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Abstract

A concurrent object is a data structure shared by concurrent processes.
Conventional techniques for implementing concurrent objects typically rely
on critical sections: ensuring that only one process at a time can operate on
the object. Nevertheless, critical sections are poorly suited for asynchronous
systems: if one process is halted or delayed in a critical section, other, non-
faulty processes will be unable to progress. By contrast, a concurrent object
implementation is non-blocking if it always guarantees that some process will
complete an operation in a finite number of steps, and it is wait-free if it
guarantees that each process will complete an operation in a finite number
of steps. This paper proposes a new methodology for constructing non-
blocking and wait-free implementations of concurrent objects. The object’s
representation and operations are written as stylized sequential programs,
with no explicit synchronization. Each sequential operation is automat-
ically transformed into a non-blocking or wait-free operation using novel
synchronization and memory management algorithms. These algorithms
are presented for a multiple instruction/multiple data (MIMD) architecture
in which n processes communicate by applying read, write, load_linked, and
store_conditional operations to a shared memory.

(©Digital Equipment Corporation 1991. All rights reserved.
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1 Introduction

A concurrent object is a data structure shared by concurrent processes. Con-
ventional techniques for implementing concurrent objects typically rely on
critical sections to ensure that only one process at a time is allowed access to
the object. Nevertheless, critical sections are poorly suited for asynchronous
systems; if one process is halted or delayed in a critical section, other, faster
processes will be unable to progress. Possible sources of unexpected delay
include page faults, cache misses, scheduling preemption, and perhaps even
processor failure.

By contrast, a concurrent object implementation is non-blocking if some
process must complete an operation after the system as a whole takes a
finite number of steps, and it is wazit-free if each process must complete an
operation after taking a finite number of steps. The non-blocking condition
guarantees that some process will always make progress despite arbitrary
halting failures or delays by other processes, while the wait-free condition
guarantees that all non-halted processes make progress. Either condition
rules out the use of critical sections, since a process that halts in a critical
section can force other processes trying to enter that critical section to run
forever without making progress. The non-blocking condition is appropriate
for systems where starvation is unlikely, while the (strictly stronger) wait-
free condition may be appropriate when some processes are inherently slower
than others, as in certain heterogeneous architectures.

The theoretical issues surrounding non-blocking synchronization proto-
cols have received a fair amount of attention, but the practical issues have
not. In this paper, we make a first step toward addressing these practical
aspects by proposing a new methodology for constructing non-blocking and
wait-free implementations of concurrent objects. Our approach focuses on
two distinct issues: ease of reasoning, and performance.

e [t is no secret that reasoning about concurrent programs is difficult.
A practical methodology should permit a programmer to design, say,
a correct non-blocking priority queue, without ending up with a pub-
lishable result.

e The non-blocking and wait-free properties, like most kinds of fault-
tolerance, incur a cost, especially in the absence of failures or delays.
A methodology can be considered practical only if (1) we understand
the inherent costs of the resulting programs, (2) this cost can be kept to
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acceptable levels, and (3) the programmer has some ability to influence
these costs.

We address the reasoning issue by having programmers implement data
objects as stylized sequential programs, with no explicit synchronization.
Each sequential implementation is automatically transformed into a non-
blocking or wait-free implementation via a collection of novel synchroniza-
tion and memory management techniques introduced in this paper. If the
sequential implementation is a correct sequential program, and if it follows
certain simple conventions described below, then the transformed program
will be a correct concurrent implementation. The advantage of starting with
sequential programs is clear: the formidable problem of reasoning about
concurrent programs and data structures is reduced to the more familiar
sequential domain. (Because programmers are required to follow certain
conventions, this methodology is not intended to parallelize arbitrary se-
quential programs after the fact.)

To address the performance issue, we built and tested prototype im-
plementations of several concurrent objects on a multiprocessor. We show
that a naive implementation of our methodology performs poorly because
of excessive memory contention, but simple techniques from the literature
(such as exponential backoff) have a dramatic effect on performance. We
also compare our implementations with more conventional implementations
based on spin locks. Even in the absence of timing anomalies, our example
implementations sometimes outperform conventional spin-lock techniques,
and lie within a factor of two of more sophisticated spin-lock techniques.

We focus on a multiple instruction/multiple data (MIMD) architecture
in which n asynchronous processes communicate by applying read, write,
load_linked, and store_conditional operations to a shared memory. The
load_linked operation copies the value of a shared variable to a local variable.
A subsequent store_conditional to the shared variable will change its value
only if no other process has modified that variable in the interim. Either
way, the store_conditional returns an indication of success or failure. (Note
that a store_conditional is permitted to fail even if the variable has not
changed. We assume that such spurious failures are rare, though possible.)

We chose to focus on the load_linked and store_conditional synchroniza-
tion primitives for three reasons. First, they can be implemented efficiently
in a cache-coherent architectures [9, 25], since store_conditional need only
check whether the cached copy of the shared variable has been invalidated.
Second, many other “classical” synchronization primitives are provably in-
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adequate — we have shown elsewhere [22] that it is impossible ! to con-
struct non-blocking or wait-free implementations of many simple and use-
ful data types using any combination of read, write, test&set, fetchéfadd
[18], and memory-to-register swap. The load_linked and store_conditional
operations, however, are universal — at least in principle, they are power-
ful enough to transform any sequential object implementation into a non-
blocking or wait-free implementation. Finally, we have found load_linked and
store_conditional easy to use. Elsewhere [23], we present a collection of syn-
chronization and memory management algorithms based on compareéswap
[24]. Although these algorithms have the same functionality as those given
here, they are less efficient, and conceptually more complex.

