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Abstract
The analogy between types and contracts raises the question
of howmany features of static type systems can be expressed
as dynamic contracts. An important feature missing in prior
work on contracts is parametricity, as represented by the
polymorphic types in languages like Standard ML.
We present a contract counterpart to parametricity. We

explore multiple designs for such a system and present one
that is simple and incurs minimal execution overhead. We
show how to extend the notion of contract blame to our
definition. We present a form of inference that can often
save programmers from having to explicitly instantiate many
parametric contracts. Finally, we present several examples
that illustrate how this system mimics the feel and properties
of parametric polymorphism in typed languages.

Categories and Subject Descriptors D.2.4 [Software /
Program Verification]: Programming by contract

General Terms Languages, Reliability

Keywords Contracts, polymorphism, parametricity

1. Motivation and Introduction
Because most dynamic languages lack static type systems,
dynamically-enforced contracts [17] play an invaluable role
in both documenting and checking the obedience of pre- and
post-conditions. Even in languages with static type systems,
they enable the statement of richer conditions than the type
system can capture. Indeed, as of 2007-01-26, contracts are
the most requested addition to Java. Assertions are, likewise,
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particularly popular in C programs. In fact, 60% of the C and
C++ entries to the 2005 ICFP programming contest [5] used
assertions, even though the software was produced for only
a single run.
Designing a good contract system is non-trivial. For in-

stance, without care, contract systems can easily be unsound
in the presence of language features such as subtyping [8].
Furthermore, in higher-order languages, it can often be sub-
tle to properly ascribe blame to the faulty component [6].
Despite these difficulties, contracts have grown into sig-
nificant specification systems for non-trivial languages, in-
cluding C [26], C++ [23], C# [16], Haskell [12], Java [14],
Perl [2], Python [22], Scheme [24], and Smalltalk [1].
Where type systems provide static proofs, contracts pro-

vide a corresponding notion of dynamic falsification. The
growing importance of contracts begs the question of how
far we can push the correspondence between contracts and
types. Prior work has already shown the correspondence
for base types, subtyping and higher-order functions [6, 8].
There is, however, no clear contract counterpart for parame-
terized types.

Parameterized Types Programmers who use Standard
ML [19] are already familiar with parameterized types, but
so are users of other languages. For example, Java’s Gener-
ics permit parameterized types:

public interface List<E> {
void add(E x);
Iterator<E> iterator();

}

Similarly, C++ templates are widely used in the C++ STL to
define generic data structures.
While their presence in other programming languages is a

useful indicator of their value, all these uses are in languages
that already have static type systems. Does an analog of
parametrized types make sense in a latently-typed, dynamic
language?



Parameterization for JavaScript Consider the implemen-
tation of Flapjax [9], a new programming language for im-
plementing contemporary Web applications. It is built as a
large library written in JavaScript, and can therefore be de-
ployed directly in existing browsers. A central tenet of Flap-
jax is the notion of behaviors [4]. These are values that vary
over time; when a behavior changes, all values that depend
on it update automatically, providing a form of higher-order
dataflow programming. This enables the concise and declar-
ative expression of sophisticated Web applications.
One key function in the Flapjax implementation is lift.

This transforms a pure JavaScript function to accept a be-
havior as an argument and produce a behavior as a result.
Operationally, when the value of the input behavior changes,
it recomputes the result and updates the value of the output
behavior. Thus (a simplification of) its type, using a Haskell-
like type syntax, would be:

lift :: forall a b. (a -> b) -> Beh a -> Beh b

Note that lift does not care about the actual values that the
function a -> b consumes and produces. It simply sends
the values of the behavior Beh a into the function, and up-
dates the value of Beh bwith the results of the function. The
type variables a and b (where the forall indicates universal
quantification) reflect both this agnosticism and expectation
of consistency: the fact that they are type variables indicates
the agnosticism, while the pattern of repeating a and b dic-
tates the expectation of consistency.
Another, more subtle, function in the Flapjax implemen-

tation is switch, which is used to implement conditionals
(amongst other things). This function consumes a behavior
carrying behaviors, and returns a behavior—but is agnostic
to the values carried by the inner behaviors. Therefore, we
may ascribe it the following type:

switch :: forall a. Beh (Beh a) -> Beh a

It is easy to abuse this function by passing it a behavior that
does not always carry behaviors. The lack of any static typ-
ing in JavaScript means that we can only check this property
at runtime. Moreover, this property cannot be checked and
dispatched only when switch is applied; it must instead be
checked every time the value of the argument changes to en-
sure it is still a behavior. Furthermore, when there is an error,
it should be ascribed to programmer code, not to the library
that implements Flapjax.

Parametric Contracts To document such functions, it
would clearly be useful to have parameterized contracts of
the form (forall (α . . . ) C), where the identifiers α . . . may
occur free in the contract C. We could then write the con-
tracts for our two introductory examples above as

(forall (a b) ((a→ b)→ ((Beh a)→ (Beh b)))) ; lift
(forall (a) ((Beh (Beh a))→ (Beh a))) ; switch

Parametricity However, (forall (α . . . ) C) is merely nota-
tion that may be interpreted in a number of ways. We wish

to interpret such contracts as parametric contracts, in the
spirit of relational parametricity [25], which is a property of
languages such as Standard ML. (We limit our attention to
first-order polymorphism, as we are interested in inferring
contracts using techniques inspired by the Hindley-Milner
type system [18].)
As Wadler has shown [28], relational parametricity pro-

vides strong guarantees about functions just from their types.
Informally, if a function f accepts an argument of type α,
parametricity ensures that the argument is abstract to f—the
argument may not be examined or deconstructed by f in any
way. Moreover, f may not determine the concrete type of α.
This seemingly harsh restriction in fact allows rich abstrac-
tions. Since values of type α are abstract to f , a programmer
may change the concrete type of α and be assured that the
behavior of f will not change. Therefore, we want contracts
of the form (forall (α . . . ) C) to preserve the static notion of
parametric polymorphism1 at runtime. Such contracts will
implement—that is to say, detect violations of—relational
parametricity. Furthermore, we will want to ensure we can
correctly blame components when parametricity is violated.

