
Application Modes:
A Narrow Interface for End-User Power Management in

Mobile Devices

Marcelo Martins Rodrigo Fonseca
Brown University

ABSTRACT
Achieving perfect power proportionality in current mobile devices
is not enough to prevent users from running out of battery. Given
a limited power budget, we need to control active power usage, and
there needs to be a prioritization of activities. In the late 1990s, Flinn
and Satyanarayanan showed signi�cant energy savings using a con-
cept of data �delity to drivemobile application adaptation, informed
by the battery lifetime desired by the user and the OS’s evaluation
of energy supply and demand. In this paper we revisit and expand
this approach, recognizing thatwith current hardware there are even
higher potential savings, and that increased diversity in applications,
devices, and user preferences requires a new way to involve the user
to maximize their utility. We propose ApplicationModes, a new ab-
straction and a narrow interface between applications and the OS
that allows for a separation of concerns between the application, the
OS, and the user. Application Modes are well suited to eliciting user
preferences when these depend on multiple dimensions, and can
vary between users, time, and context. Applications declare modes
– bundles of functionality for graceful degradation when resource-
limited.�e OS uses these modes as the granularity at which to pro-
�le and predict energy usage, without having to understand their se-
mantics. It can combine these predictionswith application-provided
descriptions, exposing to the user only the high-level trade-o�s that
they need to know about, between battery lifetime and functionality.

1. INTRODUCTION
Battery life has been a fundamental limitation in mobile devices

for as long as they have existed, despite a vast body of literature
on power management extending back almost two decades (§6). In
fact, increasingly demanding applications greatly exceed the aver-
age power draw that would be required for batteries to last through
a typical charging period [9, 25].
�ere is a wide spectrum of proposed solutions for power man-

agement. A �rst class of solutions deals with the management of
idle-resource power, by automatically switching hardware compo-
nents to low-power states when not in use. �ese include timeout
policies for hibernation, suspending disks, displays and radios; and
CPU voltage and frequency scaling.�e outcome, if these are per-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM HotMobile’13, February 26–27, 2013, Jekyll Island, Georgia, USA.
Copyright 2013 ACM 978-1-4503-1421-3/13/02 ...$15.00.

fect, is an energy-proportional system [5]. Althoughnecessary, these
are not su�cient to solve the increasing energy-de�cit problem, be-
cause they have no e�ect when there is active demand for resources.

To reduce the active demand, there must be a prioritization of
functionality. In the late 1990s, Ellis [8, 27] recognized that the of-
fered workload has to be changed by user-driven prioritization and
lifetime goals, and Flinn and Satyanarayanan established, with the
Odyssey system, that application adaptation can provide substan-
tial energy gains [10, 16]. In Odyssey, applications automatically and
dynamically change their behavior to limit their energy consump-
tion and achieve user-speci�ed battery lifetime, guided by the op-
erating system.�e adaptation involves a trade-o� between energy
use and application data quality, which they called �delity. Fidelity
is application-speci�c and opaque to the OS. �e role of the OS is
to direct the adaptation based on its evaluation of the supply and
demand of energy, and their relation to the expected battery dura-
tion.When theOS detects the lifetime goal as unachievable, it issues
upcalls to applications so they reduce their �delity.�e user inputs
two pieces of information: the desired lifetime, and a prioritization
of applications to order their adaptation, whereas application devel-
opers are responsible for implementing di�erent �delity levels.

Flinn and Satyanarayananwere the �rst to simultaneously involve
the OS, the applications, and the user in power management, and
many factors in today’s environment make it opportune to revisit
and extend their approach, which we do in this paper. Due to a
combination of more complex applications, multiple devices, and
a diverse user base, in some cases there is no single �delity metric
that is common to all users in all contexts, making automated ap-
proaches to adapt some applications ine�ective. Furthermore, given
advances in hardware and in lower-level so�ware (e.g., ACPI), de-
vices are much more e�cient when idle, making higher-level ap-
proaches that reduce active demand much more e�ective now than
a decade ago.

In [10], as in [12], a fundamental assumption is that there is a
well-de�ned trade-o� between�delity (orQoS) and energy use.�is
means that an application developer knows the app con�gurations
that lie in the Pareto frontier of this trade-o�, enabling an automated
algorithm to decide the state based on the available energy.

