount, and

read(c: counter) returns(integer)

returns the -current counter value. Note that inc and dec
operations commute, every operation overwrites read,
and reset overwrites every operation. Such a shared
counter appears, for example, in randomized shared-
memory algorithms [3], and in the implementation of
logical clocks [15].

3 Preliminary Lemmas

Lemma 4 The overwrites relation is transitive.

Proof: Suppose T overwrites q, and q overwrites p.
By the definition of overwrites, there exists a sequen-

tial history H such that H .p, H .q, and H *r are legal,
H . p. q is equivalent to H . q, and He q. r is equivalent
to H . T.

Since operations are total, there exists a response r:
such that G = H apa q. ri. r: is legal. Since q overwrites
p, G is equivalent to H s q s ri * T:. Since H * q * T is legal,
and since operations are deterministic, r, = r:.

Since T overwrites q, G is equivalent to He p. T. Since
q overwrites p, G is also equivalent to H . T. We have
shown that if H . p and H . T are legal, then H . p. T is
legal and equivalent to H + T, hence T overwrites p. 1

Lemma 5 Let H be a history with operations p, q, T,
and s such that p precedes q, r precedes s, and p and s
are concurrent. We claim that r must precede q.

Proof: Since p and s are concurrent, si appears before
p, in H. Since T precedes s, Ti and T, also appear before
p,. Finally, since p precedes q, qi and qr appear after
p,, and therefore T and q do not overlap, and r precedes
q in H. I

For the following definition, processes are ordered by
their indices: Pi < Pj if and only if i < j.

Definition 6 An operation p of process P dominates
operation q of Q if either (1) p overwrites q but not vice-
versa, OT (2) p and q overwrite each other and P > Q.

The notion of dominance “breaks ties” among mutu-
ally overwriting operations.

Lemma 7 The dominance relation is transitive.

Proof: Suppose r dominates q, and q dominates p,
where operations p, q, and T are respectively executed
by processes P, Q, R. By the definition of dominance, r
overwrites q, and q overwrites p, hence, by transitivity
(Lemma 4), r overwrites p. If p does not overwrite P,
we are done, so suppose p also overwrites T. Since p
overwrites T and T overwrites q, p overwrites q. Since p
and q overwrite one another, and q dominates p, it must
be that P < Q. Similarly, since q overwrites p, and p
overwrites T, q overwrites T, and, by similar reasonin
Q < R. It follows that P < R, hence T dominates p. gi

343

3.1 Precedence and Linearization Graphs

It is convenient to represent a history as a directed
acyclic precedence graph on completed operations: there
is au edge from p to q if and only if p precedes q. The his-
tory’s linearization graph is constructed by augmenting
the precedence graph with additional dominance edges.
These edges reflect constraints on the ordering of con-
current operations imposed by the algebraic properties
of the operations themselves. Given a precedence graph
8, the associated linearization graph L(4) is defined by
the algorithm shown in Figure 1. Here, (PI,. . . ,pk}
represent the operations sorted in any order consistent
with the precedence order. The algorithm constructs a
sequence of intermediate graphs L+, for 0 5 i < j 5 le.
For brevity, we say that the construction visits pi when
it compares pi to pj, for i < j.

LO,k := 4

foriin l...lc do
Li,i Z= Li-l,l;
for jini+l...k:do

if p; dominates pi and
there is no path in Lid-1 from p; to pj
then Li,j := Li,j-l Upj + pi

elseif pj dominates pi and
there is no path in Li,j-1 from pj to pi
then Lij := Li,j-1 U pi + pj

else Li,j := Lij-1
end if

end for
end for

return Lk,k

Figure 1: The Linearization Graph Construction

Lemma 8 If p and q are concurrent in G, and one
dominates the other, then theTe is a path in L(G) from
one to the other.

Proof: When the construction visits the first of p or
it will add an edge if one does not already exist. Ii

Lemma 9 If there is no path between p and q in the
linearization graph, then they commute.

Proof: If p and q do not commute, then one dominates
the other.