Shortcomings Two important caveats are in order. First,
implementing contracts that work with mutation is subtle,
especially in the presence of polymorphism;we do not tackle
this problem.We also assume that polymorphic functions do
not use continuations. When applying contracts to lists (or
the user-defined data structures of PLT Scheme), these lists
must be immutable. There have recently been proposals to
make lists immutable by default in both PLT Scheme and the
Scheme standard, based on the experience that mutable lists
are, in fact, rarely mutated. Therefore, we do not consider
this assumption to be unreasonable. The second caveat is that
we do not formally prove that our system ensures relational
parametricity; this is left open for future work.

Status The work in this paper has been implemented for
PLT Scheme and JavaScript. We will use the Scheme ver-
sion for the presentation, mainly because Scheme’s nota-
tional extensibility enables us to provide most of the imple-
mentation in the paper, including the syntactic conveniences.
Near the end, we will briefly discuss the JavaScript imple-
mentation. We make extensive use of these contracts in the
Flapjax implementation where, for instance, the blame facil-
ities described in section 5 have proven immensely useful,
especially in face of the poor debugging support currently
on offer for JavaScript.

2. Background: Contracts
In this paper we use two models of contracts. The first
model (section 2.1), which represents contracts as functions,
is sufficient for describing most of the work in this paper.
Recent research has, however, shown that a model based on

1 In the rest of this paper, we will frequently elide the modifiers relational
and parametric.



a pair of functions provides a better account of how contracts
ascribe blame.We present this model in section 2.2. Because
this model is used only in section 5, most readers may safely
ignore it on their first reading.

2.1 A Simple Model of Contracts

A flat contract simply applies its predicate to each value,
raising an error when the test fails:

(define (flat pred)
(λ (val)
(if (pred val)
val
(error "contract violation"))))

A function contract is build from two other contracts, one
for the argument and the other for the result. A function
is guarded by wrapping it in a proxy that applies these
contracts to every argument and result (the initialism ho is
short for higher-order):

(define (ho dom rng)
(λ (v)
(if (procedure? v)
(λ (x) ; the proxy
(rng (v (dom x))))

(error "not a function"))))

Note that the contracts that result from applying flat and
ho accept a value, v, and either signal an error or return
a value that behaves exactly like v. If v is a function, the
returned function may signal errors more often than v, but
otherwise behaves exactly as v.
Because contracts are functions, to guard a value, we

simply apply the contract to the value. For example:

(define guarded-5 ((flat number?) 5)

ensures that 5 is a number, while

(define guarded-increment
((ho (flat? number) (flat? number))
(λ (n) (+ n 1))))

constructs a guarded increment function that ensures both its
input and output are numbers.
When obvious, we will elide (flat pred) to simply write

pred. Additionally, we will write (ho dom rng) using the
more standard infix notation, dom→ rng.

2.2 Contracts as Pairs of Projections

An error projection is a function that returns its argument
unmolested, with the exception that it may signal an error on
some inputs. Note that the contracts of section 2.1 are pre-
cisely error projections. This model is, however, oversimpli-
fied, because it does not track blame. The utility of contracts
hinges on their ability to correctly blame the supplier of an
invalid value.

Findler and Blume [7] present an alternate model of con-
tracts, treating them as pairs of error projections. They are
parameterized over the names of the guarded value and its
context. One projection, the server projection, blames the
guarded value when appropriate. The other projection, the
client projection, blames the context of the guarded value,
when appropriate.
Concretely, we define the contract datatype to have two

fields, for each projection:

(define-struct contract (server client))

This employs PLT Scheme’s support for user-defined records.
It creates a fresh type, which has a predicate, contract?, a
two-argument constructor, make-contract, and the selectors
contract-server and contract-client.2

To apply a contract to value, we define a generic guard
function that accepts a contract, the value to guard, and
names for the guarded value and its calling context:

(define (guard ctc val pos neg)
(let ([server-proj ((contract-server ctc) pos)]

[client-proj ((contract-client ctc) neg)])
(client-proj (server-proj val))))

Consider the combinator flat. flat accepts a predicate,
which it applies to the guarded value, and blames the sup-
plier of the value (the server) if the contract is violated. Note
that flat never blames the context (the client). Therefore, the
client projection is the identity function:

(define (flat pred)
(make-contract
(λ (s) ; name of the server
(λ (v)
(if (pred v)
v
(blame s))))

(λ (s) ; name of the client
(λ (v) v))))

The function contract combinator, ho, is more interesting.
In the client and server projections, ho wraps the incoming
function, val, in order to apply the error projections of the
domain and range contracts. If the argument to val violates
the domain contract, dom, we blame the context. This is
captured by using the server projection of dom in the client
and the client projection of dom in the server. However, if the
supplied value, val, is not a function, ho blames the supplier
(the server) for providing an invalid value.

(define (ho dom rng)
(make-contract
(λ (s)
(let ([dom-c ((contract-client dom) s)]

[rng-s ((contract-server rng) s)])

2 PLT Scheme defines a few other operations as well, but these do not
concern us here.



(λ (val)
(if (procedure? val)
(λ (x) (rng-s (val (dom-c x))))
(blame s)))))

(λ (s)
(let ([rng-c ((contract-client rng) s)]

[dom-s ((contract-server dom) s)])
(λ (val)
(if (procedure? val)
(λ (x) (rng-c (val (dom-s x))))
val))))))

This definition of ho only works with unary functions, but
extending it to work with n-ary functions is easy.
To summarize, this contract system consists of three prin-

cipal functions:
flat : (α → bool)→ contract α
ho : contract α × contract β

→ contract (α → β)
guard : contract α × α × sym × sym→ α

3. Two Attempted Solutions
To provide some intuition for the problem and for our solu-
tion, we first sketch two approaches to implementing para-
metric contracts. Neither of these will work, but they help
put us on a path to the actual solution. Readers already famil-
iar with the concepts of parametric types and parametricity
might wish to skip directly to the solution in section 4, but
other readers may find that the more gradual development
better builds their understanding.