Even though this still holds for many applications, this is not al-
ways true. As we show in §2, two users with di�erent preferences
can have very di�erent trade-o�s between energy usage and utility
from an application.�e key observation is that in these cases, au-
tomated adaptation fails, and the runtime systemmust elicit prefer-
ences from the user.�e main challenge is how to involve the user
at the right time and at the right level. She should only worry about
tangible aspects of the device operation, such as lifetime and func-
tionality, and not be concerned with how these are implemented or
achieved.

In this paper we propose Application Modes (§4), an interface
between applications and the OS that eases this communication.
Rather than exposing ametric, applications declare to the OS one or
more modes, which comprise reductions of functionality with pre-
sumed power savings. Modes carry a human-readable description
of the resulting functionality, and the promise of switching when
requested by the OS. Similarly to previous works [10, 2], we assume
that the OS can predict how long the device will last with the appli-
cation in each mode, and then request its change when appropriate.
However, recognizing that di�erent modes may have di�erent util-
ities for di�erent users, the decision of when to switch modes in-
volves the user when necessary, by combining the description pro-
vided by the application with the predictions of change in lifetime
provided by the OS.

2. MOTIVATION
In this section we use power measurements with two common

smartphone applications — a navigation and a video-recording ap-
plication — to illustrate two main points. First, we con�rm and ex-
tend earlier �ndings by Flinn and Satyanarayanan [10] demonstrat-
ing how changes in application behavior can substantially a�ect en-
ergy consumption. Second, using the video-recording application,
we show that di�erent users can have very di�erent Pareto frontiers
in the utility-energy trade-o�, making globally automated decisions
ine�ective to maximize utility.

Wemeasure the power draw of running these applications in very
di�erent modes, or bundles of settings. We did our measurements
on a Samsung Galaxy Nexus running CyanogenMod ICS 4.1.0. We
measured the power draw of the entire phone connecting a Mon-
soon power monitor to the smartphone battery. To discriminate the
energy consumed due to application, we �rst measured the energy
consumed by the phone in the idle state, i.e., not running any ap-
plications apart from the base system, and established two baselines
with the screen on and o�.We kept the screen brightness to the same
level for all runs where the screen was on. For navigation, we down-
loaded data using the 3G data connection when needed, and for the
recording application, we used the WiFi network for data upload.

NavigationSystem Turn-by-turnnavigation exercises several hard-
ware resources, including the CPU, GPU, audio, networking, and
GPS. It is used in sometimes critical situations, when there is little
battery le� and the user is in need of orientation to arrive at her
destination (and a charging opportunity). �ere are also interest-
ing trade-o�s in functionality, utility, and energy use, depending on
which subset of resources the application uses.

We demonstrate potential savings from running Osmand1 and
Navfree2 , two turn-by-turn navigation applications for Android de-
vices with online/o�ine features, and modifying their settings. We
consider �ve modes, listed in Table 1, from selected parameters for
the screen and audio outputs, map-data source and routing.�ese
settings are not transparent to the user, and make speci�c trade-o�s
between accuracy and resource usage for a given route. Notable dif-
ferences between settings include the use of previously downloaded
vector maps instead of online tile data, disabling the display and us-
ing only audio for directions, and downloading directions for the
user to write down! We compare the power draw of calculating and
outputting the directions for a �xed, four-mile route.

Figure 1 shows, for each mode, the distribution of instantaneous
power-draw samples from the device over the entire experiment.
�e “Full Features” mode yields a richer trajectory, including extra

1http://osmand.net
2http://www.navmii.com

 0

 1

 2

 3

 4

 5

 6

 7

 8

Full
Features

Light
Screen

Dark
Screen

Audio
Only

Written
Directions

P
o
w

e
r

(W
)

Average
Median

1.00

1.32

1.85

5.43
14.31

Baseline w/ screen on
Baseline w/ screen off

Figure 1: Power draw distributions for the navigation app in di�erent out-
put/routing settings (cf. Table 1).�e vertical bars show the maximum and
minimum power draw, and the boxes the 1st and 3rd quartiles, with the me-
dian and average indicated.�e number to the le� of each bar shows the im-
provement in battery usage relative to the “Full Features” scenario. Greater
energy savings can be achieved by reducing the output quality.