In our prototype implementations, we used the C language [27] on an
Encore Multimax [11] with eighteen NS32532 processors. This architecture
does not provide load_linked or store_conditional primitives, so we simulated
them using short critical sections. Naturally, our simulation is less efficient
than direct hardware support. For example, a successful store_conditional
requires twelve machine instructions rather than one. Nevertheless, these
prototype implementations are instructive because they allow us to com-
pare the relative efficiency of different implementations using load_linked
and store_conditional, and because they still permit an approximate com-
parison of the relative efficiency of waiting versus non-waiting techniques.
We assume readers have some knowledge of the syntax and semantics of C.

In Section 2, we give a brief survey of related work. Section 3 describes
our model. In Section 4, we present protocols for transforming sequential
implementations of small objects into non-blocking and wait-free implemen-
tations, together with experimental results showing that our techniques can
be made to perform well even when each process has a dedicated proces-
sor. In Section 5, we extend this methodology to encompass large objects.
Section 6 summarizes our results, and concludes with a discussion.

2 Related Work

Early work on non-blocking protocols focused on impossibility results [8,
12, 13, 14, 186, 22], showing that certain problems cannot be solved in asyn-
chronous systems using certain primitives. By contrast, a synchronization
primitive is universalif it can be used to transform any sequential object im-

! Although our impossibility results were presented in terms of wait-free implementa-
tions, they hold for non-blocking implementations as well.
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plementation into a wait-free concurrent implementation. The author [22]
gives a necessary and sufficient condition for universality: a synchroniza-
tion primitive is universal in an m-process system if and only if it solves the
well-known consensus problem [16] for n processes. Although this result es-
tablished that wait-free (and non-blocking) implementations are possible in
principle, the construction given was too inefficient to be practical. Plotkin
[40] gives a detailed universal construction for a sticky-bit primitive. This
construction is also of theoretical rather than practical interest. Elsewhere
[23], the author gives a simple and relatively efficient technique for trans-
forming stylized sequential object implementations into non-blocking and
wait-free implementations using the comparefswap synchronization primi-
tive. Although the overall approach is similar to the one presented here, the
details are quite different. In particular, the constructions presented in this
paper are simpler and more efficient, for reasons discussed below.

Many researchers have studied the problem of constructing wait-free
atomic registers from simpler primitives [6, 7, 28, 31, 36, 38, 39, 43]. Atomic
registers, however, have few if any interesting applications for concurrent
data structures, since they cannot be combined to construct non-blocking
or wait-free implementations of most common data types [22]. There exists
an extensive literature on concurrent data structures constructed from more
powerful primitives. Gottlieb et al. [19] give a highly concurrent queue imple-
mentation based on the replace-add operation, a variant of fetchéfadd. This
implementation permits concurrent enqueuing and dequeuing processes, but
it is blocking, since it uses critical sections to synchronize access to individual
queue elements. Lamport [30] gives a wait-free queue implementation that
permits one enqueuing process to execute concurrently with one dequeuing
process. Herlihy and Wing [21] give a non-blocking queue implementation,
employing fetchéadd and swap, that permits an arbitrary number of en-
queuing and dequeuing processes. Lanin and Shasha [32] give a non-blocking
set implementation that uses operations similar to compareédswap. There
exists an extensive literature on locking algorithms for concurrent B-trees
[4, 33, 42] and for related search structures [5, 15, 17, 20, 26]. Anderson
and Woll [1] give efficient wait-free solutions to the union-find problem in a
shared-memory architecture.

The load_linked and store_conditional synchronization primitives were
first proposed as part of the S-1 project [25] at Lawrence Livermore Labo-
ratories, and they are currently supported in the MIPS-II architecture [9].
They are closely related to the compareédswap operation first introduced by
the IBM 370 architecture [24].
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3 Overview

A concurrent system consists of a collection of n sequential processes that
communicate through shared typed objects. Processes are sequential — each
process applies a sequence of operations to objects, alternately issuing an
invocation and then receiving the associated response. We make no fairness
assumptions about processes. A process can halt, or display arbitrary vari-
ations in speed. In particular, one process cannot tell whether another has
halted or is just running very slowly.

Objects are data structures in memory. Each object has a type, which
defines a set of possible values and a set of primitive operations that provide
the only means to manipulate that object. Each object has a sequential
specification that defines how the object behaves when its operations are
invoked one at a time by a single process. For example, the behavior of a
queue object can be specified by requiring that enqueue insert an item in
the queue, and that dequeue remove the oldest item present in the queue.
In a concurrent system, however, an object’s operations can be invoked by
concurrent processes, and it is necessary to give a meaning to interleaved
operation executions.

An object is linearizable [21] if each operation appears to take effect
instantaneously at some point between the operation’s invocation and re-
sponse. Linearizability implies that processes appear to be interleaved at the
granularity of complete operations, and that the order of non-overlapping
operations is preserved. As discussed in more detail elsewhere [21], the no-
tion of linearizability generalizes and unifies a number of ad-hoc correctness
conditions in the literature, and it is related to (but not identical with)
correctness criteria such as sequential consistency [29] and strict serializ-
ability [37]. We use linearizability as the basic correctness condition for the
concurrent objects constructed in this paper.