3.1 Using Substitution

In System F, a value of a universally quantified type, ∀α.τ ,
is a function over types—a type abstraction. A type abstrac-
tion, ΛX.t, accepts an arbitrary type, X , and returns a term
whose type is parameterized over X . We consider here an
approach to parametric contracts that mimics type abstrac-
tion and type application. In particular, we will define (forall
(α . . . ) C) as a function over contracts. Such a function
would accept concrete contracts for the contract variables,
(α . . . ), and substitute them into the contract C. Defining
this function is straightforward, especially with the help of
Scheme’s macros:

(define-syntax forall
(syntax-rules ()
[( (α . . . ) C)
(λ (α . . . ) C)]))

Since we define this analogue of type abstractions as a
Scheme function, type applications are simply applications
to concrete contracts. Hence, if T is a contract, the expres-
sion ((forall (α . . . )C) T) is an instantiation of the quantified
contract (forall (α . . . ) C). If we have a function f guarded
by a parametric contract (forall (α) C), the guarded function
may be written as:

(define (guarded-f ctc)
(((forall (α) C) ctc) f ))

That is, guarded-f , when applied to a contract ctc returns
f guarded by (forall (α) C). Scheme’s module system can
generate this boilerplate code for us. however, we do need to
supply the concrete contract for α at each application.
However, this naive definition of (forall (a . . . ) C) fails to

capture parametricity. Consider the parameterized contract:

(forall (α) α → α)

This contract may be instantiated by applying it to any con-
crete contract. For example, we may instantiate α to num-
ber?:

((forall (α) α → α) number?)

What functions satisfy this contract? Obviously, we may
guard the identity function with this contract, to get the iden-
tity function over numbers. In fact, we may guard the iden-
tity function with the contract ((forall (α) α → α) C), for
arbitrary contracts C. It turns out that there are other func-
tions we can successfully guard with this contract. Consider
the following function:

(define (inc-or-id x)
(if (number? x)
(+ x 1)
x))

This function satisfies the contract ((forall (α) α → α) num-
ber?). (Our current implementation of forall simply substi-
tutes number? for α, which is number?→ number?.) How-
ever, inc-or-id is not parametric and breaks the abstraction
we wish to create. If we change the representation of its
argument—that is, if we instantiate α to a contract that ex-
cludes numbers, inc-or-id behaves as the identity function.
However, if x is a number, inc-or-id behaves as the incre-
ment function. Note that unlike the identity function, inc-or-
id does not satisfy all contracts ((forall (α) α → α) C) for
arbitrary contracts C. For example, let

C=(λ (v) (and (number? v) (= v 5)))

Evaluating (inc-or-id 5) violates the contract.
The problem with inc-or-id ostensibly lies with its use

of reflection (number?). However, consider the following
function:

(define (const-five x) 5)

We may guard const-five with the contract (forall (α) α →
α) as well. As long as α is instantiated to a contract that
accepts the value 5, const-five will not violate the contract.
However, the fact that the function fails on any other contract
shows that it is not agnostic to the choice of α, despite being
a seemingly innocuous function.
These two functions readily break the abstraction we

wish to create. However, we cannot exclude them statically,



as we are interested in dynamically typed languages such
as Scheme and JavaScript. Therefore, we need a more ro-
bust implementation of parametric contracts that can enforce
parametricity and fail gracefully when a function attempts
to violate parametricity.

3.2 Using Identity

Given an ML function with type ∀α.τ1 → τ2, an intuitive
understanding of parametricity states that the function can-
not inspect or construct values of type α. This suggests that
we should try to use the identity of values by recording them
at entry and checking them at egress. It is natural to imple-
ment this strategy using, say, a hashtable to store these val-
ues. That is, if f were guarded by the contract (forall (α) α
→ α), we’d create a hashtable for the contract α; arguments
guarded by α would get added to the hashtable and results
guarded by α would be checked to ensure they were in the
hashtable.
PLT Scheme used to provide a mechanism to do this,

known as anaphoric contracts:

(provide/contract ;; written in PLT Scheme v209
(f (let-values ([(αin αout) (anaphoric-contracts)])

(αin → αout))))
(define (f x) x)

αin and αout are a pair of contracts representing a source
and a sink. This pair shares a common hashtable, which they
use to track the flow of values.
Now consider the type ∀α.(α → α) × α → α. The

following function satisfies this type:

(define (app1 f x)
(f x))

Using the hashtable approach, we may try to construct the
corresponding contract:

(provide/contract
(app1 (let-values ([(αin αout) (anaphoric-contracts)])

((αin → αout) αin → αout))))

Though this may look intuitively correct (the same α guards
the x and the argument position of f ), it does not correctly
capture the intended semantics at all. We want to ensure that
all the values that flow into the argument position of f came
via x, and those returning from app1 are from the result of
f . To clarify these connections, we can introduce a pair of
contract pairs:

(provide/contract
(app1 (let-values ([(αin αout) (anaphoric-contracts)]

[(βin βout) (anaphoric-contracts)])
((αout → βin) αin → βout))))

While this correctly captures the local flows of values, it has
now lost the connection expressed in the type: namely, that
the type of the value that f consumes is the same as the type
of value that it produces. This leads to another revision:

(provide/contract
(app1 (let-values ([(αin αout) (anaphoric-contracts)])

((αout → αin) αin → αout))))

This use of contracts properly represents the desired rela-
tionship. The key idea here—that values produced must be
the same as the values consumed—is significant, and rep-
resents what we want to ultimately capture. It is, however,
clear that this particular implementation strategy has several
problems:

• First, it is unreasonable to demand this level of dataflow
analysis on the part of the programmer; we would prefer
to write a specification similar to the type and leave it to
the system to generate these connections.

