Transformation-by-Example for XML*

Shriram Krishnamurthi, Kathryn E. Gray, and Paul T. Graunke

Department of Computer Science
Rice University
Houston, TX 77005-1892, USA

Abstract. XML is a language for describing markup languages for struc-
tured data. A growing number of applications that process XML docu-
ments are transformers, i.e., programs that convert documents between
XML languages. Unfortunately, the current proposals for transformers
are complex general-purpose languages, which will be unappealing as
the XML user base broadens and thus decreases in technical sophisti-
cation. We have designed and implemented XT3D, a highly declarative
XML specification language. It demands little more from users than a
knowledge of the expected input and desired output. We illustrate the
power of XT3D with several examples, including one reminiscent of poly-
typic programming that greatly simplifies the import of XML values into
general-purpose languages.

1 XML and Transformations

XML [3] is a simplified version of the markup description language SGML. Because
of XML’s syntactic simplicity, it is easy to implement rudimentary XML processors
and embed them in a variety of devices. As a result, a wide variety of applications
are adopting XML as a data representation standard. Declarative programming
languages must therefore provide support for XML. They can do better; as this
paper demonstrates, ideas from declarative programming can strongly enhance
the toolkit that supports XML.

Syntactically, XML has a structure similar to other SGML-style markup lan-
guages such as HTML. The difference between XML and a language like HTML is
that XML really represents a family of languages. Concretely, XML provides two
levels of specification:

— An XML element defines a tree-structured representation of terms. This rep-
resentation is rich enough to express a wide variety of data. A sample ele-
ment, which might represent information about music albums, is

<album title="everybody else is doing it, so why can't we?">
< catalog><num>A043< /num><fmt>CD< /fmt>< /catalog>
<catalog><num>BDS84< /num><fmt>LP< /fmt>< /catalog>
< /album>

* This work is partially supported by NSF grants CCR-9619756, CDA-9713032 and
CCR-9708957, and a Texas ATP grant.

— An XML language is essentially a BNF grammar that lists the valid elements
and states how they may nest within each other. A language thus circum-
scribes a subset of the universe of all possible elements. The language of
music albums may, for instance, allow an album element to mention only the
name and catalog entries of an album.

An input whose elements meet the basic syntactic requirements of XML (such as
matching and properly nested element tags) is said to be well-formed. A well-
formed element that meets the requirements of a language, or document type
definition, is called valid (with respect to that definition).

This two-level syntax makes XML documents easy to process in two phases.
The first phase converts an input character stream into a stream of elements,
checking only for well-formedness. The second phase, which can proceed in a
top-down fashion, checks each element in the stream for conformance with a
language definition. In short, XML is relatively easy to parse.

XML is commonly associated with the Web. New XML languages can be used
to provide more structure to information than Web markup languages like HTML
offer. These benefits can also be harnessed in several other contexts, so XML is ex-
pected to see widespread use for defining syntaxes for communication standards,
database entries, programming languages, and so forth. Already, user communi-
ties are defining XML languages for business data, mathematics, chemistry, etc.
XML thus promises to be an important and ubiquitous vehicle for data storage
and transmission.

By itself, an XML document does nothing. It represents uninterpreted data.
Its value lies in processors that understand the document and use it to perform
some action. The set of processors for a language is potentially unlimited, e.g.,

XML Language | Processor | Action
HTML Web browser |renders document on screen
music albums inventory lister|generates HTML listing
a programming language|pretty-printer |generates HTML listing
a programming language|interpreter runs program

A surprising number of these actions involve transforming one XML language into
another. Even rendering documents on screen involves transformations. The XSL
standard [6] defines an XML language for “formatting objects” that provide low-
level formatting control of a document’s content. As the number of domains that
use XML to represent their information increases, more of these actions will be
XML transformations.

Recognizing the importance of transformations, the XML standards commit-
tee is defining XSLT, a language for describing transformations between XML
languages. Unfortunately, XSLT is an ad hoc language with no complete, formal
semantics. Worse, XSLT appears to be a fairly complex language, and seem-
ingly simple transformations require the user to essentially write a traditional
procedural program. As XML’s audience grows to encompass users of decreas-
ing technical sophistication, XSLT’s complexity imposes prohibitive demands on
users, and increases the likelihood of errors.