Our methodology is the following.

1. The programmer provides a sequential implementation of the object,
choosing a representation and implementing the operations. This pro-
gram is written in a conventional sequential language, subject to cer-
tain restrictions given below. This implementation performs no ex-
plicit synchronization.

2. Using the synchronization and memory management algorithms de-
scribed in this paper, this sequential implementation is transformed
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into a non-blocking (or wait-free) concurrent implementation. Al-
though we do not address the issue here, this transformation is simple
enough to be performed by a compiler or preprocessor.

We refer to data structures and operations implemented by the program-
mer as sequential objects and sequential operations, and we refer to trans-
formed data structures and operations as concurrent objects and concurrent
operations. By convention, names of sequential data types and operations
are in lower-case, while names of concurrent types and operations are capi-
talized. (Compile-time constants typically appear in upper-case.)

4 Small Objects

A small object is one that is small enough to be copied efficiently. In this
section we discuss how to construct non-blocking and wait-free implemen-
tations of small objects. In a later section, we present a slightly different
methodology for large objects, which are too large to be copied all at once.

A sequential object is a data structure that occupies a fixed-size contigu-
ous region of memory called a block. Each sequential operation is a stylized
sequential program subject to the following simple constraints:

e An sequential operation may not have any side-effects other than mod-
ifying the block occupied by the object.

e A sequential operation must be total, meaning that it is well-defined
for every legal state of the object. (For example, the dequeue operation
may return an error code or signal an exception when applied to an
empty queue, but it may not provoke a core dump.)

The motivation for these restrictions will become clear when we discuss how
sequential operations are transformed into concurrent operations.
Throughout this paper, we use the following extended example. A pri-
ority queue (pqueue_type) is a set of items taken from a totally-ordered
domain (our examples use integers). It provides two operations: engueue
(pqueue_enq) inserts an item into the queue, and dequeue (pqueue_deq) re-
moves and returns the least item in the queue. A well-known technique for
implementing a priority queue is to use a heap, a binary tree in which each
node has a higher priority than its children. Figure 1 shows a sequential
implementation of a priority queue that satisfies our conditions. 2.

2This code is adapted from [10].
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#define PARENT(i) ((i - 1) >> 1)
#define LEFT(i) ((i << 1) + 1)
#define RIGHT(i) ((i + 1) << 1)

void pqueue_heapify(pqueue_type *p, int i){

}

int 1, r, best, swap;

1 = LEFT(i);
r = RIGHT(i);
best = (1 <= p->size && p->elements[1l] > p->elements[i]) 7 1 : i;
best = (r <= p->size && p->elements[r] > p->elements[best]) 7 r : best;
if (best != i) {
swap = p->elements[i];
p—>elements[i] = p->elements[best];
p->elements[best] = swap;
pqueue_heapify(p, best);
}

int pqueue_enqg(pqueue_type *p, int x){

}

int 1i;

if (p->size == PQUEUE_SIZE) return PQUEUE_FULL;

1 = p->size++;

while (i > O && p->elements[PARENT(i)] < x) {
p—>elements[i] = p->elements[PARENT(i)];
i = PARENT(i);

}

p->elements[i] = x;

return PQUEUE_OK;

int pqueue_deq(pqueue_type *p){

int best;

if (!p->size) return PQUEUE_EMPTY;

best = p->elements[0];

p—>elements[0] = p->elements[--p->size];
pqueue_heapify(p, 0);

return best;

Figure 1: A Sequential Priority Queue Implementation
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4.1 The Non-Blocking Transformation

We first discuss how to transform a sequential object into a non-blocking
concurrent object. In this section we present a protocol that guarantees
correctness, and in the next section we extend the protocol to enhance per-
formance.

Omitting certain important details, the basic technique is the following.
The objects share a variable that holds a pointer to the object’s current
version. Each process (1) reads the pointer using load_linked, (2) copies the
indicated version into another block, (3) applies the sequential operation
to the copy, and (4) calls store_conditional to swing the pointer from the
old version to the new. If the last step fails, the process restarts at Step
1. Each execution of these four steps is called an attempt. Linearizability
is straightforward, since the order in which operations appear to happen is
the order of their final calls to store_conditional. Barring spurious failures
of the store_conditional primitive, this protocol is non-blocking because at
least one out of every n attempts must succeed.

Memory management for small objects is almost trivial. Each process
owns single block of unused memory. In Step 2, the process copies the
object’s current version into its own block. When it succeeds in swinging
the pointer from the old version to the new, it gives up ownership of the
new version’s block, and acquires ownership of the old version’s block. Since
the process that replaces a particular version is uniquely determined, each
block has a unique and well-defined owner at all times. If all blocks are the
same size, then support for m small objects requires m + n + 1 blocks.