• Second, the run-time cost associated with this implemen-
tation was frequently onerous.

• Third, in languages that do not permit equality compar-
ison of higher-order values, this strategy cannot be used
at all.

• Fourth, the equivalent of instantiating a polymorphic
function must be performed manually.

In fact, anaphoric contracts can’t even capture the relation-
ships we can express using a proper definition of parameter-
ized contracts instantiated with the any contract, as shown in
section 7.4.

4. Parametric Contracts (At Last)
Our approach to parametric contracts will define (forall (α
. . . ) C) as a function over contracts, in the spirit of sec-
tion 3.1. Hence, it will be necessary to supply concrete con-
tracts for the variables (α . . . ) at each usage point. Our earlier
definition of forall as a function permitted non-parametric
functions. We will rectify this by borrowing ideas from
anaphoric contracts.
Anaphoric contracts tried to ensure that α-values pro-

duced by a guarded function were those α-values sent as
arguments to the function. It did so by relying on pairs of
in and out contracts that were used in consumer and pro-
ducer positions. We will employ this technique to guarantee
this desired property.
Our approach will be to wrap α-values consumed by a

function in an opaque container and subsequently unwrap
α-values that are produced by the function. We call such
opaque containers coffers, which we can define as a record:

(define-struct coffer (value))

Using the module system, we can make the functions cof-
fer?, make-coffer and coffer-value unavailable to user code,
making coffers truly opaque.
Since we can make values opaque, given a contract α, we

can simultaneously define wrapper-unwrapper pairs:

(define-struct parametric-pair (wrapper unwrapper))
(define wrapper parametric-pair-wrapper)



(define unwrapper parametric-pair-unwrapper)

(define (make-parametric α)
(make-parametric-pair
(λ (val)
(make-coffer (α val) ))

(λ (opaque-val)
(if (coffer? opaque-val)
(coffer-value opaque-val)
(error "expected a coffer")))))

This definition actually accomplishes two different things.
The use of coffers implements parametricity by preventing
the contracted function from examining val. It also imple-
ments parameterization by checking (in the boxed expres-
sion) that the calling context supplies values that obey α.
Excluding one of these features results in a more relaxed
notion of contracts. Using only coffers ensures only that
the contracted expression behaves parametrically, while em-
ploying just the application ofα ensures only that the context
supplies values that match α.
This definition yields a pair of contracts, but does not

stipulate how to use them. Recall that anaphoric contracts
required the programmer to explicitly insert in and out con-
tracts appropriately. For parametric contracts, we will me-
chanically insert wrapping and unwrapping contracts. Note
that in the contract α → α, the α to the left of the arrow
guards arguments to the function, and hence wraps values.
The α to the right of the arrow guards results, and hence
unwraps values. Now, consider the contract (α → α) → α.
Here, the leftmost α unwraps arguments it receives from the
guarded function. The center α guards results that are re-
turned to the function, so it must wrap them. The rightmost
α guards the result of the function, which it must unwrap.
At each nesting level of →, the wrapper and unwrapper

swap positions. Alternatively, an α to the left of an even
number of arrows (positive position) is always an unwrapper.
An α to the left of an odd number of arrows (negative
position) is always a wrapper. (These positions correspond
exactly with positive and negative blame assignment. We
will exploit this correlation later when we add support for
blame.) For now, we define forall using an auxiliary macro
that tracks positive and negative positions:

(define-syntax forall
(syntax-rules ()
[( (var . . . ) contract)
(λ (var . . . )
(let ([var (make-parametric var)] . . . )
(forall-aux (var . . . ) contract #f)))]))

The boolean argument to forall-aux is true when it is wrap-
ping values and false when it is unwrapping values:

(define-syntax forall-aux
(syntax-rules (→) ;; treat→ as a keyword
[( (α . . . ) (→ dom rng)#t)

(ho (forall-aux (α . . . ) dom #f)
(forall-aux (α . . . ) rng #t))]

[( (α . . . ) (→ dom rng)#f)
(ho (forall-aux (α . . . ) dom #t)

(forall-aux (α . . . ) rng #f))]
[( (α . . . ) ctc #t)
(let ([α (wrapper α)] . . . )
ctc)]

[( (α . . . ) ctc #f)
(let ([α (unwrapper α)] . . . )
ctc)]))

This setup for parametric contracts is almost correct.
Consider, however, the contract (forall (α β) (α β → α)).
The following function fails to satisfy this contract:

(define (f x y) y)

However, if we instantiate α and β to the same contract,
the function is admitted. For example, if both variables are
instantiated to number?, the expression (f 5 10) evaluates to
10, even though f did not consume an α-value 10.
We fix this by having each instance of make-parametric

create a new coffer. This is easily accomplished in PLT
Scheme:

(define (make-parametric α)
(define-struct coffer (value))
(make-parametric-pair
(λ (val)
(make-coffer (α val)))

(λ (opaque-val)
(if (coffer? opaque-val)
(coffer-value opaque-val)
(error "expected a coffer")))))