 0

 1

 2

 3

 4

 5

 6

 7

 8

HD
Streaming

SD
Streaming

HD
Recording

SD
Recording

Audio
Recording

P
o
w

e
r

(W
)

Average
Median

1.00 1.04 1.10
1.25

15.58

Baseline w/ screen on
Baseline w/ screen off

Figure 2: Power draw of di�erent modes for the media-streaming app (cf.
Table 2).

information like points of interest (POI), at the expense of a larger
power pro�le. As we reduce the number of enabled settings we can
see a drop in energy expenditure along with a decrease in the qual-
ity of routing information. �e “Written Directions” mode draws
on average more than 14× less power than “Full Features”.�e for-
mer’s high variance stems from brie�y using the screen and radio
to search for directions; yet, its average power draw is much smaller
than its counterparts. In exchange, the user has to take notes of the
route before the trip and use them as the only source of information
to reach the destination3 .�e potential savings are very signi�cant,
provided the user accepts the decrease in quality. In this example,
like the ones in previous works, there is a total order in the utility
of the modes that is likely agreeable to all users. As such, two alter-
natives for adaptation can work: as in Odyssey, if the OS knows the
user’s expected lifetime, the OS can request an increase or decrease
in �delity. Alternatively, we can use Application Modes to expose to
users the functionality and expected lifetime of the device in each
mode, for them to choose.

3�is mode was motivated by one of the authors actually having
had to do this one time!

http://osmand.net
http://www.navmii.com

Mode Name Display Settings Routing Settings Program Used
Full Online map tiles and overlays (Mapnik), POIs, compass, polygons CloudMade routing (online) Osmand

Light Screen O�ine vector maps, no POIs, no compass, polygons, day mode (light screen) Osmand routing (o�ine) Osmand
Dark Screen O�ine vector maps, no POIs, no compass, no polygons, night mode (dark screen) Osmand routing (o�ine) Osmand
Audio Only Screen o� Navfree routing (o�ine) Navfree

Written Directions Screen on for browser search, o� a�erwards, no audio Google Maps (online) Browser
Table 1: Alternatives to navigating a four-mile course for the navigation app. Upper modes yield higher-quality routes in exchange for greater resource usage.

Mode Name Encoding Settings File size (MB) Stream transmission? Program Used
HD Streaming 720p video, hi-def audio 158.60 Live streaming via RTSP LiveStream
HD Recording 720p video, hi-def audio 290.1 Upload when recharging SpyCam
SD Streaming 480p video, med-def audio 47.16 Live streaming via RTSP LiveStream
SD Recording 480p video, med-def audio 183.4 Upload when recharging SpyCam

Audio Recording Audio only, screen o� 0.58 Upload when recharging Sound Recorder

Table 2: Functionality alternatives for the media-streaming app, varying encoding quality and immediacy.

 0

 1

 0 0.5 1 1.5 2 2.5 3 3.5

U
ti
lit

y

Average Power (W)

A
u

d
io

-r
e

c

S
D

-r
e

c

H
D

-r
e

c

S
D

-s
tr

H
D

-s
tr

User A
User B

Figure 3: Utilities for the streaming modes for two users. ‘A’ prefers high-
quality capture, whether streamed or recorded, whereas ‘B’ values immedi-
acy over quality.�e Pareto frontiers (the dashed lines) are di�erent, and no
single policy can choose between “SD Streaming” and “HD Recording” for
all users.

Media Streaming Our second example is an audio and video stream-
ing application which, as navigation, is widely used, leverages di�er-
ent hardware resources, and has interesting trade-o�s.

We consider the power draw of capturing and transmitting a �ve-
minute video feed using three similar applications. We performed
measurements on di�erent settings of the LiveStream, SpyCam4 and
MIUI Sound Recorder5 apps using the aforementioned setup. We
modify their functionality by selecting parameters for the video and
audio encoding and for when to upload the captured media. We
consider �ve basic sets of settings (Table 2), choosing whether to
stream or record for later upload, and whether to encode video in
high de�nition, standard de�nition, or audio only. Once again, these
settings are not transparent to the user, and make speci�c trade-o�s
between quality and timeliness of the uploaded media.