A slow process may observe the object in an inconsistent state. For ex-
ample, processes P and  may read a pointer to a block b, @ may swing
the pointer to block b’ and then start a new operation. If P copies b while
Q is copying b’ to b, then P’s copy may not be a valid state of the sequen-
tial object. This race condition raises an important software engineering
issue. Although P’s subsequent store_conditional is certain to fail, it may
be difficult to ensure that the sequential operation does not store into an
out-of-range location, divide by zero, or perform some other illegal action.
It would be imprudent to require programmers to write sequential oper-
ations that avoid such actions when presented with arbitrary bit strings.
Instead, we insert a consistency check after copying the old version, but
before applying the sequential operation. Consistency can be checked ei-
ther by hardware or by software. A simple hardware solution is to include
a validate instruction that checks whether a variable read by a load_linked
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instruction has been modified. Implementing such a primitive in an archi-
tecture that already supports store_conditional should be straightforward,
since they have similar functionalities. In our examples, however, we use a
software solution. Each version has two associated counters, check[0] and
check[1]. If the counters are equal, the version is consistent. To modify a
version, a process increments check[0], makes the modifications, and then
increments check[1]. When copying, a process reads check[1], copies the
version, and then reads check[0]. Incrementing the counters in one order
and reading them in the other ensures that if the counters match, then the
copy is consistent. 3

This protocol does not work if compareédswap replaces store_conditional.
Consider the following execution: P and @ each reads a pointer to a block
b, Q completes its operation, replacing b with ' and acquiring ownership of
b. @ then completes a second operation, replacing b’ with b. If P now does
a compareédswap, then it will erroneously install an out-of-sequence version.
Elsewhere [23], we describe a more complex protocol in which P “freezes” a
block before reading it, ensuring that the block will not be recycled while the
attempt is in progress. As mentioned above, the resulting protocols are more
complex and less efficient than the ones described here for store_conditional.

Several optimizations are possible. If the hardware provides a validate
operation, then read-only operations can complete with a successful validate
instead of a store_conditional. An object may be significantly smaller than a
full block. If programmers follow a convention where the object’s true size is
kept in a fixed location within the block, then the concurrent operation can
avoid unnecessary copying. (Our prototypes make use of this optimization).

We are now ready to review the protocol in more detail (Figure 2). A
concurrent object is a shared variable that holds a pointer to a structure
with two fields: (1) version is a sequential object, and (2) check is a two-
element array of unsigned (large) integers. Each process keeps a pointer
(new) that points to the block it owns. The process enters a loop. It reads
the pointer using load_linked, and marks the new version as inconsistent by
setting check[0] to check[1] + 1. It then reads the old version’s check[1]
field, copies the version field, and then reads the check[0] field. If the two
counters fail to match, then the copy is inconsistent, and the process restarts
the loop. Otherwise, the process applies the sequential operation to the

3Counters are bounded, so there is a remote chance that a consistency check will
succeed incorrectly if a counter cycles all the way around during a single attempt. As
a practical matter, this problem is avoided simply by using a large enough (e.g., 32 bit)
counter.
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typedef struct {
pqueue_type version;
unsigned check[2];

} Pqueue_type;

static Pqueue_type *new_pqueue;

int Pqueue_deq(Pqueue_type **Q){
Pqueue_type *old_pqueue; /* concurrent object */
pqueue_type *old_version, *new_version; /* seq object */
int result;
unsigned first, last;

while (1) {
old_pqueue = load_linked(Q);
old_version = &old_pqueue->version;
new_version = &new_pqueue->version;
first = old_pqueue->check[1];
copy(old_version, new_version);
last = old_pqueue->check[0];
if (first == last) {
result = pqueue_deq(new_version);
if (store_conditional(Q, new_version)) break;
} /* if */
} /* while */
new_pqueue = old_pqueue;
return result;
} /* Pqueue_deq */

Figure 2: Simple Non-Blocking Protocol
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version field, and then increments check[1], indicating that the version is
consistent. It then attempts to reset the pointer using store_conditional. If
it succeeds, the operation returns; otherwise the loop is resumed.

4.2 Experimental Results

The non-blocking property is best thought of as a kind of fault-tolerance.
In return for extra work (updating a copy instead of updating in place),
the program acquires the ability to withstand certain failures (unexpected
process failure or delay). In this section, we present experimental results
that provide a rough measure of this additional overhead, and that allow
us to identify and evaluate certain additional techniques that substantially
enhance performance. We will show that a naive implementation of the
non-blocking transformation performs poorly, even allowing for the cost of
simulated load_linked and store_conditional, but that adding a simple expo-
nential backoff dramatically increases throughput.

As described above, we constructed a prototype implementation of a
small priority queue on an Encore Multimax, in C, using simulated load_linked
and store_conditional primitives. As a benchmark, we measure the elapsed
time needed for n processes to enqueue and then dequeue 22°/n items from
a shared 16-element priority queue (Figure 3), where n ranges from 1 to 16.
As a control, we also ran the same benchmark using the same heap imple-
mentation of the priority queue, except that updates were done in place,
using an in-line compiled test-and-test-and-set * spin lock to achieve mutual
exclusion. This test-and-test-and-set spin lock is a built-in feature of En-
core’s C compiler, and it represents how most current systems synchronize
access to shared data structures.

When evaluating the performance of these benchmarks, it is important
to understand that they were run under circumstances where timing anoma-
lies and delays almost never occur. Each process ran on its own dedicated
processor, and the machine was otherwise idle, ensuring that processes were
likely to run uninterruptedly. The processes repeatedly accessed a small re-
gion of memory, making page faults unlikely. Under these circumstances, the
costs of avoiding waiting are visible, although the benefits are not. Neverthe-
less, we chose these circumstances because they best highlight the inherent
costs of our proposal.