Definition 10 A linearization of a precedence graph G
is a sequential history constructed by a topological soTt

of L(B).

Lemma 11 If G has a legal linearization, then all lin-
eaTizations of 4 are legal and equivalent.

Proof: By induction on the number of operations in
Q. The result is immediate when the graph has a single
operation.

Pick an operation p such that p has no outgoing edges
in L(B). Let H = HI . p. Hz be the legal linearization
of 8, and G = Gr . p. Gs any other linearization. Let
8’ be B with p removed.

Since p has no outgoing edges in L(B), each operation
in Hs and Gs is concurrent with p, and hence commutes
with p (Lemma 9), so H :is equivalent to H1.Hx.p. Now,
h’ = HI. Hz is a legal linearization of G’, G’ = Gr .Ga is
a linearization of G’, hence by the induction hypothesis,
G’ is legal and equivalent to H’. It follows that H is
equivalent to Gr . Gs . p, and since p commutes with
each operation in G2 (see above), H is also equivalent
to Gr.p. G2. I

Informally, the purpose of the linearization graph is
to ensure that no operation’s result is affected by con-
current operations. Linearization graphs owe something
to the serialization graphs [4] used in database theory,
although the technical details are different.

Lemma 12 Let G be a precedence graph, and pa and
pl operations concurTent in 9, such that there is a path
from po to pl in the intermediate graph Li,j in the con-
struction of L(G). Any path of minimal length from po
to pl in Li,j contains at most one precedence edge.

Proof: If there is more then one precedence edge, then
there exist operations p, q, T, and s in the path such that
p precedes q, there is a path from q to r, and T precedes
s. If q precedes s, then the path can be shortened,
and therefore p and s are concurrent. By Lemma 5,
however, T would then precede q, which contradicts the
assumption that there is path from q to T. I

Lemma 13 If p dominates q, and there is a path from
p to q in L(B), th en there exists an T such that P dom-
inates p and T precedes q.

Proof: Consider the first intermediate graph in the
construction of L(B) t o contain a path from p to q. We
claim that any path of minimal length from p to q in this
graph contains exactly one precedence edge. It cannot
contain more than one (Lemma 12), and if it contains
none, then q dominates p by transitivity (Lemma 7),
which is impossible because p dominates q.

This path traverses operations po = p, pl, . . . , p,,, and
qo, 41,. . . , ql = q, such that dominance edges link pi
to pi+1 and qi to qi+r, and pm precedes qe. Suppose
p # pk and q # qo. q?o construct the paths from p
to pk and q to qo, the construction must add at least
one edge between two of the pi and at least one edge
between two of the qj. When the construction visits pi,

344

it adds a dominance edge from po to pi (unless po =
p;), and from p; to p, (unless p,,, = pi). Although
p dominates q, and hence so does pi, the construction
does not add an edge from q to pi, implying that there
must already be a path from pi to q. Visiting pi thus
completes the path from p to q, implying that pi must
be the last operation visited. A symmetric argument,
however, also shows that visiting qj also completes a
path from p to q, implying that qi must also be the also
last operation visited, a contradiction,

Suppose p, = p. Consider the first intermediate
graph in the construction of L(G) to contain a path
from qo to some q’, concurrent with qo, that dominates
p. Pick a path of minimal length, and let q” be the
operation immediately before q’ in this path. We claim
that p and q’ must be concurrent, since otherwise the
path could be shortened. Lemma 5, however, implies
that q” precedes qo, contradicting the assumption that
there is a path from qo to q”.

It follows that qo = q, and the T in the lemma state-
ment is pk # p. I

Lemma 14 Let G be a precedence graph, p an operation
of $? with no outgoing edges, and let g’ be the graph
resulting of removing p from 9. We claim that L(4’) is
a subgraph of L(G).

Proof: Suppose there is an edge from q to T in L(g’)
but not in L(G). B ecause (i is a subgraph of 9, the miss-
ing edge must be a dominance edge. The construction
for L(g) f ‘1 t ai s o insert this edge only if it completes a
path from r to q before it can add an edge from q to r.