Figure 2 shows the power draw of eachmode.�e “Audio Record-
ing”modedraws on average over 15× less power than the “HDStream-
ing” mode. “Audio Recording” generates the least number of bytes,
does not use the screen, camera, or video-encoding hardware, and
does not include the transmission energy, as this is done only when
the device is recharging.
Figure 3 shows the samemodes, with a numerical utility for hypo-

thetical users (which could even be the same user in di�erent con-
texts). User ‘A’ is interested in obtaining high-quality video, whereas
user ‘B’ values immediacy.�e graph shows that the Pareto frontiers
for the two users are very di�erent, and that there is no consistent
ordering of the modes, particularly between HD recording and SD
streaming.�is example highlights that neither the OS nor the ap-
plication can know a priori the utility of the modes for each user.
In this case, and in general when there are multiple dimensions that
di�erent users value di�erently, the automatic selection of a mode
breaks down.

4http://dooblou.blogspot.com
5http://github.com/MiCode/SoundRecorder

3. THE USER NEEDS TO DRIVE
In this sectionwe argue why the user, the applications, and theOS

must all be involved in limiting the active demand of mobile devices
to achieve maximum value out of a limited energy budget.

1.�e OS cannot always know the resource priorities of all ap-
plications. If an application is consuming too much energy, the OS
could limit the resources o�ered to it, such as CPU time, bandwidth,
or access to precise location. Robust applications should sustain such
reductions and adapt. However, such arbitrary reductions can be
frustrating to the user, as the value of di�erent functionalities to her
may be hard to predict.�is is exacerbatedwhen there are alternative
reductions. If the OS decides that a videoconferencing application
is spending too much energy, it could reduce its CPU or network
allocation, but cannot know which will lead to a more acceptable
degradation to the user.

2.Applications cannot always know the functionality priorities
of the end-user.Applications are in a better position than the OS to
make such decisions, but they may still not know the user’s pref-
erences. As the video example in the previous section highlights,
there may be no total ordering of the modes in an application, so
that the application developer cannot determine the modes in the
Pareto frontier for a speci�c user. In this case, it is only the user who
can determine the relative value of the alternatives, as just knowing
the user’s desired battery lifetime is not su�cient to maximize the
utility automatically.

3. Users should choose at the right level, trading o� functional-
ity versus lifetime. Although many existing systems could involve
the user, most require too much knowledge at the wrong level of
abstraction. �e user should only have to know about high-level
functionality and device lifetime, and not be concerned about which
components of the phone even exist. A user wanting her battery to
survive a 12-hour �ight should not need to understand or even spec-
ify the screen brightness, CPU frequency, scheduling algorithm, or
theWiFi data rate of her smartphone to ful�ll her needs.�e phone
should hide these trade-o�s from the user whenever possible. Pop-
ular solutions for end-user energy management are based on com-
ponents rather than functionality, requiring the user to know the
resource implications of turning o� 3G, GPS, synchronization, or
Bluetooth. Frameworks likeCinder [19], Koala [21], andChameleon [14]
have mechanisms to limit resource usage per application, but su�er
from the same problem – they assume mobile users are likely to be-
come system administrators or programmers of their devices. On
the other hand, other frameworks limit themselves to a single knob,
such as lifetime [10, 27] or a preference between performance and
duration [1], but as we show, in some cases, this is not enough to
maximize utility.

http://dooblou.blogspot.com
http://github.com/MiCode/SoundRecorder

Figure 4: Application Modes abstract complex settings by a single,
functionality-centered concept, and are common in diverse settings: (a) Air-
plane mode on phones, (b) Incognito mode in Chrome, (c) scene modes on
a camera, and (d) driving modes on a semi-automatic transmission.

�e only remaining question is why the OS should be involved
at all, since applications could elicit users’ preferences directly.�e
challenge here lies in the decision of when apps would o�er these
choices, as this requires knowledge of current and future energy
availability. �is functionality may require device-speci�c model-
ing, and should more naturally reside in the OS [6]. Requiring it in
each app entails duplicated developer e�ort, and leads at best to poor
or inconsistent results.�e OS, on the other hand, is in the right po-
sition to provide an energy context to all apps, including pro�ling
and predictions of energy usage and lifetime.