To address this problem, we have designed and implemented XT3D, a trans-
formation system for XML. XT3D is itself an XML language, so users do not need
to learn a new surface syntax. The principal advantage of XT3D over XSLT is
that it provides an extremely simple, declarative language for describing trans-
formations over XML elements. Specifically, an XT3D specification contains little
more than outlines of the expected input and the desired output of the trans-
formation. Thus we anticipate that even users with minimal technical skills can
use XT3D.

We hope the ideas of this paper will broaden the discussion on XML transfor-
mation languages. In particular, this paper includes several examples of trans-
formations that can be implemented conveniently in XT3D, including some rem-
iniscent of polytypic programming. We believe these examples can serve as part
of a benchmark suite for evaluating transformation languages.

The rest of this paper is organized as follows. Section 2 briefly describes
XML’s syntax and language descriptions. Section 3 explains XT3D through a
series of examples, and section 4 describes an extension and some pragmatic
considerations. Section 5 describes how XT3D can automate the embedding of
XML data in a general-purpose language. Section 6 describes some details about
our implementation and its current status. The last two sections discuss related
work and offer concluding remarks.

2 Background

XML documents consist of elements. The outermost element in the sample pre-
sented in section 1 describes an album. An album has one attribute, a title. Its
content is a sequence of catalog entries. Each catalog entry contains a number
and a format element. All elements must be properly nested, with elements rep-
resented by matching opening and closing tags, e.g., <album> and </album>.
Empty elements, which are elements with no contents (but possibly with at-
tributes), use only one tag, which is closed with />, e.g., <empty/>.

XML users define languages via an XML SCHEMA [1], which is essentially a
BNF description. A schema that validates the sample XML element of section 1
is shown in figure 1. The elements in a document can specify attributes in any
order, whereas content must follow the order described by the schema. The
minQOccur attribute specifies the minimum length required of a sequence of the
referred element.

As the example suggests, XML SCHEMA is itself an XML language. Schemas are
being proposed as an alternative to traditional markup specifications, inherited
from SGML, called DTDs. Unlike schemas, DTDs are not XML languages. Section 5
exploits the fact that schemas are XML documents.

3 Transformation by Example (by Example)

We call the style of transformations employed by XT3D “transformation by ex-
ample” by analogy to the work of Kohlbecker and Wand [13]. An XT3D trans-

<schema> <elementType name="catalog">

<elementType name="album"> < sequence>
<sequence minOccur="0"> <elementTypeRef name="num" />
<elementTypeRef name="catalog" /> <elementTypeRef name="fmt" />
< /sequence> < /sequence>
<attrDecl name="title" /> < /element Type>
< /elementType>
<elementType name="fmt">
<elementType name="num" > <datatypeRef name="string" />
<datatypeRef name="string" /> < /element Type>
< /element Type> < /schema>

Fig. 1. Sample Schema

formation consists of pairs of patterns representing the expected source and the
desired output. These patterns, which are parameterized over pattern variables,
are in the source and destination XML languages, respectively.

The pattern-matcher works by comparing each element in the input tree
against the collection of defined patterns. An element matches a pattern if the
element has the same structure as the pattern, with pattern variables in the
pattern matching an arbitrary element in the actual input. The pattern matcher
binds pattern variables to the corresponding parts of the inputs. It then generates
an output element, substituting pattern variables with the sub-terms bound in
the input. This new element is then expanded. This process continues until the
input cannot be transformed further.

Figure 2 presents a sample XT3D transformation that processes elements that
conform to the schema of section 2. The element zt3d-transformation introduces
a new set of transformations. The zt3d-macro element represents a single trans-
formation in this set. The zt3d-clause element delimits the two boxed terms,
which constitute an input- and an output-pattern pair. Pattern variables are
introduced as xt3d-bind elements in the input pattern, and zt3d-use elements in
the output. An element’s attributes (as opposed to its content) are matched by
the xt3d-attr elements of the xt3d-attributes element.! If an attribute is speci-
fied literally in the input pattern, the pattern matcher checks that the element
contains that attribute, with the value bound in the pattern.

The empty element <zt3d----/> denotes an ellipsis, which affects pattern-
matching. It follows a (“head”) pattern in a sequence and matches a source

! This is the one point where XT3D departs from a pure “by example” syntax. We are
forced to invent notation because XML attribute values can only be strings. Given a
string value for an attribute, XT3D cannot determine whether the user means it to
be a pattern variable (to be bound for use in the output) or a literal (to be checked
for presence in the input). We rejected both embedding a special-purpose language
in attribute value strings, and deviating from XML syntax.