*A test-and-test-and-set [41] loop repeatedly reads the lock until it observes the lock
is free, and then tries the test&set operation.
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#define million 1024 * 1024

shared Pqueue_type *object;
int N; /* number of processes */

process(){
int work = million / N;
int 1i;
for (i = 0; i < work; i++)
{
Pqueue_enqg(object, random());
Pqueue_deq(object);
}

Figure 3: Concurrent Heap Benchmark

In Figure 4, the horizontal axis represents the number of concurrent
processes executing the benchmark, and the vertical axis represents the time
taken (in seconds). The top curve is the time taken using the non-blocking
protocol, and the lower curve is the time taken by the spin lock. When
reading this graph, it is important to bear in mind that each point represents
approximately the same amount of work — enqueuing and dequeuing 22°
(about a million) randomly-generated numbers. In the absence of memory
contention, both curves would be nearly flat 5.

The simple non-blocking protocol performs much worse than the spin-
lock protocol, even allowing for the inherent inefficiency of the simulated
load_linked and store_conditional primitives. The poor performance of the
non-blocking protocol is primarily a result of memory contention. In each
protocol, only one of the n processes is making progress at any given time.
In the spin lock protocol, it is the process in the critical section, while in the
non-blocking protocol, it is the process whose store_conditional will eventu-
ally succeed. In the spin-lock protocol, however, the processes outside the
critical section are spinning on cached copies of the lock, and are therefore
not generating any bus traffic. In the non-blocking protocol, by contrast, all

®Concurrent executions are slightly less efficient because the heap’s maximum possible
size is a function of the level of concurrency.
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\ [2 4 |6 [8 10 |12 [14 |16 |
Dequeue Average || 1.04 | 2.15 | 2.86 | 3.29 | 3.70 | 4.01 | 4.44 | 5.23
Eng Average 2.89 | 4.75 | 4.79 | 4.84 | 5.00 | 5.19 | 5.50 | 5.93

Deq Maximum 5 124 | 73 83 83 150 | 98 73

Eng Maximum 2046 | 3090 | 1596 | 2789 | 5207 | 4881 | 2592 | 178

Figure 5: Simple Non-Blocking Protocol: Number of Attempts

\ [2 [4 |6 [8 |10 [12 |14 [16 |
Dequeue Average || 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
Eng Average 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

Deq Maximum 1 30 60 80 60 27 48 58
Enq Maximum 1 122 | 138 | 159 | 216 | 244 | 254 | 282

Figure 6: Non-Blocking with Backoff: Number of Attempts

processes are generating bus traffic, so only a fraction of the bus bandwidth
is dedicated to useful work.

The simple non-blocking protocol has a second weakness: starvation.
The enqueue operation is about 10% slower than the dequeue operation.
If we look at the average number of attempts associated with each process
(Figure 4.2), we can see that enqueues make slightly more unsuccessful at-
tempts than dequeues, but that each makes an average of fewer than six
attempts. If we look at the mazimum number of attempts, however, a dra-
matically different story emerges. The maximum number of unsuccessful
dequeue attempts is in the high thousands, while the maximum number of
enqueue hovers around one hundred. This table shows that starvation is
indeed a problem, since a longer operation may have difficulty completing if
it competes with shorter operations.

These performance problems have a simple solution. We introduce an
exponential backoff [2, 34, 35] between successive attempts (Figure 7). Each
process keeps a dynamically-adjusted maximum delay. When an operation
starts, it halves its current maximum delay. Each time an attempt fails, the
process waits for a random duration less than the maximum delay, and then
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doubles the maximum delay, up to a fixed limit 6.

Exponential backoff has a striking effect on performance. As illustrated
in Figure 8, the throughput of the non-blocking protocol soon overtakes that
of the standard spin lock implementation. Moreover, starvation is no longer
a threat. In the typical execution shown in Figure 4.2, the average number
of attempts is 1.00 (out of 22° operations), and the maximum for enqueues
is reduced by an order of magnitude.

As an aside, we point out that it is well-known that spin-locks also benefit
from exponential backoff [2, 34]. We replaced the in-line compiled test-
and-test-and-set spin lock with a hand-coded spin lock that itself employs
exponential backoff. Not surprisingly, this protocol has the best throughput
of all when run with dedicated processors, almost twice that of the non-
blocking protocol.

In summary, using exponential backoff, the non-blocking protocol signif-
icantly outperforms a straightforward spin-lock protocol (the default pro-
vided by the Encore C compiler), and lies within a factor of two of a sophis-
ticated spin-lock implementation.

4.3 A Wait-Free Protocol

This protocol can be made wait-free by a technique we call operation combin-
ing. When a process starts an operation, it records the call in an #nvocation
structure (inv_type) whose fields include the operation name (op_name),
argument value (arg), and a toggle bit (toggle) used to distinguish old and
new invocations. When it completes an operation, it records the result in a
response (res_type) structure, whose fields include the result (value) and
toggle bit. Each concurrent object has an additional field: responses is
an n-element array of responses, whose P element is the result of P’s last
completed operation. The processes share an n-element array announce of
invocations. When P starts an operation, it records the operation name and
argument in announce[P]. Each time a process records a new invocation, it
complements the invocation’s toggle bit.