By Lemma 13, there exists T’ in L(g) such that T'

dominates T, and T’ precedes q. Since p does not precede
any operations, r’ and p are distinct, therefore r’ is in
G’. Since T’ precedes q, the construction visits either T

or T' before it visits q. Either way, it constructs a path
from T to r’ before it compares T and q, thus it completes
a path from T to q, a path that does not exist in L(B’).

I

Lemma 15 Let p be an operation, and HI and Hz se-
quential histories such that HI . p and HI . Hx are legal,
and if p dominates any operation q in Hz, then there
exists an T in Hz that precedes q and dominates p. We
claim that HI . p. Hz is legal.

Proof: By induction on the length of Hz. The result
is immediate if Hz is empty. Otherwise, Hz can be
written as q . Hh, where q is an operation that p does
not dominate. Either q dominates p, in which case the
result is immediate, or p and q commute, in which case
HI . p . q . Hh is equivalent to HI . q . p . Hi, where
the latter satisfies the conditions of the lemma, and the
result follows from the induction hypothesis.

4 The Algorithm

% Shared data
root: array[l..n] of pointer to entry

execute(pi: invocation) returns(response)
% Step 1: construct a response
view := atomic scan of root array
H := linearization of view
e := new entry
e.invocation := pi
e.response := p, such that H . pi . p, is legal
foriin 1 . ..ndo

e.preceding[i] := view[i]
end for

% Step 2: write out the response
root[P] := address of e
return p,
end execute

Figure 2: A Wait-Free Implementation

A wait-free algorithm for implementing an object sat-
isfying Property 1 is shown in Figure 2. The object is
represented by its precedence graph. Each operation
is represented by an entry, a data structure with fields
for the invocation, the response, and n pointers to each
process’s preceding entry. The graph is rooted in an
anchor array whose Pih entry holds a pointer to the
entry for process P’s most recent operation.

A process executes an operation in two steps:

1. It takes an instantaneous snapshot of the anchor
array using the atomic scan procedure described in
Section 5. It then constructs a linearization graph
from the precedence graph rooted at the snapshot
array, and then constructs a linearization, called
its view. Using a sequential implementation of the
object, it determines the response to the invoca-
tion consistent with the view. It creates an entry
for the operation, filling in the response and the
precedence edges from the snapshot array.

2. The process updates the precedence graph by stor-
ing a pointer to the new entry in its position in the
anchor array.

Each of these steps makes a single access to shared data:
Step 1 uses the atomic scan algorithm given below, and
Step 2 writes a single pointer into the shared root ar-
ray. Informally, this algorithm exploits the commuta-
tivity and overwriting properties of operations to ensure
that each process sees “enough” of the object state to
choose a correct response independently of any opera-
tions that may be taking place concurrently. We will

345

show that the shared precedence graph always has a
legal linearization.

Lemma 16 Let HI * p . Hz be a linearization of the
shared precedence graph 8. If p and q aTe concurrent in
&J, p dominates q, and q is in Hz, then there exists an
T such that r dominates p and r precedes q.

Proof: Since p and q are concurrent and do not com-
mute, L(4) contains a path from one to the other
(Lemma 8). Since p appears before q in the lineariza-
tion, this path must go from p to q. The result now
follows directly from Lemma 13. I

An entry that has been initialized but not yet written
out is pending.

Theorem 1’7 The following property is invariant: if
the shared precedence graph is linearizable, then it re-
mains linearizable after writing out any pending entry.

Proof: By induction. The property holds trivially in
the object’s initial state, when the precedence graph is
empty and no entries are pending. The property is pre-
served when P executes Step 1, since the result of writ-
ing out P’s entry is linearizable by construction, and
the result of writing out any other entry is unchanged.

It remains to check that writing out P’s pending en-
try does not violate linearizability by “invalidating” any
other process’s pending operation. Suppose P and Q re-
spectively have pending operations p and q. Let B be
the current precedence graph, f&, the precedence graph
after writing out p, 9z the precedence graph after writ-
ing out q, and r&z the precedence graph after writing
out both.