<at3d-transformation>
<xt3d-macro>
<xt3d-clause>

<zt3d-input> <zt3d-output>
<album>
<at3d-attributes> <wt3d-use name="name" />
<zt3d-atir name="title">
<xt3d-bind name="name" />
< /xt3d-attr> <at3d-use name="num" />
< /xt3d-attributes>
<catalog> <i><zt8d-use name="fmt" />
<num><zt3d-bind name="num" /> </i>
</num> <zt3d-.../>
<fmt><xt3d-bind name="fmt" />
</fmt> < /xt3d-output>
< /catalog><at3d-.../>
< /album>
< /zt3d-input>

< /zt3d-clause>
< /xt3d-macro>
< /zt3d-transformation>

Fig. 2. Sample XxT3D Transformation

sequence of zero or more instances of the head pattern. It binds each pattern
variable in the head pattern to a sequence. This sequence consists of the sub-
terms, in order, of the terms in the source sequence that correspond to the
pattern variable’s position in the head pattern. Ellipses can be nested to arbitrary
depth. Each nesting level introduces a nested sequence in the binding of a pattern
variable.?

This transformation converts the album element of section 2 into

everybody else is doing it, so why can’t we?< /li>
<l>A043<i>CD< /i>< /li>
BDS84< /b><i>LP< /i>

The following sub-pattern of the transformation’s expected source uses ellipses:

< catalog>
<num><zt3d-bind name="num" />< /num>
<fmt><xt3d-bind name="fmt" />< /fmi>

< /catalog><zt3d-.../>

2 Hence the name XT3D, which stands for “xML Transformations with Three Dots”.

In the sample album entry, this pattern matches against

<catalog><num>A043< /num><fmt>CD< /fmt>< /catalog>
<catalog><num>BD84< /num><fmt>LP< /fmt>< /catalog>

binding form to the sequence "CD" followed by "LP", and number to "A043"
followed by "BD34". The output pattern pairs numbers with formats:

<xt3d-use name="num" />
<i><wt3d-use name="fmt" /></i>
<at3d-.../>

As a second example, consider a variant on the first that lists the numbers
and formats separately. We only need change the output rule:

<zt3d-output>

<zt3d-use name="name" />< /li>
<zt8d-use name="num"/> <xt3d-.../>
<i><azt3d-use name="fmt" />< /i> <xt3d-.../>

< /zt3d-output>

In short, this transformation is a simple version of a table transposition. (By
using nested ellipses, we can handle arbitrary numbers of rows and columns.)

These examples distill the essence of similar ones presented in the XSLT doc-
ument [4] and the paper by Wallace and Runciman [18]. The XT3D specifications
do not involve list processing combinators or conventional procedural program-
ming. We therefore believe XT3D will be especially helpful for users who have
little or no formal programming experience.

The third example illustrates a transformation that may be useful in software
that generates rudimentary English phrases from databases. Given a database of
purchase records, it uses the transformations of figure 3 to generate a purchase
summary such that multiple purchases are separated by commas, except for the
last two, which are separated by the word “and”. Two examples of the input
and generated terms are

<purchase>
<p>4 tinkers</p> o <text>j tinkers</text>
< /purchase>
and
<purchase> <text>4 tinkers,

<text>5 tailors,

<p>4 tinkers</p> <text>2 soldiers and

<p>5 tailors< /p>

<p>2 soldiers< /p> <jf:§g1 spy</teat>
1
<p>1 spy</p> < /text>

< /purchase> < Jtest>

<axt3d-macro>
<at3d-clause>
<zxt3d-input>
<purchase>
<p><zt3d-bind name="i"/>< /p>
< /purchase>
< /zt3d-input>
<axt3d-output>
<text><wxt3d-use name="i"/>
< /text>
< /zt3d-output>
< /xt3d-clause>

<axt3d-clause>
<xt3d-input>
<purchase>
<p><zt3d-bind name="i"/>< /p>
<p><zt3d-bind name="i2" />< /p>
< /purchase>
< /zt3d-input>
<axt3d-output>
<text><wt3d-use name="i"/> and
<purchase>
<p><zt3d-use name="i2" />
</p>
< /purchase>< /text>
< /zt3d-output>
< /zt3d-clause>