A wait-free enqueue operation appears in Figure 10. After performing
the consistency check, the apply procedure (Figure 9) scans the responses
and announce arrays, comparing the toggle fields of corresponding invoca-
tions and responses. If the bits disagree, then it applies that invocation to

8For speed, each process in our prototype uses a precomputed table of random numbers,
and certain arithmetic operations are performed by equivalent bit-wise logical operations.
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static int max_delay;

int Pqueue_deq(Pqueue_type **Q)
{
Pqueue_type *old_pqueue;
pqueue_type *old_version, *new_version;
int i, delay, result;
unsigned first, last;

if (max_delay > 1) max_delay = max_delay / 2;
while (1) {
old_pqueue = load_linked(Q);
old_version = &old_pqueue->version;
new_version = &new_pqueue->version;
first = old_pqueue->check[1];
copy(old_version, new_version);
last = old_pqueue->check[0];
if (first == last) {
result = pqueue_deq(new_version);
if (store_conditional(Q, new_version)) break;
} /* if */
/* backoff */
if (max_delay < DELAY_LIMIT) max_delay = 2 * max_delay;
delay = random() % max_delay;
for (i = 0; i < delay; i++);
} /* while */
new_pqueue = old_pqueue;
return result;

}

Figure 7: Non-Blocking Protocol with Exponential Backoff
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the new version, records the result in the matching position in the responses
array, and complements the response’s toggle bit. After calling the apply
procedure to apply the pending operations to the new version, the process
calls store_conditional to replace the old version, just as before. To deter-
mine when its own operation is complete, P compares the toggle bits of
its invocation with the object’s matching response. It performs this com-
parison twice; if both comparisons match, the operation is complete. This
comparison must be done twice to avoid the following race condition: (1) P
reads a pointer to version v. (2) @ replaces v with v'. (3) @ starts another
operation, scans announce, applies P’s operation to the new value of v, and
stores the tentative result in v’s responses array. (4) P observes that the
toggle bits match and returns. (5) @ fails to install v as the next version,
ensuring that P has returned the wrong result.

This protocol guarantees that as long as store_conditional has no spuri-
ous failures, each operation will complete after at most two loop iterations
7. If P’s first or second store_conditional succeeds, the operation is com-
plete. Suppose the first store_conditional fails because process @ executed
an earlier store_conditional, and the second store_conditional fails because
process @' executed an earlier store_conditional. Q' must have scanned the
announce array after () performed its store_conditional, but @ performed
its store_conditional after P updated its invocation structure, and therefore
Q' must have carried out P’s operation and set the toggle bits to agree. The
process applies the termination test repeatedly during any backoff.

We are now ready to explain why sequential operations must be total.
Notice that in the benchmark program (Figure 3), each process enqueues an
item before dequeuing. One might assume, therefore, that no dequeue op-
eration will ever observe an empty queue. This assumption is wrong. Each
process reads the object version and the announce array as two distinct
steps, and the two data structures may be mutually inconsistent. A slow
process executing an enqueue might observe an empty queue, and then ob-
serve an announce array in which dequeue operations outnumber enqueue
operations. This process’s subsequent store_conditional will fail, but not
until the sequential dequeue operation has been applied to an empty queue.
This issue does not arise in the non-blocking protocol.

Figure 11 shows the time needed to complete the benchmark program
for the wait-free protocol. The throughput increases along with concurrency

"Because spurious failures are possible, this loop requires an explicit termination test;
it cannot simply count to two.
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void apply(inv_type announce[MAX_PROCS], Pqueue_type *object)q{
int 1i;
for (i = 0; i < MAX_PROCS; i++) {
if (announce[i].toggle != object->res_types[i].toggle) {
switch (announce[i].op_name) {
case ENQ_CODE:
object->res_types[i] .value =
pqueue_eng(&object->version, announcel[i].arg);
break;
case DEQ_CODE:
object->res_types[i].value = pqueue_deq(&object->version);

break;

default:
fprintf(stderr, "Unknown operation code\n'");
exit(1);

}; /* switch */

object->res_types[i].toggle = announcel[i].toggle;

} /* if */
} /* for i */

Figure 9: The Apply Operation

because the amount of copying per operation is reduced. Nevertheless, there
is a substantial overhead imposed by scanning the announce array, and, more
importantly, copying the version’s responses array with each operation. As
a practical matter, the probabilistic guarantee against starvation provided
by exponential backoff may be preferable to the deterministic guarantee
provided by operation combining.

5 Large Objects

In this section, we show how to extend the previous section’s protocols to
objects that are too large to be copied all at once. For large objects, copy-
ing is likely to be the major performance bottleneck. Our basic premise is
that copying should therefore be under the explicit control of the program-
mer, since the programmer is in a position to exploit the semantics of the
application.
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static Pqueue_type *new_pqueue;

static int max_delay;

static invocation announce[MAX_PROCS];

static int P; /* current process id */

int Pqueue_deq(Pqueue_type **Q){
Pqueue_type *old_pqueue;
pqueue_type *old_version, *new_version;
int i, delay, result, new_toggle;
unsigned first, last;

announce[P].op_name = DEQ_CODE;
new_toggle = announce[P].toggle = !announce[P].toggle;
if (max_delay > 1) max_delay = max_delay >> 1;
while ((*Q)->responses[P].toggle != new_toggle
|| (*Q)->responses[P].toggle != new_toggle) {
0old_pqueue = load_linked(Q);
old_version = &old_pqueue->version;
new_version = &new_pqueue->version;
first = old_pqueue->check[1];
memcpy (old_version, new_version, sizeof(pqueue_type));
last = old_pqueue->check[0];
if (first == last) {
result = pqueue_deq(new_version);
if (store_conditional(Q, new_version)) break;
} /* if */
/* backoff */
if (max_delay < DELAY_LIMIT) max_delay = max_delay << 1;
delay = random() % max_delay;
for (i = 0; i < delay; i++);
} /* while */
new_pqueue = old_pqueue;
return result;

}

Figure 10: A Wait-Free Operation
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A large object is represented by a set of blocks linked by pointers. Se-
quential operations of large objects are written in a functional style: an
operation that changes the object’s state does not modify the object in
place. Instead, it constructs and returns a logically distinct version of the
object. By logically distinct, we mean that the old and new versions may in
fact share a substantial amount of memory. It is the programmer’s responsi-
bility to choose a sequential implementation that performs as little copying
as possible.