Let HI .p- Hx a q. Ha be a linearization of L(&&). By
Lemma 14, L(f&) and L(&7,) are subgraphs of A(&,,,),
hence HI *p s HZ- Hx is a linearization of &, and HI * Hz.
q.Ha a linearization of &Is. By the induction hypothesis,
these are both legal sequential histories.

In particular, HI .p is legal, HI *Hz .q .Hs is legal, and
if p dominates any operation T in Hx . q. Hs, then there
exists an r’ in Hz * q. Ha that precedes r and dominates
p (Lemma 16). By Lemma 15, G = HI-p. Hx -4. Ha is
legal. I

Corollary 18 The object implementation in Figure 2
is linearizable.

For any particular data type, it is possible to ap-
ply type-specific optimisations to discard most of the
precedence graph, and to avoid reconstructing the en-
tire linearization graph for each operation. An example
of such a construction is given below in Section 6.

Scan(P: process, v: value) returns(value)
scan[P][O] := v V scan[P][O]
for i in 1 . ..n+ 1 do

forQin l...ndo
scan[P] [i] ::= scan[P] [i] V scan[Q] [i- l]
end for

end for
return scan[P][n+l]
end Scan

Figure 3: Th.e Scan Procedure

5 Atomic Scan
In this section, we show how to take an atomic snap-

shot scan of an array of multi-reader, single-writer reg-
isters in which process P writes the Pth array element.
It is convenient to cast this problem in slightly more
general form: since the array’s state does not depend
on the order in which distinct processes update their ar-
ray elements, it is natural to treat the array state as the
join in a V-semilattice of the input values. The snapshot
scan simply returns the join of the register values.

Fix a V-semilattice L; Ear convenience we will assume
that L contains a bottom element I such that I V a: =

z for all z in L. The atomic scan object has an operation
Writet(P, w) for each process P and element v of L,
and an operation ReadMax for each process P. The
serial semantics of the object are straightforward: in
any history H, the value returned by a ReadMax
operation is the join of the values written by earlier
WriteL(Q, v) operations, for all Q.

The processes share an array scan[l . . .n][O . . .n -+ l]
of multi-reader/single-writer atomic registers, where
P alone writes to each scan[P][i]. The operations
WriteL(P, V) and ReadMax are each implemented
using a stronger primitive operation, Scan(P, v), defined
in Figure 3. The WriteI, operation is implemented by
executing Scan(P, V) and discarding the return value,
while the ReadMax operation is implemented by exe-
cuting Scan(P, I).

5.1 Proof of Correctness

We demonstrate the correctness of the atomic scan algo-
rithm in two steps. First, we show that any two values
returned by Scan operations are comparable within the
lattice L. Second, we use the lattice ordering of the
returned values to order the implemented WriteL and
ReadMax operations in any concurrent history H; this
ordering will produce an equivalent serial history of the
atomic scan object, thus proving linearizability. We use
the usual order symbols <, >, 2,s for the semilattice
order in L.

An implementation history is one in which high-level

346

Scan invocations and responses are interleaved with
low-level read and write invocations and responses in
a constrained way: each Scan invocation is separated
from its matching response by a sequence of read and
write operations of the same process. Since read and
write operations are linearizable by assumption, we may
assume without loss of generality that the subsequence
of low-level operations is a sequential history.

Let H be fixed implementation history, p a Scan op-
eration in H executed by process P, and q a Scan op-
eration by P. We use p[k] as an abbreviation for the
write operation to scan[P][k] executed on behalf of the
high-level operation p. We sometimes abuse this nota-
tion by using p[k] also to refer to the value it writes.
We say that p[k] directly-sees q[k - I] if P’s read of
scan[P][k - l] appears after q[k - l] in H. We say that
p[k] sees q[l] if they lie in the in the reflexive, transitive
closure of directly-sees. Note that for p[k] to see q[1] it is
not enough that p[k] > q[l]; it must also occur later in
time after a sequence of intermediate reads and writes
that would allow the value q[l] to be incorporated in the
value p[k].