<at3d-clause>
<zt3d-input>
<purchase>
<p><at8d-bind name="i"/>
</p>
<zt3d-bind name="rst" />
<xt8d---/>
< /purchase>
< /zt3d-input>
<zt3d-output>
<text><wt3d-use name="i"/>,

<purchase>
<zt3d-use name="rst" />
<zt8d----/>

< /purchase>< /text>

< /zt3d-output>
< /zt3d-clause>
< /xt3d-macro>

Fig. 3. Phrases from Databases in XT3D

Figure 4 presents what we believe is the equivalent transformation in XSLT.
Though an XML language, XSLT encodes a special-purpose programming lan-
guage in attribute strings. This language performs numerous actions such as
boolean tests, mathematical operations, selections of attributes and content,
and so on.> We believe this kind of encoding violates the spirit of XML, since it
uses a flat representation for structured data (in this case, the special-purpose

programs).

4 Beyond Macros

The alert reader will have noticed that our transformation language is essen-
tially identical to the pattern-matching notation used for specifying Scheme

3 Technically, the example is in XSLT’s “abbreviated syntax”, but the full syntax has

the same flavor.

<zsl:template match="purchase">
<zsl:choose>
<zsl:when test="last()=1">
<zsl:text>
<uzsl:apply-templates/>
< /xsl:text>
< /zsl:when>
<zsl:when test="last()=2">
<zxsl:text>
<azsl:apply-template select="p(1)" />
and
<zsl:apply-template select="p(2)" />
< /zsl:text>
< /zsl:when>
<azsl:otherwise>
<zsl:call-template name="1Irgr">
<zsl:with-param name="len"
select="last()" />
<zsl:with-param name="curr"
select="1" />
< /xsl:call-template>
< /zsl:otherwise>
< /xsl:choose>
< /zsl:template>

<zsl:template select="p">
<zsl:apply-templates/>
< /zsl:template>

<zsl:template name="lrgr">
<zsl:param name="len" />
<zsl:param name="curr" />
<zsl:choose>
<zsl:when
test="curr < (len -2)">
<zsl:text>
<zsl:apply-template
select="p(curr)" />,
<zsl:call-template name="1Irgr">
<zsl:with-param
name="len" select="len" />
<zsl:with-param
name="curr"
select="curr+1" />
< /zsl:call-template>
< /xsl:text>
< /zsl:when>
<zsl:otherwise>
<zxsl:text>
<zsl:apply-template
select="p(curr)" />
and
<zsl:apply-template
select="p(last)" />
< /xsl:text>
< /zsl:otherwise>
< /zsl:choose>
< /zsl:template>

Fig. 4. Phrases from Databases in XSLT

macros [11]. The last example above, for instance, is a straightforward extension
to the traditional and macro used in Scheme implementations.

Macros work by repeated expansion. The macro processor scans the source
term for the outermost use of a macro. It expands this term and recurs on the
generated source. Expansion stops when there are no macro uses left. While
this is convenient for simple specifications, it denies the user control of what to
expand. It also presumes that the generated terms will be in the same language
as the source, preventing transformations from one language to another.

Our implementation of XT3D is built atop McMICMAC [15], a sophisticated
macro system for Scheme. The McMIcMAC macro expander provides a comple-
ment to macros called micros. In a micro, all terms in the output pattern are left
unexpanded unless the micro’s author explicitly chooses to expand them. Thus
programmers can construct terms in a destination language that is distinct from
the source language, while recursively processing source sub-terms within the

<zt3d-micro> <zt3d-output>

<zt3d-clause> < fo:basic-page-sequence>
<zxt3d-input> <fo:simple-page-master/>
<doc> <fo:queue>
<chapter>
<p><wt3d-bind name="text" /> <xt3d-expand> < xt3d-pattern>
</p><at3d-.../> <chapter>
< /chapter> <p><atdd-use name="text" />
</doc> </p><at3d-.../>
< /xt8d-input> < /chapter>
< /xt8d-pattern>< /xt3d-expand>

< /fo:queue>
< /fo:basic-page-sequence>
< /zt3d-output>
< /zt3d-clause>
< /zt3d-micro>

Fig. 5. Sample XT3D Micro

partially constructed output. In XT3D, the primitive zt3d-expand triggers recur-
sive expansion, while zt3d-pattern expands its contained pattern in the pattern
environment generated from the input pattern. Everything outside these terms
in the output is assumed to be in the target language, and is therefore neither
macro- nor pattern-expanded.