The basic technique is the following. Each process (1) reads the pointer
using load_linked, (2) applies the sequential operation, which returns a pointer
to a new version, and (3) calls store_conditional to swing the pointer from
the old version to the new.

Memory management is slightly more complex. Since an operation may
require allocating multiple blocks of memory, each process owns its own pool
of blocks. When a process creates a new version of the object, it explicitly
allocates new blocks by calling alloc, and it explicitly frees old blocks by
calling free. The copy primitive copies the contents of one block to another.
If the attempt succeeds, the process acquires ownership of the blocks it freed
and relinquishes ownership of the blocks it allocated.

A process keeps track of its blocks with a data structure called a recov-
erable set (set_type). The abstract state of a recoverable set is given by
three sets of blocks: commaitied, allocated, and freed. The set_free oper-
ation inserts a block in freed, and set_alloc moves a block from commit-
ted to allocated and returns its address. As shown in figure 12, alloc calls
set_alloc and marks the resulting block as inconsistent, while free simply
calls set_free.

The recoverable set type provides three additional operations, not ex-
plicitly called by the programmer. Before executing the store_conditional,
the process calls set_prepare to mark the blocks in allocated as consistent.
If the store_conditional succeeds, it calls set_commit to set committed to the
union of freed and commaitied, and if it fails, it calls set_abort to set both
freed and allocated to the empty set.

It might also be necessary for processes to share a pool of blocks. If
process exhausts its local pool, it can allocate multiple blocks from the
shared pool, and if it acquires too many blocks, it can return the surplus
to the shared pool. The shared pool should be accessed as infrequently as
possible, since otherwise it risks becoming a contention “hot-spot.” Some
techniques for implementing shared pools appear elsewhere [23]; we did not
use a shared pool in the prototypes shown here.
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As in the small object protocol, a process checks for consistency whenever
it copies a block. If the copy is inconsistent, the process transfers control
back to the main loop (e.g., using the Unix longjmp).

5.1 Experimental Results

For the examples presented in this section, it is convenient to follow some
syntactic conventions. Because C procedures can return only one result
value, we follow the convention that all sequential operations return a pointer
to a result_type structure containing a value field (e.g., the result of a
dequeue) and a version field (the new state of the object). Instead of
treating the sequential and concurrent objects as distinct data structures, it
is convenient to treat the check array as an additional field of the sequential
object, one that is invisible to the sequential operation.

A skew heap [44] is an approximately-balanced binary tree in which each
node stores an item, and each node’s item is less than or equal to any item in
the subtree rooted at that node. A skew heap implements a priority queue,
and the amortized cost of enqueuing and dequeuing items in a skew heap
is logarithmic in the size of the tree. For our purposes, the advantage of a
skew heap over the conventional heap is that update operations leave most
of the tree nodes untouched.

The skewmeld operation (Figure 13) merges two heaps. It chooses the
heap with the lesser root, swaps its right and left children (for balance),
and then melds the right child with the other heap. To insert item z in A,
skew_enq melds - with the heap containing z alone. To remove an item
from h, skew_deq (Figure 14) removes the item at the root and melds the
root’s left and right subtrees.

We modified the priority queue benchmark of Figure 3 to initialize the
priority queue to hold 512 randomly generated integers.

Figure 15 shows the relative throughput of a non-blocking skew heap, a
spin-lock heap with updates in place, and a spin-lock skew heap with updates
in place. The non-blocking skew heap and the spin-lock heap are about the
same, and the spin-lock skew heap has almost twice the throughput of the
non-blocking skew heap, in agreement with our experimental results for the
small object protocol.
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typedef struct

{
int free_ptr, alloc_ptr; /* next full & empty slots */
int free_count, alloc_count; /* number of allocs & frees */
int size; /* number of committed entries */

int old_free_ptr, old_alloc_ptr; /#* reset on abort */
Skew_type *blocks[SET_SIZE]; /* pointers to blocks */
} set_type;

Object_type *set_alloc(set_type *q){
Object_type *x;

if (gq->alloc_count == g->size) {
fprintf(stderr, "alloc: wraparound!\n");
exit(1);

}

x = gq->blocks[g->alloc_ptr];

g->alloc_ptr = (gq->alloc_ptr + 1) % SET_SIZE;
g—>alloc_count++;

return x;

}

void set_commit(set_type *q){
g->old_alloc_ptr = gq->alloc_ptr;
g->old_free_ptr = gq->free_ptr;
gq->size = g->size + gq->free_count - g->alloc_count;
g->free_count = g->alloc_count = 0;