Certain facts about the sees relation are important
enough to state as lemmas. The proofs are straightfor-
ward and are omitted for brevity.

Lemma 19 1-f i 5 j, then p[j] See8 p[i].

Lemma 20 If p +H q and q[k] and p[k] e&t, then

PW 2 Pkl.

It is also not difficult to see that any value written by
a process is the join of the values seen by that process;
more formally, we state:

Lemma 21 For any p[k] in H, if 0 5 I < k, then

PIN = Vf4Pl I Phi sees qVl1.

The following lemma describes the principle on which
the atomic scan algorithm depends:

Lemma 22 vp[k] and q[k] both appear in H, for k >
0, then either p[k] sees q[k - l] OT q[k] sees q[k - 11.

Proof: Suppose p[k - l] precedes q[k - 11. Since Q’s
read of scan[&][k - l] appears after q[k - 11, it appears
after p[k - 11, and q[k] sees p[k - 11. otherwise, if q[k - l]
precedes p[k - 11, then p[k] sees q[k - l]. I

We now prove the consistency of the atomic scan op-
eration.

Lemma 23 Either p[n + l] 2 q[n + l] OT q[n + l] 2
Pb + 13.

Proof: Let p’, q’ be Scan operations such that p[n + l]
sees p’[O], and q[n + l] sees q’[O]. We claim that:

pb + 11 2 q’P1 or qb + 11 L P’M. (1)
Let {PO, . . . , p,,+l} be an indexed set of Scan operations
(not necessarily distinct) such that po = p’, pm+1 = p,
and for each k, 0 < k < n + 1, pk[k] directly-sees
~k.-~[k - 11. Define (qo,. . . , qn+l} similarly; the exis-
tence of the sets follows from the definition of sees.

For each pk, qk, where k > 0, Lemma 22 implies that
either pk[k] sees qk[k-l] or qk[k] sees pk[k-11, and thus
one of pk or qk has the property that its (k - l)gt write
is seen by both pk[k] and qk[k]. Denote this operation
by xk, and the associated process by Xk.

Now consider the indexed set (~0,. . . , c,+r}. By the
pigeonhole principle, there exist distinct i and j such
that i < j and Xi = Xj . If 2i = xj, Lemma 19 imme-
diately implies that xj [j - l] sees ai [i].

Otherwise, ai must precede zj, because aj[j] sees ei-
ther qi[i] or pi[i], both of which see oi[i - 11. Thus, by
Lemma 20, aj[j - l] 2 z:;[j - l], but since j - 1 2 i
Lemma 19 implies that zi[j - l] sees zi[i]. Thus in ei-
ther case gj [j - l] 2 zi[i]. p[n + l] and q[n + I] see
Zj [j - l], and 2i [i] sees one of p’[O], q’[O], showing that
Equation 1 holds.

Now suppose that p[n+ l] and q[n+ l] are incompara-
ble. By Lemma 21, there must then exist a p’[O] which
p[n + l] alone sees and a q’[O] which q[n + l] alone sees
- contradicting Equation 1. I

Theorem 24 The atomic scan object implementation
is hea&able.

Proof: Consider any two operations 2 and y. Let
3: 4; y if either z[n+ l] < y[n+ l] or z[n-i- l] = y[n+ 11,
x is a WriteL operation and y is a ReadMax operation.
Extend --& to a total order + ; by Lemma 20 4s ex-
tends +H, and thus we can use it to linearize H. That
the resulting sequential history is legal follows direct1
from Lemma 23. ii

To implement the atomic snapshot algorithm used in
the previous section, we make each value an n-element
array of pointers, where the entire array is kept in a sin-
gle register. (As noted above, numerous techniques ex-
ist for constructing large atomic registers from smaller
ones.) Each array entry has an associated tag, and the
maximum of two entries is the one with the higher tag.
The join of two values is the element-wise maximum
of the two arrays. The I value is just an array whose
tags are all zero. P writes the Pth position in the an-
chor array by initializing scan[P][O] to an array whose
Pth element has a higher tag than P’s latest entry, and
whose other elements have tag zero. (As a simple opti-
mization, the other elements can simply be omitted.)