Figure 5 presents an XT3D micro. It converts a document language into XSL
formatting objects. The salient portion is the boxed term in the output pat-
tern. Everything outside the box is treated literally, and is thus immune to the
expansion rules of the source language. (In principle, therefore, the macros in
the preceding section should really have been micros. They work by accident,
relying on the lack of overlap between the source and target languages.) In the
boxed term, zt3d-expand further expands the body, which is still in the source
language. The body can be an arbitrarily complex pattern that includes xt3d-- - -.

For example, an input and its expansion after one step are

< fo:basic-page-sequence>

<fo:stmple-page-master/>
<doc> fo:simple-pag /

<chapter> <fo:queue>
<p> Veni.</p>
. <chapter>
<p>Vidi.</p> == . . .
<§ S Vici.< ?g > <p>Veni.</p> <p>Vidi.</p> <p> Vici.</p>
< Jchapter> < /chapter>
</doc>

< /fo:queue>
< /fo:basic-page-sequence>

The boxed term in the expansion represents the element that is about to be
expanded again. The surrounding elements are in the target language, so they
are not subject to the rules of expansion for the document description language.

5 Processing XML Data in General-Purpose Languages

In this section, we outline how we can import XML data into a general-purpose
language (in our case, Scheme) for processing. We accomplish this using several
hundred lines of XT3D transformations. As a case study, this illustrates:

1. how to automate typeful embeddings of XML SCHEMAs into programming
languages,

2. how XT3D facilitates this embedding, and,

3. the XML support we have built for Scheme.

This library therefore accomplishes similar ends as Wallace and Runciman’s
system [18], but does so as a consequence of our primitives rather than as an
end in itself.

The library consists of three families of XT3D transformers, each of which
converts (restricted) XML SCHEMAs into Scheme programs:

1. The first phase converts XML SCHEMAS into corresponding Scheme structure
definitions (which introduce new types) using MzScheme’s define-struct
facility [8].

2. The second phase generates a family of builders, one per element type. A
builder is a Scheme procedure that consumes an XML element of an expected
type, validates it, and produces an instance of the structure corresponding
to that type (defined in the first phase).

3. The third phase generates walker generators. Walkers are procedures that
consume instances of the structures defined in the first phase. The walker
traverses each field of the structure using the walker for the type of that field.
It then combines the results from these traversals using a procedure that the
programmer supplies to the walker generator. This relieves the programmer
of having to know the names of the fields or access them explicitly.

These transformations therefore automate the creation of validators, and enable
a programmer to process XML data in a type-driven manner.

The preceding text discusses XT3D generating Scheme code, but Scheme is not
an XML language, and XT3D can only generate XML terms. We have therefore
defined an XML language, XScheme, to represent Scheme programs. Our XML
library enriches our Scheme implementation with a reader that accepts XScheme
programs in addition to those written in traditional Scheme syntax.

As an example of putting these transformations to work, consider this schema
of geometric shapes (which we restrict to two element types for brevity):

<elementType name="rectangle" >
<sequence>
<elementTypeRef name="point" />
< /sequence>
<attrDecl name="wd"
required="true" />
<attrDecl name="ht"

<elementType name="point">
< sequence/>
<attrDecl name="x"
required="true" />
<attrDecl name="y"
required="true" />
< /element Type>

required="true" />
< /elementType>

A programmer can render data in this format to the screen using the following
Scheme code:

;; walk-rectangle : Rectangle — void
(define walk-rectangle
(gen-walk-rectangle
(lambda (attrs center-walker)

;; walk-point : Point — (cons Nat Nat)
(define walk-point

(gen-walk-point

(lambda (attrs)

(letx ((center (center-walker)) (cons (attr—mnum ’x attrs)
(center-z (car center)) (attr—num’y attrs)))))
(center-y (cdr center))

(wd (attr—mnum 'wd attrs))

(ht (attr—num ht attrs)))
(lambda (canvas)
(draw-rectangle canvas
(= center-z (/ wd 2))
(= center-y (/ ht 2))

wd ht))))))

The procedure gen-walk-rectangle creates a thunk that, when invoked, applies
walk-point to the point in the rectangle type. It provides this thunk as the value
for the parameter named center-walker. The XT3D transformations generate the
procedure gen-walk-rectangle and other supporting routines. The programmer
needs to write only a few lines of scaffolding to read in the data and validate
them using the generated builders. Due to paucity of space, we cannot present
more details here.