4. APPLICATION MODES
To address the concerns in the previous sections, we have im-

plemented a new abstraction named Application Modes, bundles of
functionality declared by applications to ease the separation of con-
cerns required between applications, the user, and the OS for e�ec-
tive resource management. We borrow the concept of modes from
several commonplace settings (see Figure 4), where they represent
complex settings abstracted by a single functionality-centered, easy-
to-understand concept. Application Modes resemble Chroma [2]
in that very little application knowledge is exposed. Di�erent from
Chroma, users are not oblivious to the decisionsmade by the system,
but actually have an active voice in making the decisions that a�ect
their experience. Application Modes are particularly well suited to
cases where there aremultiple dimensions involved in the users’ im-
plicit preference function, with no total order among them, similarly
to the di�erent shooting modes on a camera, for example.

Power savings are achieved through graceful degradation. Devel-
opers create di�erent modes for an application by selecting sets of
functionalities that entail di�erent application behaviors, as perceived
by the user, in exchange for reduced energy consumption. Graceful
degradation is achieved through variousways: di�erent settings, dif-
ferent algorithms [20], even di�erent programs.
�e central part of the abstraction is a narrow interface between

applications and the OS (see Listing 1). When opened for the �rst
time, applications implementing this interface via a shared library
declare to the OS their supported modes using a label and a user-
friendly description of how each mode a�ects the user experience
(the registerModes() system call). An OS-listening component in-
tercepts this systemcall and saves in its database themetadata passed
as arguments by the application, along with a unique identi�er for
each mode, and the currently selected mode. �e latter is neces-
sary to automatically restore the behavior of applications once they
are reopened. Applications supporting our abstraction promise to
switch to a given mode when instructed by the OS, whereas appli-
cations oblivious to this new API are not a�ected. Table 3 lists a few
mode examples for di�erent apps.

registerModes(List<ModeData>); // system call
setMode(ModeId); // callback

Listing 1: API for data exchange between applications and the OS.

Application Modes represent a meaningful granularity at which
the OS can do pro�ling of energy consumption, and make lifetime

predictions for each one.Applications keep control ofwhat resources
to reduce in order to save power, but leave the decision of when to
do so to the OS, which has detailed knowledge of the energy context
of the entire device, and to the user, who can prioritize application
functions based on her goals.

Battery lifetime and high-level functionality, metrics understand-
able by both users and developers, are used to guide adaptation. In
one possible scenario, theOSnotices that, at the current power draw,
her phonewill exhaust the battery before the next expected recharge.
�e OS then presents to the user a list of running apps, ordered
by power draw. When the user selects an app from the list, the OS
presents an interface similar to that in Figure 5, on which the user
selects a di�erent mode for the app, informed by its description (i.e.,
functionality) and expected impact on battery lifetime. In another
usage scenario, the user is presented with a noti�cation of Applica-
tion Modes support when opening a new program that implements
the API. A�er clicking the noti�cation, an interface similar to Fig-
ure 5 appears, and she explores the trade-o� possibilities. Once a
mode is selected, the OS instructs the application to change its set-
tings using the setMode() callback function. It is the responsibil-
ity of the application developer to instruct her program to correctly
change its behavior according to the mode selection.

Figure 5: Interface to select application modes for a Twitter app.

5. CHALLENGES
For Application Modes to be adopted and maximize energy sav-

ings and user satisfaction, we and the community need to address a
number of important challenges.
Energy Pro�ling and Forecasting �e OS is at the right place to
maintain an energy context for the device. �is includes pro�ling
the energy consumption due to apps, and forecasting the expected
battery life given the current and alternative settings. Pro�ling at
least at the granularity of Application Modes is needed for guiding
developers on how to choose and optimize the modes themselves,
and forecasting is key in telling the user the impact of choosing dif-
ferent modes.�ere has been signi�cant progress in this area [10, 11,
15, 18, 24, 28], but there is still room for more precision, incorpora-
tion of segmented data from large user populations ([17] is a great
start), and better support for sharing and delegating resource usage.
Developer Adoption Application Modes place a burden on devel-
opers, and are only useful if adopted. We are hopeful that there will
be enough interest, given the bene�ts and the fact that some apps al-

Application Full Medium Powersaver
Location Tracking 1m precision, real-time 1m precision, every 15 minutes 50m precision, at least once a day
Navigation 3D map, audio, real-time location 3D map, audio, location near turns 2D map with directions only
Video Upload HD video, real-time upload SD video, real-time upload SD video, upload when charged
Twitter Real-time updates Updates every 5 minutes Updates on demand

Table 3: Example modes for some applications.