347

5.2 Running Time

Each Scan operation requires one read and one write op-
eration to set scan[p][O], pl us n read and one write op-
erations for each of n + 1 passes through the loop. Thus
a single Scan operation requires a total of n2 + n + 1
read and n+ 2 write operations, where, as usual, n is the
number of processes. Some minor gains arise by elim-
inating superfluous operations that simplify the proof:
the very last write (to scan[P][n+ 11) is unnecessary, as
are the reads that a process does of its own registers. Af-
ter eliminating these operations, a Scan requires n2 - 1
read and n + 1 write operations.

6 An Example

read(c: counter)
a := atomic scan of c
result := 0
for all processes P do

if P’s timestamp is maximal in a
then result := result + a[P].contrib
end if

end for
return result
end read

inc(c: counter, amount: integer)
a := atomic scan of c
max := entry with maximal timestamp in a
if my timestamp is maximal

then a[me].contrib := a[me].contrib + amount
else a[me] .reset-count := max.reseLcount

a[me] .resetsig := maxresetsig
a[me] .contrib := amount

end if
c[me] := a[me]
end inc

reset(c: counter, amount: integer)
a := atomic scan of c
max := entry with maximal timestamp in a
a[me].contrib := amount
a[me].reset-count := 1 + maxreset-count
a[me].resetsig := me
c[me] := a[me]
end reset

Figure 4: A Wait-Free Counter Implementation

As an example of how simple optimizations can trans-
form our general algorithm into a more efficient algo-
rithm, we revisit the shared counter example. Here, the
precedence graph is represented in extremely compact

form. The processes share an n-element array of entries,
where each entry has the following fields:

l The reset count is an integer, initially zero, used to
order reset operations.

l The reset signature is the name of the last process
observed to reset the counter. It is used to break
ties among concurrent resets.

l The contribution is an integer representing the sum
of the amounts incremented and decremented exe-
cuted by that process since the last reset.

An entry’s timestamp is constructed by concatenating
the reset count (high-order bits) to the reset signature
(low-order bits).

Implementations of the counter operations are shown
schematically in Figure 4.

7 Other Related Work
Although the work on atomic registers has a long his-
tory, it is only recently that researchers have attempted
to formalize the computational power of the result-
ing model. Cole and Zajicek [‘7] propose complexity
measures and basic algorithms for an “asynchronous
PRAM” model in which asynchronous processes com-
municate through shared atomic registers. Gibbons
[q] proposes an asynchronous model in which shared
atomic registers are augmented by a form of barrier
synchronization. Our work extends these approaches
in two ways: we consider data structures rather than
the usual numeric or graph algorithms, and we focus
on wait-free computation, since we feel that algorithms
that require processes to wait for one another are poorly
suited to asynchronous models.

We recently learned of two other atomic scan algo-
rithms, developed independently by Afek et al. [I] and
by Anderson [2]. The former has time complexity com-
parable to ours, while the latter uses time exponential
in the number of processes. Both of these proposals
use bounded counters, while the most straightforward
implementation of our scan algorithm uses unbounded
counters to represent lattice elements.

An object implementation is randomized wait-free
if each operation completes in a fized expected num-
ber of steps. Elsewhere [3], we have shown that the
asynchronous PRAM model is universal for randomized
wait-free objects.

8 Remarks
This paper has shown there there is a non-trivial class
of objects that have wait-free implementations in the
asynchronous PRAM model. This result suggests sev-
eral open questions. Does every object with consensus

348

number 1 have a wait-free implementation in the asyn-
chronous PRAM model? If so, is there a fixed bound
to the number of primitive reads and writes needed to
complete an operation, perhaps as a function of n? Or,
do there exist objects whose implementations must be
finite but unbounded?

References
PI

PI

PI

[41

151

[71

PI

PI

PO1

WI

P21

[I31

Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and
N. Shavit. Atomic snapshots. Ninth ACM Symposium
on Principles of Distributed Computing, to appear.,
1990.

