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Abstract. We present an analysis that determines when it is possibieutt-
plex a pair of cryptographic protocols. We present a tramsé&bion that improves
the coverage of this analysis on common protocol formutatiéVe discuss the
gap between the merely possible and the pragmatic througptémization that
informs a multiplexer. We also address the security rantifioa of trusting ex-
ternal parties for this task and evaluate our work on a laggesitory of cryp-
tographic protocols. We have formally verified this workngsithe Coq proof
assistant.

1 Problem and Motivation

A fundamental aspect of a cryptographic protocol is the $eh@ssages that it may
accept. Protocol specifications contain patterns thatifypthe shape of the messages
they accept. These patterns describe an infinite set of gesshecause the variables
that appear in them may be bound to innumerable values. Wehtsabet a protocol’'s
message space

There is a history of attacks on protocols based on the uggaofs(of) messages of
one protocol as (parts of) messages of another protocal[24]. These attacks, called
type-flaw (or type-confusion) attacks, depend fundambndal the protocol relation of
message space overlalp the message spaces of two protocols overlap, then there i
at least one session of each protocol where at least one geessald be accepted by
both protocols. This property, however, is more general thépresence of type-flaw
attack” property, because not all overlaps are indicatadrssiccessful attacks. (In fact,
it is common for new versions of a protocol to contain manyilsimmessages.)

The message space overlap property not only gives us insighhe protocol and
its relation to other protocols it also provides a test fauadamental deployment prop-
erty: dispatchability. We defindispatchabilityas the ability for a multiplexer to un-
ambiguously deliver incoming protocol messages to the grrppotocol session. (We
can compare a protocol session’s message space with asetston’s message space
to determine if it is possible to dispatch to the correctisessThis basic property is
necessary for servers to provide concurrency and suppartday protocol clients.)

Servers typically rely orrcp for this property. They assign a differentp port for
each protocol and trust the operating systencs implementation to do the dispatch-
ing. However, when cryptographic protocols are embeddeather contexts, such as
existing Web service protocols (e.@9AP), more explicit methods of distinguishing
protocol messages must be used. Furthermore, by leavimgdbéential step implicit, it
is notincluded in the formally verified portion of the protdspecification. This means



that the protocol that is actually usedrist the one that is verified. Finally, the dele-
gated notion of a session (e.gGP's or SSL's) may not match the protocol’s notion.
This is particularly problematic in protocols with more thiavo participants that are
not simply compositions of two-party protocols.

Notice that message space overlap implies that dispalifabinot achievable.
If there is a messagh! that could be accepted by sessiprand sessiom of some
protocols, then what would a dispatcher do when delivéd@dA faulty identification
might cause the actual (though unintended) recipient tongm an inconsistent state
or even leak information while the intended recipient stanit cannot unambiguously
deliver the message and therefore is not a correct dispaitkepresent a dispatching
algorithm that correctly delivers messages if there is nggage space overlap. This
algorithm provides proof that the lack of message spacdagvanplies dispatchability.

We present an analysis that determines whether the me gsacgsof two protocols
(sessions of a protocol) overlap. We also present an asalyilsiased as an optimized
dispatcher, that determinggythere is no overlap between two spaces by finding the
largest abstractions of two protocols for which there is wertap. We present our anal-
ysis of protocols from thePOREprotocol repository [15] and show how studying them
provides insights to improve our analyses.

We present our work in the context of an adaptatiorcepl, the Cryptographic
Protocol Programming Language [8]. We have built an achaldnd applied it to con-
crete representations of protocols. All of our work is folized using the Coq proof
assistant [18], and we make our formalization freely awdéld Coq provides numer-
ous advantages over paper-and-pencil formalizationst, ke use Coq to mechanically
check our proofs, thereby bestowing much greater confidenoair formalization and
on the correctness of our theorems. Second, because alimd@oq are constructive,
our tool is actually a certified implementation that is egtesl automatically in a stan-
dard way from our formalization, thereby giving us confidentthe tool also. Finally,
being a mechanized representation means others can mueteasily adapt this work
to related projects and obtain high confidence in the results

Outline. In Section 2, we explain the technical background of our thddext, in
Section 3, we develop the decision procedure for message sparlap. In Section 4,
we show how message space overlap provides a sufficientdtiondor a dispatching
algorithm. This algorithm is inefficient, so we present amlgsis in Section 5 that
optimizes it. Finally, we discuss related work and our casidns.