Application
Modes

User not
involved

No OS
Support

No App
Support

User + OS + Application
Application Modes, also [1,10]User

A
pp

lic
at

io
n

O
S

User only
ad hoc, guesswork

App + User [23]
Duplicated effort by developers
App has limited exposure to
hardware variations

Application only [e.g., Dropbox]
No user involvement, may go
against user preferences, may
be too conservative.

OS + User [14,17,21]
Coarse-grained: no app semantics

OS only [3,4,7]
Limited possible gains:
no user preferences,
no app semantics

OS + Apps [2,12,13,19,22,26,27]
No user preferences,
limited in some cases.

Figure 6: Design space of power-management solutions based on whether
there is involvement or support from the user, the application, or from the
OS. Application Modes elicit preferences from the user, using lifetime pre-
dictions from the OS, and functionality descriptions from the application.

ready change their behavior in response to the context. Dropbox on
Android, for example, has an automatic photo-upload option, and
disables the feature if the battery is low.WithApplicationModes, the
developer would not have to write code to make sense of the battery
context. As per the previous paragraph, developers need accessible
energy pro�ling, as it is only by measuring the impact of design de-
cisions that a developer will make informed decisions to e�ectively
create modes. Lastly, the developer needs guidelines to not create
too many modes, modes that do not a�ect perceived app behavior
or expose too much detail. As in Chroma [2], we expect the num-
ber of relevant energy-saving optimizations from applications to be
small.
Limiting User Involvement Changes to the end-user experience
should be as little intrusive as possible. While user input is required
in many situations, the OS and applications should autonomously
act upon energy-related decisions asmuch as possible, throughmod-
els, services, and pro�les, only escalating what is really important.
Con�ict Detection and Resolution Since most current mobile de-
vices support multitasking, two ormore apps could have con�icting
modes. If two apps use the radio, having only one of thempromising
not to is of no use.�e OS should have a mechanism to detect and
resolve such con�icts, with possible involvement of applications and
ultimately of end-users. Another source of con�icts are global set-
tings not associated with any apps: a user setting the screen bright-
ness is one example.
Other Resources �e concept of Application Modes may apply to
contexts other than energy, such as data usage and privacy. Related
to previous challenges, the interaction andpotential con�icts of these
modes, and the possibility of an explosion of their number are im-
portant challenges we should address.

6. RELATED WORK
We build upon a large body of previous work that explores sup-

port from subsets of the user, the application, and/or the OS for

power management. We structure our discussion around Figure 6,
which lays out this space and points to representative works on each
subset. ApplicationModes lie in the common intersection, judiciously
involving applications, the OS, and the user when necessary.

Starting from OS-only support, ACPI-related and CPU voltage-
and frequency-scaling techniques, alongwithTailEnder [3] andCat-
Nap [7], try to automatically determine a global machine behav-
ior and estimate its best con�guration in light of energy savings. In
some speci�c occasions, they can be con�gured by users, although
it is not always clear how these global settings will a�ect individual
application functionality and energy-saving promises. Commercial
OSes also have measures for reducing active demand, such as Win-
dows Phone 7.5’s Battery Saver Mode, which disables background
processes and lowers the screen brightness when the battery charge
drops below a certain level, orApple iOS’s disallowing of background
processes as a global policy. As a research prototype, Llama [4] is an
adaptive energy-management system formobile devices thatmatches
energy consumption with user behavior via probabilistic adapta-
tion of system settings based on expected recharge time. Our work
supplements Llama by integrating both user and applications in the
adaptation process. In all these cases, because the OS lacks semantic
knowledge of the application, the obtained savings are limited.

In the absence of OS and application support, users are forced to
guess which settings, behaviors, or apps correlate with energy us-
age, having sometimes to understand speci�c implementation and
hardware details. �e OS can cooperate with the user by o�ering
more visibility and obtaining hints about desired behavior, such as
lifetime.We include here independent user-level services that mon-
itor other running applications. Examples include Koala [21] and
Carat [17]. Carat uses crowd-sourced usage data to suggest energy
savings based on the device’s state and past usage of similar devices,
and presents the expected improvement in battery life if the user
kills each of the currently running apps. ApplicationModes provide
an interesting complement by increasing the granularity of possible
user actions, as she can choose to change their functionality rather
than just terminating them.