This redefinition exploits the fact that structures in PLT
Scheme are generative; that is, each define-struct makes
a new type. By placing the structure definition inside the
function, the coffers from different invocations of make-
parametric cannot be commingled. In a language without
this facility, the implementation would need to simulate the
generativity by, for instance, having an extra tag in the coffer
structure that records which instance it represents.
This clarifies why the previousmake-parametricwas “al-

most correct”: it failed to keep different instances of con-
tract variables separate. We now have truly opaque values,
since we can distinguish concrete values that are identical
but guarded with different contracts.
Note that we have defined parametric contracts as func-

tions over contracts. Therefore, we do not guard values with
parametric contracts per se; we guard values with the con-
tracts that result from applying parametric contracts. For ex-
ample, consider the contract (forall (α) (listof α) → (listof
α)). Suppose we wish to guard the reverse function with this
contract, and call the result c-reverse. The most natural way
to do so is to let c-reverse accept the concrete contract for α
as an additional, curried argument:



(define (c-reverse ctc)
(((forall (α) (listof α)→ (listof α)) ctc)
reverse))

c-reverse applies ctc to the parametric contract. The resultant
contract is applied to reverse (as in section 2.1). This code is
rather onerous; fortunately, it can be generated automatically
using the macro system [10]. When applying a function
guarded by a parametric contract, however, programmers
must supply concrete contracts for the contract-variables.
One design decision involves the application of type-

predicates (number?, string?, etc.) to wrapped values. By
default, applying a primitive Scheme type-predicate to a
wrapped value will return false, as each coffer is a new type.
This changes the behavior of certain programs.
Consider inc-or-id that we encountered in section 3.1.

We guarded this function with (forall (α) α → α), with α
instantiated to number?. Evaluating (inc-or-id 5) wraps the
argument, so (number? x) evaluates to false, and inc-or-id
behaves as the identity function on numbers. It is reasonable
to claim that since x is guarded by a parametric contract,
we should never have attempted to determine its type—
that is, applying a type-predicate to a wrapped value should
raise an error. We can implement this behavior by defining a
language [10] where the type predicates raise an error when
applied to wrapped values, and behave as they do in Scheme
on other values.
This completes the description of parametric contracts,

but so far we have not yet given an account of lifting the
notion of blame to the parametric context.

5. Parametric Contracts with Blame
We now complete our presentation of parametric contracts
by adding blame-tracking. For this, we adopt the pair-of-
projections model summarized in section 2.2. We begin by
encoding the wrapper and unwrapper contracts produced by
make-parametric as pairs of error projections. The template
for doing so is:

(define (make-parametric α)
(define-struct coffer (value))
(make-parametric-pair
(make-contract ; wrapper
(λ (s)
(λ (v) ; server projection
. . . ))

(λ (s)
(λ (v) ; client projection
. . . )))

(make-contract ; unwrapper
(λ (s)
(λ (v) ; server projection
. . . ))

(λ (s)
(λ (v) ; client projection

. . . )))))

Consider the wrapper contract. Note that it is only used
in positive positions. In positive positions, the guarded value
is produced by the context. Hence, for a wrapper the name
s names the context in its server projection and the guarded
function in its client projection. The task of the wrapper is
to apply the concrete contract α, which itself consists of a
server and a client projection. Hence, we apply each of α’s
projections in each projection of the wrapper:

(make-contract ; wrapper
(λ (s)
; server projection
; (parameterized over context’s name)
(λ (v)
(make-coffer (((contract-server α) s) v))))

(λ (s)
; client projection
; (parameterized over function’s name)
(λ (v)
(if (coffer? v)
(make-coffer
(((contract-client α) s)
(coffer-value v)))

v))))

Now consider the unwrapper contract. Since the concrete
contract α is applied when values are wrapped, the unwrap-
per simply unboxes values. The only error that may occur is
that the incoming value may not be wrapped. If this is the
case, the guarded function is to blame for producing an in-
valid result. Since unwrappers are only used in negative po-
sitions, the server projection is parameterized over the name
of the guarded function. Therefore, we blame the server (the
guarded function) if the value is not wrapped:

(make-contract ; unwrapper
(λ (s)
; server projection
; (parameterized over the function’s name)
(λ (v)
(if (coffer? v)
(coffer-value v)
(blame s))))

(λ (s)
; client projection
; (parameterized over the context’s name)
(λ (v) v))))

6. Contract Inference
Parametric contracts, as described above, require program-
mers to explicitly instantiate them. This unfortunatelymeans
that programs that make heavy use of parametric functions
get littered with instantiations. Is it possible to offer a more
lightweight technique that infers the contract at run-time, in
the spirit of type inference?



The answer depends on what we consider “the” contract
of a value to be. A language like ML has a partitioned
type system, meaning that every value belongs to precisely
one type. In contrast, because a contract is just a predi-
cate, a value can satisfy many different contracts at once:
for instance, it may be a number, an odd number, and a
prime number. Furthermore, the contracts may not satisfy
any grouping that enables us to choose a canonical element.
Rather than tackle the problem of inference in its general-

ity, we therefore perform inference over the primitive types
of the language, which do provide a partitioning of values.
We believe this is sufficiently useful in many circumstances.
In situations where the programmerwants to instantiate a pa-
rameter with a particular, non-primitive-type, contract, this is
always possible using the mechanism described in section 4.
We implement contract inference by creating an indeter-

minate contract that can be used to instantiate a parame-
terized contract. This contract is stateful: it remembers the
primitive type of the first value is sees, and then checks for
conformity with that type for all subsequent values. For flat
values, this behavior is very simple:

(define (make-var-contract)
(let ([contract #f])
(λ (val)
(unless contract
(cond
[(number? val) (set! contract number/c)]
[(boolean? val) (set! contract bool/c)]
; . . . and similarly for other flat values
[(procedure? val) . . . ]))

(contract val))))

The case for procedures is more interesting. Given that
val is a procedure, all we can do is assert that subsequent
values are procedures as well. However, when val (or a
subsequent value) is applied, we can attempt to infer the
contract on its domain and range. We use a helper function

...
[(procedure? val) (set! contract (make-proc-var-contract))]

...

that is defined as follows:

(define (make-proc-var-contract)
(let ([dom-c (make-var-contract)]

[rng-c (make-var-contract)])
(λ (f )
(if (not (procedure? f ))
(error "contract violation ...")
(λ (x)
(rng-c (f (dom-c x))))))))

This first asserts that the value f is a procedure. Given that
it is, it wraps f to check argument and result. Note that
dom-c and rng-c are shared by all values that a particular

procedure contract is applied to. This ensures that they all
have the same domain and range. (Note the close similarly
to unification, with the indeterminate contracts behaving as
logic variables.)