Anderson. Composite registers. Technical Report TR-
89-25, University of Texas at Austin, September 1989.

J. Aspnes and M.P. Herlihy. Randomized algorithms
for wait-free synchronization. Submitted for publica-
tion.

P.A. Bernstein and N. Goodman. Concurrency con-
trol in distributed database systems. ACM Computing
Surveys, 13(2):185-222, June 1981.

B. Bloom. Constructing two-writer atomic registers. In
Proceedings of the Sixth ACM Symposium on Principles
of Distributed Computing, pages 249-259, 1987.

J.E. Burns and G.L. Peterson. Constructing multi-
reader atomic values from non-atomic values. In Pro-
ceedings of the Sixth ACM Symposium on Principles of
Distributed Computing, pages 222-231, 1987.

Il. Cole and 0. Zajiec. The apram: incorporating asyn-
chrony into the pram model. In Proceedinga of the 1989
Symposium on Parallel Algorithms and Architectures,
pages 169-178, Santa Fe, NM, June 1989.

M. Fischer, N.A. Lynch, and M.S. Paterson. Impos-
sibility of distributed commit with one faulty process.
Journal of the ACM, 32(2), April 1985.

P.B. Gibbons. A more practical pram model. In Pro-
ceedings of the i989 Symposium on Parallel Algorithms
and Architectures, pages 158-168, Santa Fe, NM, June
1989.

M.P. Herlihy. Wait-free synchronization. Accepted for
publication, ACM TOPLAS.

M.P. Herlihy. Impossibility and universality results for
wait-free synchronization. In Seventh ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Com-
puting, August 1988.

M.P. Herlihy and J.M. Wing. Linearieabilty: a cor-
rectness condition for concurrent objects. Accepted for
publication, ACM TOPLAS.

M.P. Herlihy and J.M. Wing. Axioms for concurrent
objects. In 14th ACM Symposium on Principles of Pro-
gramming Languages, pages 13-26, January 1987.

[I41

[I51

P61

P71

[W

WV

w31

WI

PI

[23l

[241

[251

L. Lamport. Concurrent reading and writing. Commu-
nications of the ACM, 20(11):806-811, November 1977.

L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558-565, July 1978.

L. Lamport. How to make a multiprocessor computer

that correctly executes multiprocess programs. IEEE
Transactions on Computers, C-28(9):690, September
1979.

L. Lamport. On interprocess communication, parts i
and ii. Distributed Computing, 1:77-101, 1986.

N.A. Lynch and M.R. Tuttle. An introduc-
tion to input/output automata. Technical Report
MIT/LCS/TM-373, MIT Laboratory for Computer
Science, November 1988.

R. Newman-Wolfe. A protocol for wait-free, atomic,
multi-reader shared variables. In Proceedinga of the
Sixth ACM Symposium on Principles of Distributed
Computing, pages 232-249, 1987.

C.H. Papadimitriou. The serializability of concurrent
database updates. Journal of the ACM, 26(4):631-653,

October 1979.

G.L. Peterson. Concurrent reading while writing. ACM
Transactions on Programming Languages and Systems,
5(1):46-55, January 1983.

G.L. Peterson and J.E. Burns. Concurrent reading
while writing ii: the multi-writer case. Technical Re-
port GIT-ICS-86/26, Georgia Institute of Technology,
December 1986.

A.K. Singh, J.H. Anderson, and M.G. Gouda. The
elusive atomic register revisited. In Proceedings of the
Sixth ACM Symposium on Principles of Distributed
Computing, pages 206-221, August 1987.

P. Vitanyi and B. Awerbuch. Atomic shared register
access by asynchronous hardware. In Proceeding3 of

of the 27th IEEE Symposium on Foundations of Com-
puter Science, pages 223-243, 1986. See also errata in
SIGACT News 18(4), Summer, 1987.

W.E. Weihl. Specification and implementation of
atomic data types. Technical Report TR-314, MIT
Laboratory for Computer Science, March 1984.

349