This example is reminiscent of polytypic programming [2,10, 16]. Polytypic
programs, at least in the style of PolyP [10], typically consume a type constructor
and return functions that manipulate values of that type. They can, for instance,
generate maps, folds and other traversals that operate over a wide variety of
types. Similarly, our third phase consumes a schema, which is essentially a type
declaration for the values that are generated by the builders, and produces simple
traversals over this class of values.

The preceding operations could have been performed on any (restricted)
schema. We have also applied them to the schema for the XScheme language it-
self. This generates Scheme code which programmers can employ to manipulate

XScheme documents (i.e., programs) as Scheme values. Examples of such appli-
cations include interpreters, compilers and analysis engines. Languages that lack
Scheme’s syntactic simplicity can use such a library to simplify the transmission
and processing of programs.

6 Implementation Details and Status

XT3D is part of the evolving XML library for the MzScheme [8] implementation
of Scheme. We have tested all the examples in this paper using our library. The
library exploits the similarity between XML elements and Scheme s-expressions.
XML elements differ from s-expressions primarily in that they consist of two
distinguished parts: attributes and content. We embed XML elements into s-
expressions by requiring all target s-expressions to have the form

(tag ((attribute value) ...) element ...)

where tag is the name of the element. In our implementation, the attributes
are sorted alphabetically to yield a canonical representation. We refer to such
S-expressions as r-expressions.

Our library contains a reader that transforms XML source into x-expressions.
It also includes two x-expression transformers: one that converts x-expressions
representing XScheme into conventional Scheme syntax, and another that trans-
forms x-expressions representing XT3D macro and micro definitions into McMIc-
MAC declarations.

The reader that generates x-expressions also maintains source location infor-
mation for each term. It uses the source locations to generate special-purpose
structures rather than conventional Scheme lists. MCMICMAC processes these
enriched structures and uses them to perform source-correlation and source-
tracking [14]. These are especially useful for determining the loci of errors.

Unlike some other toolkits, our library does not provide intrinsic support for
any document type definition languages. Instead, we employ transformations,
such as those described in section 5, to generate validators. This is a serendipitous
consequence of the tools that comprise our library. Since MzScheme offers a
rich target language for embedding, we expect to handle other document type
definition standards such as sOX [5] in a similar manner.

Our library will continue to grow. For instance, the transformations that
generate code from schemas (section 5) place some restrictions on the content of
the schema. This is partially because our implementation is still in the prototype
phase, but is also allied to our proposal (under preparation) for more extensible
schemas. For the same reasons, transformations do not interact properly with
XML namespaces. Also, our specifications become unwieldy for elements with
several optional attributes.

7 Related Work

XT3D draws on a rich pedigree of Lisp and Scheme macro systems. The most
influential of these is Kohlbecker and Wand’s macro-by-ezample [13]. Tt also

exploits the source correlation feature first described by Dybvig, et al. [7] and the
micros of MCMICMAGC [15]. Kohlbecker and Wand also provided a semantics for
their transformation system, which can be used to formalize XT3D’s transformers.

Several functional and declarative languages provide a pattern matching no-
tation over values. By converting XML documents into structured values in these
languages, programmers can exploit the built-in pattern matchers and construc-
tor syntax to define transformers. This would, however, force the average user to
learn the base language and contend with its peculiarities. In particular, small
mistakes could trigger unexpected interactions with the base language. (One
way to address this shortcoming is to use language levels [15].) In a declarative
vein, we have recently come across a tool named PatML [9] which generates XML
documents via pattern-matching, but have not been able to evaluate it.

The leading proposal for XML transformations is currently XSLT. It is difficult
to compare XSLT and XT3D since XSLT is under constant revision, and is only
partially formalized [17]. There are several subtle differences in the way XSLT and
XT3D match and transform elements, with each having some strengths over the
other. In the final analysis, we believe both styles serve useful ends. We would
ideally like to see a synthesis of these styles so that simple tasks remain easy,
while complex ones require more effort. We do find it unfortunate that XSLT uses
strings to represent so much of its transformation language, since this inhibits
the effective use of XML transformers to construct and process XSLT specifications
themselves.