Some applications attempt to optimize their energy use without
support from the OS or input from the user. Beyond development-
time pro�ling (e.g., [15]), some developers change the behavior of
the app depending on the battery level, like the Dropbox example
in §5.�ese applications may not have an obvious choice, though,
without user input, when there are di�erent changes in function-
ality in the Pareto frontier (cf. §2). Not surprisingly, some apps do
involve the user. Sygic [23] is a voice-guidedGPSnavigation app that
o�ers users distinct modes of operation based on di�erent power-
management pro�les. While this approach is bene�cial, not involv-
ing the OS has drawbacks. In the best case, there is a severe duplica-
tion of e�ort by independent developers, and in the worst case these
apps will make suboptimal decisions, given the lack of coordination
and the diversity of platforms on which they run.

Despite an initial e�ort to involve the user in energy-aware deci-
sions [10], many recent solutions have focused on the energy-saving
cooperation of the OS and app developers, perhaps to avoid alienat-
ing the user. A-States [12] are similar to Application Modes as they
propose a narrow interface between apps and the OS to enable the
coordination of power-savingmeasures without exchanging seman-

tic data. Our work di�ers in that we involve the end-user in the
decisions, as the desirability of di�erent modes, in our setting, is
not monotonic, but can exhibit user-speci�c trade-o�s. Eon [22]
and Energy Levels [13] provide programming abstractions and run-
times to predict resource usage in wireless sensor networks (WSNs)
and to automatically meet lifetime goals by deactivating or adapting
parts of an application. Resource-usage prediction is facilitated by
the single-threaded environment and periodic behavior ofWSN ap-
plications. Users are likely the developers, who possibly understand
the innards of such a complex system and there are almost no con-
cerns about usability. AlthoughApplicationModes provide a similar
abstraction and runtime, our focus is onmulti-tasked, quasi-acyclic
mobile applications that involves non-expert users.

Android’s wakelocks also focus on this type of cooperation by al-
lowing the kernel and user-space apps to control hardware suspend-
ing via reference counters to speci�c system components. To avoid
races between suspend and wakeup events, all user-space processes
need to be aware of the wakelocks interface. �is is acceptable for
Android, but not applicable to other Linux-based systems [26]. De-
velopers have proposed alternatives to wakelocks for the mainline
Linux kernel. Runtime PowerManagement6 is similar to wakelocks,
but is restricted to driver interaction with I/O devices. Autosleep7 is
a direct substitute which reuses components present in themainline
kernel. Applications could take advantage of both functionalities to
cooperatewith device drivers andprovide hints onwhen to suspend.
�ere are very few works that, like ours, involve support from the

three camps. Aside from Flinn and Satyanarayanan’s energy-related
extensions to Odyssey [10], Ghosts in the Machine [1] suggest giv-
ing the OS more visibility on the power state of I/O devices. Ap-
plications are adapted to issue hints to the device’s power manager
about their execution and help set the right power state, resulting
in performance and energy-conservation improvements. Users ex-
press �delity desires using a single unit-less knob that prioritizes
performance or energy savings. While it is fundamental to limit the
amount of input from the user, the diversity of mobile apps in our
context makes this single dimension too restrictive to express user
preferences, as di�erent users will have preferences in the Pareto
frontier that are not obvious to the developer or to the OS.

7. CONCLUSION
Application Modes enable the cooperation of the OS, applica-

tions, and users for e�cient energy management in mobile devices.
�e user’s only concerns are about di�erences in functionality and
their impact on battery life. ApplicationModes are particularly well
suited to cases in which there are multiple dimensions involved in
the users’ implicit preference function, with no total order among
them. Applications provide the OS with discrete modes that express
graceful degradation in face of limited energy. Further, the OS cen-
tralizes all of the knowledge and models about the current and fu-
ture energy contexts, removing this burden from apps. We plan to
use our abstraction and interface prototype for Android to instru-
ment more applications, and conduct full-platform powermeasure-
ments on real devices.�e real measure of success for an interface
is adoption, and we plan on conducting user studies with both de-
velopers and end-users.

Acknowledgments We thank Prabal Dutta, Srikanth Kandula, Deepak
Ganesan, Shriram Krishnamurthi, Jonathan Mace, the anonymous review-
ers, and our shepherd, Landon Cox, for their feedback. Marcelo was funded
in part by a generous gi� from Intel Corporation.