7. Illustrations
We will work through a few examples of parametric con-
tracts and contract inference to examine the implications of
our definitions.

7.1 Simple Parametric Contracts

Consider the contract (forall (α) α → α), which is based on
the type ∀α.α → α. Parametricity ensures that a value of
this type is either divergent, raises an error, or is the identity
function. We sketch an argument that a value (i.e., the result
of a non-erroneous computation that has terminated) that
satisfies this contract must be the identity function.
It is clear that the identity function satisfies the contract

(forall (α) α → α). Let f be an arbitrary function guarded
by this contract. Consider what f may do with its argument
that is guarded by the contract α. By definition of make-
parametric, parameters to f are wrapped in a coffer repre-
senting α. Since there is no way for f to inspect or construct
new α values, it is clear that f cannot manipulate them.
Now, consider the contract α on the result of f . This con-

tract unwraps values from coffers. Because fresh coffers are
created by each invocation ofmake-parametric, this unwrap-
ping contract accepts only those values wrapped by its dual
wrapping contract. The only source of wrapped α-values is
the argument to f . Hence, if f satisfies the contract (forall (α)
α → α), it must simply return its argument. Hence, f must
be the identity function.
Let’s revisit the inc-or-id function we encountered in

section 3.1. This function is not parametric, but was guarded
by the parametric contract, (forall (α) α → α). When α is
instantiated to number? and inc-or-id is applied to a number,
n, the wrapping contract on the argument x places n in
a coffer. Therefore, the test (number? x) raises an error,
indicating that the program attempted to inspect the type of
an opaque value.
The function inc-or-id attempted to inspect and branch on

a parametric argument. In contrast, recall the function const-
five from section 3.1. We had attempted to guard this func-
tion with (forall (α) α → α) as well. If we instantiate α to a
contract that excludes the value 5, the contract will naturally
be violated. Suppose, instead, α is instantiated to number?.
Since the result is guarded by α, the function is expected
to return a wrapped number. However, const-five returns an
unwrapped number, so applications such as (const-five 7) vi-
olate the contract. In fact, (const-five 5) violates the contract
as well! Although the contract on the argument wraps the
value 5, the function attempts to return an unwrapped 5.



7.2 Unsatisfiable Contracts

Consider the parametric contract (forall (α) α), which is
derived from the type ∀α.α. There cannot be any values of
this type, because no value can satisfy every possible type
(i.e., parametrically, this type is uninhabitable). We show
that no values satisfy the corresponding contract as well.
For simplicity, consider our model of contracts without

blame. By expansion of forall and forall-aux (section 4),
the contract (forall (α) α) is implemented as:

(λ (α)
(let ([α (make-parametric α)])
(unwrapper α)))

The application (make-parametric α) constructs a related
pair of wrapper-unwrapper contracts. The above expression
evaluates to (unwrapper α), so the values of this contract
are those values that (unwrapper α) accepts. (unwrapper α)
only accepts values guarded by its dual, (wrapper α). At
no point in the code is (wrapper α) applied. The contract,
therefore, rejects all values, preserving the property of the
corresponding type.

7.3 Arbitrary Predicate Contracts

The freedom to instantiate forall contracts with arbitrary
contracts is valuable. First, it enables us to specify fine-
grained constraints on values. For instance, let c-reverse be
the reverse function guarded by the contract:

(forall (α) (listof α)→ (listof α))

Since c-reverse is guarded by a parametric contract, it re-
quires a concrete contract for α on each invocation, which it
takes as an extra, curried argument. For example:

((c-reverse string?) ’("xyz" "abc" "123"))
((c-reverse positive?) ’(1 2 3 4))
((c-reverse (odd?→ even?)) (list add1 sub1))

As these examples show, we can specify properties that are
finer-grained than those specifiable in a language like ML.
One of the benefits of contracts is that they can be in-

troduced incrementally to existing programs. Therefore, it is
conceivable that a function guarded with a parametric con-
tract may be invoked by Scheme code that freely uses hetero-
geneous lists and other informal data structures. Program-
mers who can create predicates that capture their data struc-
tures can supply these using explicit instantiation. For exam-
ple, the following instantiation of c-reverse accepts numbers
and false:

((c-reverse (λ (x) (or (number? x) (false? x))))
’(1 #f 3 7))

This is a common idiom for expressing the Int Option type
of ML.

7.4 The any Contract

While incrementally adding contracts, a programmer may
not always be able to express the structure of data in a con-
tract (or may not want to). For instance, consider the het-
erogeneous data structures that are pervasive in traditional
Scheme programs, such as s-expressions. In such cases, the
programmer can use the any/c contract:

((c-reverse any/c)
’((p "paragraph")
(span ([id "block"])
"text")))

In this context the underlying implementation of parametric
contracts still ensures that the function cannot manufacture
values, i.e., it ensures the proper “wiring” of values. It does
not, however, place any stricter restrictions on the nature of
the values. Therefore, any/c providesweaker guarantees than
contract inference (section 6).
There is another use for any/c: it enables a function to

return a wrapped value without unwrapping it. For exam-
ple, consider guarding the identity function with the con-
tract (forall (α) α → any/c). When applied, the argument is
wrapped by the α-wrapper (assuming the argument satisfies
the contract α). The result, however, is not unwrapped, be-
cause the contract is any/c. Therefore, when guarded with
this contract, id returns an opaque, wrapped value.
The data abstraction provided by Scheme’s define-struct

mechanism ensures that this wrapped value cannot be un-
wrapped by code that does not have access to the cor-
responding selector. This would suggest that returning a
wrapped value is useless. The encapsulated value can, how-
ever, be used if it comes with appropriate selectors. For in-
stance, consider the following fragment of code:

(define (make-hide-show rep/c)
(let ([ctc (forall (a) (seq (→ a any/c)

(→ any/c a)))])
((ctc rep/c)
(list
(λ (x) x)
(λ (x) x)))))

where seq is a contract for a heterogenous list. make-hide-
show creates an abstract container that holds values of the
type specified in rep/c, e.g.,

(define hs (make-hide-show (flat number?)))
(define hide (first hs))
(define show (second hs))

Values created by hide can only be opened using the corre-
sponding show, with the invariant that (show (hide n)) = n.
Each application of make-hide-show creates a distinct con-
structor and selector pair that cannot be interchanged. Thus,
this defines an analog to an existential type abstraction [20].



7.5 Contract Inference

The c-reverse function required the programmer to explicitly
specify the concrete contract for α each time c-reverse was
invoked. For example:

((c-reverse number?) ’(1 2 3 4))
((c-reverse prime?) ’(2 3 5 7))
((c-reverse bool?) ’(#t #f #t #t))

Contracts such as prime? must be specified by the user,
but basic contracts such as number? and bool? can be in-
ferred by our system. Consider the following:

(define i-reverse
(c-reverse (make-var-contract)))

Suppose we apply i-reverse to a list of functions:

(define fns (i-reverse (list (λ (x) (+ x 1))
number→string
(λ (x) (× x x)))))

Since the first element of the list of a function, contract in-
ference binds the variable α to the contract α1 → α2, where
α1 and α2 are indeterminate contracts. Since all three ele-
ments of the list are procedures, each function is sucessfully
guarded byα1 → α2. It is important to note that the contracts
α1 and α2 are shared by the three functions.
Suppose we apply the first function, as in, ((car fns) 5).

The value 5 is guarded by α1. Since α1 is indeterminate,
it assumes the number? contract. Similarly, the result 6 is
guarded by α2, which assumes the number? contract. Now,
all three functions are guarded by the contract number? →
number?. Note that the second function, number→string,
does not satisfy this contract. The application ((cadr fns)
5) would thus raise an exception. In particular, the calling
context of reverse would be blamed for supplying a function
that violates the inferred contract.
We do get different results if we first apply the function

number→string, i.e., ((cadr fns) 7). Because the contractsα1

and α2 are indeterminate, they assume the contracts num-
ber? and string? respectively. Therefore, applying (car fn)
and (caddr fn) now violates the contract.

8. Contracts for JavaScript
Due to the pervasive growth of rich-client Web applications,
we have been exploring the adaptation of this contract library
from PLT Scheme to JavaScript [3]. Our JavaScript contract
library is built with the following core functions:

flat : (any→ bool)× string→ contract
func : contract × contract→ contract
args : contract . . . → contract

guard : contract × any × string × string

The flat combinator creates a contract based on a predi-
cate and a string that describes the predicate. func creates a
function contract. The domain contract is applied to the array

of arguments. The args combinator is a variable-arity func-
tion that maps n contracts to a contract on an array of n ar-
guments. The guard function guards a value with a contract
and accepts labels for the calling context and the guarded
value.
Contracts are represented as objects whose properties in-

clude the server and client projections. In JavaScript, how-
ever, public properties, even methods (which are merely ref-
erences to functions), can be mutated at any time. Hence, the
modular encapsulation present in PLT Scheme is absent in
JavaScript, greatly compromising our ability to provide any
guarantees about contracted functions. Nevertheless, we still
find such contracts useful for stating program invariants and
for finding errors; we cannot, however, rely on them to estab-
lish any mission-critical properties (such as ensuring certain
kinds of security).
To properly provide parametric contracts for JavaScript,

we must address three major design and implementation
issues. We discuss these in the following sections.

8.1 Encapsulation

JavaScript’s lack of encapsulation makes it impossible to
create opaque coffers. The obvious solution is to create a
constructor for coffers that stores the wrapped value in a
property. However, properties can always be read and modi-
fied. Furthermore, any attempt to mangle the name of a prop-
erty is also futile, as JavaScript makes it trivial to iterate over
all the properties of an object. More creative solutions may
involve a private field and a privileged getter method:

var Coffer = function(v) {
var that = this;
var value = v;
this.getValue = function() {
return that.value;

}
}

However, external codemay replace the privileged getValue
method on an object.
Instead of using creative techniques for obfuscation—as

opposed to opacity—we represent coffers very simply as
objects with a property referencing the enclosed value:

var Coffer = function(val,tag) {
this.val = val;
this.tag = tag;

}

Hence, a sufficiently ill-behaved script can violate all guar-
antees provided by our contracts. However, our experience
with JavaScript suggests that the bulk of real code is not so
ill-behaved.