}

void set_prepare(set_type *q){
int 1i;
for (i = 0; i < g->alloc_count; i++)
g—->blocks[g->0ld_alloc_ptr + i]->check[1]++;
}

Object_type *alloc(){
Object_type *s;
s = set_alloc(pool);
s->check[0] = s->check[1] + 1;
return s;

Figure 12: Part of a Recoverable Set Implementation
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typedef struct skew_rep {
int value;

int toggle; /* left or right next? */
struct skew_rep *child[2]; /* left and right children */
int check[2]; /* inserted by system */

} Skew_type;

/*

Skew_meld assumes its first argument is already copied.
*/
Skew_type *skew_meld(Skew_type *q, *qq){

int toggle;

skew_type *p;

if (!q) return (qq); /* if one is empty, return the other */
if (!qq) return (q);

p = queue_alloc(pool); /* make a copy of q */

copy(aq, p);

queue_free(pool, qq);
if (g->value > p->value) {
toggle = gq->toggle;
g->child[toggle]l = skew_meld(p, q->child[togglel);
q->toggle = !toggle;
return q;
} else {
toggle = p—>toggle;
p—>child[toggle]l = skew_meld(q, p->child[togglel);
p—>toggle = !toggle;
return p;

Figure 13: Skew Heap: The Meld Operation
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result_type *skew_deq(Skew_type *q) {
Skew_type *left, *new_left, *right, buffer;
static result_type r;

r.value = SKEW_EMPTY;
r.version = 0;
if (q) {
copy(q, &buffer);
queue_free(pool, q);
r.value = buffer.value;
left = buffer.child[0];
right = buffer.child[1];
if (1 left) {
r.version = right;
} else {
new_left = alloc(pool);
copy(left, new_left);
queue_free(pool, left);
r.version = skew_meld(new_left, right);
}
}
return &r;

}

Figure 14: Skew Heap: The Dequeue Operation



Time (seconds)

5 LARGE OBJECTS 27

90

80 1

70 1

60 1

50 1

40 1

301

201

101

— Non-Blocking
Skew Heap
Heap
with
— Spin-Lock
- Skew Heap
with
Spin-Lock
I S N N E B
0 2 4 6 8 10 12 14 16

Number of Processes

Figure 15: Large Heap Throughput



6 CONCLUSIONS 28

6 Conclusions

Conventional concurrency control techniques based on mutual exclusion
were originally developed for single-processor machines in which the proces-
sor was multiplexed among a number of processes. To maximize throughput
in a uniprocessor architecture, it suffices to keep the processor busy. In a
multiprocessor architecture, however, maximizing throughput is more com-
plex. Individual processors are often subject to unpredictable delays, and
throughput will suffer if a process capable of making progress is unnecessar-
ily forced to wait for one that is not.

To address this problem, a number of researchers have investigated wazst-
free and non-blocking algorithms and data structures that do not rely on
waiting for synchronization. Much of this work has been theoretical. There
are two obstacles to making such an approach practical: conceptual com-
plexity, and performance. Conceptual complexity refers to the well-known
difficulty of reasoning about the behavior of concurrent programs. Any prac-
tical methodology for constructing highly-concurrent data structures must
include some mechanism for ensuring their correctness. Performance refers
to the observation that avoiding waiting, like most other kinds of fault-
tolerance, incurs a cost when it is not needed. For a methodology to be
practical, this overhead must be kept to a minimum.

In the methodology proposed here, we address the issue of conceptual
complexity by proposing that programmers design their data structures in
a stylized sequential manner. Because these programs are sequential, both
formal and informal reasoning are greatly simplified.

We address the issue of performance in several ways:

e We observe that the load_linked and store_conditional synchronization
primitives permit significantly simpler and more efficient algorithms
than compare&swap.

e We propose extremely simple and efficient memory management tech-
niques.

e We provide experimental evidence that a naive implementation of a
non-blocking protocol incurs unacceptable memory contention, but
that this contention can be eliminated by applying known techniques
such as exponential backoff. Our prototype implementations (using
inefficient simulated synchronization primitives) outperform conven-
tional (“test-and-test-and-set”) spin-lock implementations, and lie within
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a factor of two of more sophisticated (exponential backoff) spin-lock
implementations.

e For large objects, programmers are free to exercise their ingenuity to
keep the cost of copying under control. Whenever possible, correct-
ness should be the responsibility of the system, and performance the
responsibility of the programmer.

A promising area for future research concerns how one might exploit
type-specific properties to increase concurrency. Any such approach would
have to sacrifice some of the simplicity of our methodology, since the pro-
grammer would have to reason explicitly about concurrency. Nevertheless,
perhaps one could use our methodology to construct simple concurrent ob-
jects that could be combined to implement more complex concurrent objects,
in the same way that B-link [33] trees combine a sequence of low-level atomic
operations to implement a single atomic operation at the abstract level.

As illustrated by Andrews and Schneider’s comprehensive survey [3],
most language constructs for shared memory architectures focus on tech-
niques for managing mutual exclusion. Because the transformations de-
scribed here are simple enough to be performed by a compiler or prepro-
cessor, it is intriguing to speculate about a programming language might
support the methodology proposed here. For example, inheritance might be
a convenient way to combine the object fields (e.g., check variables) used by
the run-time system with those introduced by the programmer. Program-
ming language design raises many complex issues that lie well beyond the
scope of this paper, but the issue merits further attention.
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