6http://lwn.net/Articles/347573
7http://lwn.net/Articles/479841

8. REFERENCES
[1] M. Anand, E. B. Nightingale, and J. Flinn. Ghosts in the machine:

Interfaces for better power management. InMobiSys’04.
[2] R. K. Balan, M. Satyanarayanan, S. Y. Park, and T. Okoshi.

Tactics-based remote execution for mobile computing. InMobiSys ’03.
[3] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani.

Energy consumption in mobile phones: a measurement study and
implications for network applications. In IMC’09.

[4] N. Banerjee, A. Rahmati, M. D. Corner, S. Rollins, and L. Zhong.
Users and batteries: Interactions and adaptive energy management in
mobile systems. In Ubicomp’07.

[5] L. A. Barroso and U. Hölzle.�e case for energy-proportional
computing. Computer, 40(12):33–37, 2007.

[6] D. Chu, A. Kansal, J. Liu, and F. Zhao. Mobile apps: It’s time to move
up to CondOS. In HotOS’11.

[7] F. R. Dogar, P. Steenkiste, and K. Papagiannaki. Catnap: Exploiting
high bandwidth wireless interfaces to save energy for mobile devices.
InMobiSys’10.

[8] C. S. Ellis.�e case for higher-level power management. In HotOS’99.
[9] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan,

and D. Estrin. Diversity in smartphone usage. InMobiSys’10.
[10] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile

applications. In SOSP’99.
[11] W. Jung, C. Kang, C. Yoon, D. Kim, and H. Cha. Appscope:

Application energy metering framework for Android smartphone
using kernel activity monitoring. In USENIX ATC’12.

[12] A. Kansal, J. Liu, A. Singh, R. Nathuji, and T. Abdelzaher.
Semantic-less coordination of power management and application
performance. In HotPower’09.

[13] A. Lachenmann, P. J. Marrón, D. Minder, and K. Rothermel. Meeting
lifetime goals with energy levels. In SenSys’07.

[14] X. Liu, P. Shenoy, and M. D. Corner. Chameleon: Application-level
power management. IEEE Trans. on Mob. Comp., 7(8), 2008.

[15] R. Mittal, A. Kansal, and R. Chandra. Empowering developers to
estimate app energy consumption. InMobiCom’12.

[16] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn,
and K. R. Walker. Agile application-aware adaptation for mobility. In
SOSP ’97.

[17] A. J. Oliner, A. P. Iyer, E. Lagerspetz, S. Tarkoma, and I. Stoica. Carat:
Collaborative energy debugging for mobile devices. In HotDep’12.

[18] A. Pathak, Y. C. Hu, and M. Zhang. Fine grained energy accounting
on smartphones with eprof. In EuroSys’12.

[19] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and
N. Zeldovich. Energy management in mobile devices with the Cinder
operating system. In EuroSys’11.

[20] M. Satyanarayanan and D. Narayanan. Multi-�delity algorithms for
interactive mobile applications.Wirel. Netw., 7(6).

[21] D. C. Snowdon, E. Le Sueur, S. M. Petters, and G. Heiser. Koala: A
platform for OS-level power management. In EuroSys’09.

[22] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D. Corner, and
E. D. Berger. Eon: A language and runtime system for perpetual
systems. In Sensys’07.

[23] Sygic. GPS navigation for smart phones. http://www.sygic.com.
[24] K. N. Truong, J. A. Kientz, T. Sohn, A. Rosezwieg, A. Fonville, and

T. Smith.�e design and evaluation of a task-centered battery
interface. In Ubicomp’10.

[25] N. Vallina-Rodriguez, P. Hui, J. Crowcro�, and A. Rice. Exhausting
battery statistics: Understanding the energy demands on mobile
handsets. InMobiHeld’10.

[26] R. J. Wysocki. Technical background of the Android suspend blockers
controversy. http://lwn.net/images/pdf/suspend_blockers.pdf .

[27] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. ECOSystem:
Managing energy as a �rst class operating system resource. In
ASPLOS-X’02.

[28] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang. Accurate online power estimation and automatic battery
behavior based power model generation for smartphones. In
CODES+ISSS’10.

http://lwn.net/Articles/347573
http://lwn.net/Articles/479841
http://www.sygic.com
http://lwn.net/images/pdf/suspend_blockers.pdf

	Introduction
	Motivation
	The User Needs to Drive
	Application Modes
	Challenges
	Related Work
	Conclusion
	References