8.2 Notation

Writing parametric contracts involves using wrapping and
unwrapping contracts at appropriate places. The forallmacro



of section 4 takes a parametric contract that looks like a type
and mechanically inserts wrapping and unwrapping con-
tracts as appropriate. This is done statically by the macro-
expander. Since JavaScript does not support syntactic exten-
sibility, we are forced to consider alternatives.
Currently, we must force the JavaScript programmer

to simulate the job of the forall macro. That is, while in
Scheme we can write (forall (α β) ((α → β) (listof α) →
(listof β)), the corresponding JavaScript code is:

function cMap(alpha,beta) {
var alphaP = parametricPair(alpha);
var betaP = parametricPair(beta);

return func(args(func(args(alphaP.unwrap),
betaP.wrap),

listof(alphaP.wrap)),
betaP.unwrap);

}

Not only is this verbose, it requires the programmer to be
keenly aware of the flow of values, which was one of the
issues with anaphoric contracts in section 3.2.
Another alternative would be to construct wrappers and

unwrappers dynamically at runtime. Doing so, however,
adds complexity to the entire contract library. All contracts
would be required to propagate information to the paramet-
ric contracts.
Our current approach is to build the equivalent of forall

into the compiler for Flapjax. The Flapjax suite includes a
compiler that automatically augments JavaScript code with
invocations of procedures such as lift and switch (de-
scribed in section 1), relieving the programmer of this bur-
den. Flapjax is semantically compatible [13] with code im-
ported from JavaScript, so programmers can use predicates
written in JavaScript as contracts in Flapjax.

8.3 Inference

Unlike Scheme, where the base types are partitioned by a
set of well-defined predicates, JavaScript’s prototype-based
object system supports subtyping. Therefore, we cannot rely
on a partition of values as we can in Scheme. We could
partition JavaScript objects by their prototypes:

function objTypeEq(x,y) {
return x.__proto__ == y.__proto__;

}

However, this approach neglects subtyping, which is present
in the language, and behavioral subtyping, which is a com-
mon idiom in JavaScript. We therefore leave this topic open
for further investigation.

9. Related Work
The idea of boxing and tagging polymorphic values with
types is well-established. Harper and Morrisett [11] use run-
time tags to specialize polymorphic functions for efficiency.

Our generative coffers are runtime tags, but we use them to
enforce parametricity and not for specialization.
Matthews and Findler [15] introduce techniques for em-

bedding latently-typed languages (such as Scheme) into
statically-typed ones (such as ML). Their operational se-
mantics enables them to focus on high-level cross-language
properties such as type-safety. In particular, they achieve
safety across language boundaries by using contracts to en-
sure that Scheme code doesn’t misuse ML code. However,
since their contracts cannot capture parametric polymor-
phism, their dialect of ML is monomorphic.
Tobin-Hochstadt and Felleisen [27] incrementally add

type annotations to Scheme programs. In their work, unlike
in Matthews and Findler, the runtime semantics and values
of both languages are the same, but the typed modules obey
a static type discipline. They too use contracts to prevent
raw Scheme code from abusing Typed Scheme. Their Typed
Scheme language is, however, monomorphic, as Scheme’s
contracts cannot capture parametricity.
Parametric polymorphism is, in essence, a form of infor-

mation hiding. Zdancewic, et al. [29] add principals to the
simply-typed λ-calculus, creating a calculus for multi-agent
computations. Our approach to encoding polymorphism is
similar to their idea of encoding a polymorphic function,
Λα.e, as an agent oblivious to α. When such a function is
applied, Λα.e[τ ], another agent that is aware of the concrete
type, τ , provides unwrapping information. They can, how-
ever, rely on a type system to prevent a polymorphic func-
tion from violating the type abstraction, whereas we have to
wrap values since our functions are not statically typed.
Pierce and Sumii [21] present the cryptographic λ-

calculus as a model for reasoning, using parametricity, about
programs that use encryption for information-hiding. Our
technique for preserving parametricity is similar to their en-
coding of type abstraction with encryption and decryption
(section 4.2 of their paper). Their primary concern, however,
is with incoming, encoded values being malicious, whereas
we must also protect against functions that violate their pro-
claimed parametric contract. We believe that proving para-
metricity for our system is related to proving their Full Ab-
straction Conjecture correct.

10. Conclusion and Future Work
We have presented a contract analog of parametrically poly-
morphic types. Our technique is based on a judicious use of
opaque wrappers to keep values from being inspected or cre-
ated by functions guarded by such contracts. We also show
a form of inference for primitive contracts.
There are many areas for extension and application of

this work. First, we have given only an intuition, not for-
mal proof, that our work preserves parametricity. Second,
our notion of inference is implicitly parameterized over what
it means to be “the same type”. We can relax this notion to
permit unions, subtypes, and so forth. This would give rise



to more liberal notions of inference. Third, the process of in-
ference essentially “learns” the contract of a parameter, then
checks it on subsequent applications. Rather than check, we
can accumulate all the learned contracts, and use the accu-
mulated set (or bag) for post-hoc analyses. Finally, by alter-
ing the strategy of opaque wrapping, we can enable different
kinds of polymorphism, such as ad-hoc polymorphism.
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functional programming. In International Symposium on
Functional and Logic Programming, pages 208–225, 2006.

[13] Ignatoff, D., G. H. Cooper and S. Krishnamurthi. Crossing
state lines: Adapting object-oriented frameworks to func-
tional reactive languages. In International Symposium on
Functional and Logic Programming, pages 259–276, 2006.

[14] Karaorman, M., U. Hölzle and J. Bruno. jContractor: A
reflective Java library to support design by contract. In
Proceedings of Meta-Level Architectures and Reflection,
volume 1616 of LNCS, July 1999.

[15] Matthews, J. and R. B. Findler. Operational semantics
for multi-language programs. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
3–10, 2007.

[16] McFarlane, K. Design by contract framework.
www.codeproject.com/csharp/designbycontract.

asp.

[17] Meyer, B. Eiffel: The Language. Prentice Hall, 1992.

[18] Milner, R. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17:348–375,
August 1978.

[19] Milner, R., M. Tofte and R. Harper. The Definition of
Standard ML. MIT Press, Cambridge, MA, 1990.

[20] Mitchell, J. C. and G. D. Plotkin. Abstract types have
existential type. ACM Transactions on Programming
Languages and Systems, 10(3):470–502, 1988.

[21] Pierce, B. and E. Sumii. Relating cryptography and
polymorphism, 2000. Unpublished manuscript.
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