8 Summary and Future Work

We have designed and implemented XT3D, a transformation system for XML. The
heart of XT3D is a simple declarative language for describing transformations that
saves users from the burden of needing conventional programming experience.
In particular, users need to know little more than the structure of the expected
inputs and desired outputs. It should therefore be especially useful as XML is used
by audiences with decreasing technical sophistication. Meanwhile, experts can
exploit XT3D’s advanced features to write sophisticated tools such as compilers
and polytypic programs. This paper presents several such examples, which we
believe belong in a benchmark for XML transformation tools.

XT3D must reflect the features and norms of XML. Since XML is constantly
evolving, XT3D is very much a work in progress. Future work on XT3D can
take several directions. First, it must support features like namespaces. Second,
it can benefit greatly from primitives such as those provided by XSLT. XT3D
also suggests shortcomings in and improvements to XML, such as information to
create hygienic [12] transformers. We expect such work will expose ideas from
functional and declarative languages to much broader audiences.

Acknowledgements

The authors thank Matthias Felleisen for suggestions, support, and critiques
of drafts. We also thank the anonymous referees for their comments. The first
author thanks Phil Wadler for useful exchanges.

References

10.

11.

12.

13.

14.

15.

16.

Beech, D., S. Lawrence, M. Maloney, N. Mendelsohn and H. S. Thompson. XML
Schema part 1: Structures. Technical report, World Wide Web Consortium,
September 1999.

. Bellé, G., C. B. Jay and E. Moggi. Functorial ML. In International Symposium

on Programming Languages: Implementations, Logics, and Programs, pages 32—46,
1996.

Bray, T., J. Paoli and C. Sperberg-McQueen. Extensible markup language XML.
Technical report, World Wide Web Consortium, Feburary 1998. Version 1.0.
Clark, J. XSL transformations. Technical report, World Wide Web Consortium,
October 1999. Version 1.0.

Davidson, A., M. Fuchs, M. Hedin, M. Jain, J. Koistinen, C. Lloyd, M. Maloney
and K. Schwarzhof. Schema for object-oriented XML. Technical report, World
Wide Web Consortium, July 1999. Version 2.0.

Deach, S. Extensible Stylesheet Language XSL specification. Technical report,
World Wide Web Consortium, April 1999.

Dybvig, R. K., R. Hieb and C. Bruggeman. Syntactic abstraction in Scheme. Lisp
and Symbolic Computation, 5(4):295-326, December 1993.

Flatt, M. PLT MzScheme: Language manual. Technical Report TR97-280, Rice
University, 1997.

International Business Machines. PatML. Web document:
http://www.alphaWorks.ibm.com/formula/patml/.

Jansson, P. and J. Jeuring. PolyP — a polytypic programming language extension.
In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 470-482, 1997.

Kelsey, R., W. Clinger and J. Rees. Revised® report on the algorithmic language
Scheme. ACM SIGPLAN Notices, 33(9), October 1998.

Kohlbecker, E. E., D. P. Friedman, M. Felleisen and B. F. Duba. Hygienic macro
expansion. In ACM Symposium on Lisp and Functional Programming, pages 151—
161, 1986.

Kohlbecker, E. E. and M. Wand. Macros-by-example: Deriving syntactic trans-
formations from their specifications. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 77-84, 1987.

Krishnamurthi, S., Y.-D. Erlich and M. Felleisen. Expressing structural properties
as language constructs. In European Symposium on Programming, number 1576 in
Lecture Notes in Computer Science, pages 258-272, March 1999.

Krishnamurthi, S., M. Felleisen and B. F. Duba. From macros to reusable gener-
ative programming. In International Symposium on Generative and Component-
Based Software Engineering, number 1799 in Lecture Notes in Computer Science,
pages 105-120, September 1999.

Meertens, L. Calculate polytypically! In International Symposium on Programming
Languages: Implementations, Logics, and Programs, 1996.

17. Wadler, P. A formal semantics of patterns in XSLT. In Markup Technologies,
December 1999.

18. Wallace, M. and C. Runciman. Haskell and XML: Generic document processing
combinators vs. type-based translation. In ACM SIGPLAN International Confer-
ence on Functional Programming, September 1999.