2 Introduction to CPPL

cppPL [8] is a domain-specific language for expressing cryptolgi@protocols with
trust annotationscPpPLallows the programmer to control protocol actions by usingtt
constraints so that an action such as transmitting a mess#dgecur only when the
indicated trust constraint is satisfied. TtrerLsemantics identifies a setstfandg17],
annotated with trust formulas and the values assumed toigaejras the meaning of a
role in a protocol.

3 Sources are available dttp:/faculty.cs.byu.eduljay/tmp/dispatch09/



a knows a:name b:name kab:symkey
learns kabn:symkey

b knows a:name b:name kab:symkey
learns kabn:symkey

b : a, {jna:nonce|} kab
a : {|na, nb:nonce|} kab
b : {Inbl} kab]
a : {|kabn:symkey, nbn:nonce|} kab
Fig. 1. Andrew Secure RPC Protocol
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1 proc b (a:name b:name kab:symkey) _
2 let chana = accept in
3 recv chana (a, {| na:nonce |} kab) -> _ then

4 let nb = new nonce in

5 send _ -> chana {| na, nb |} kab then

6 recv chana {| nb |} kab -> _ then

7 let nbn = new nonce in

8 let kabn = new symkey in

9 send _ -> chana {| kabn, nbn |} kab then
10 return _ (kabn)

Fig. 2. Andrew Secure RPC RoRin cppPL

We will explain the relevant aspects aPpPL by using the Andrew Secure RPC
protocol (Figure 1) and the encoding of #gole in cppL (Figure 2) as our example.

Message SyntaxThe various kinds of messages that may be sent and received ar
paramount to our investigation. We give their syntax in Fégg8. Messagesn) may
be constructed by concatenatial, hashing lasim)), variable binding and pattern
matching € v=m>), asymmetric signing|{nv), symmetric signing[(m|]v), asym-
metric encryption{m}v), and symmetric encryptiod{ [m|}v). In these last four cases,
vis said to be in th&ey-positionFor example, in the Andrew rokab is in key-position
on line 3. Concatenation is right associative. Parenthesesontrol precedence.

Well-formedness.As a CPPL program executes, it builds a runtime environment
of locally known values associated with identifiers. Thisissnment is consulted to
determine the values of pattern identifiers in message syantd is extended during
matching when those identifiers are free. Not all syntaltyicalid messages are well-
formed in acppL program, because they may refer to free identifiers in mrstihat
cannot be free. We say that such patterns arevedtformed

Intuitively, to send a message we must be able to construahé to construct it,
everyidentifier must be bound. Therefore, a patteris well-formed for sending in an
environmeno (written o s m herein) if all identifiers that appear in it are bound. For
example, the message on line 5 of the Andrew role is well-&mtnbut if we removed
line 4, it would not be becaus® would not be bound.



m := nil | v | Kk

| (mm) | hasi{m) | <v=m>

Lmvo ] mlv | {mv | {Imv
vi=x:t
t = text | msg | nonce

| name | symkey | pubkey | channel

Fig. 3. cPPLMessage Syntax

Surprisingly, the well-formedness condition is differémt message patterns used
for receiving rather than sending: only some identifierstrbesbound due to meaning
of the cryptographic primitives.

However, a similar intuition holds for using a message patte receive messages.
To check whether a message matches a pattern, the iderttionfirm its shape—
namely, those that are used as keys or under a hash—must \we kmthe principal.
Thus, a pattermis well-formed for receiving in an environmem{writtenc -, m) if all
identifiers that appear in key-positions or hashes are hdtordexample, the message
pattern on line 3 of the Andrew role is well-formed becaketeis bound, but if it were
not, then the pattern would not be well-formed.

A cppLprogram @) is well-formed € p), when each message is well-formed in the
appropriate context and runtime environment.

Semantics and Adversary.The semantics of aPPL program is given by a set of
strandswhere each strand describes one possible local run. A stsaiscsimply a list
of messages that are sentr) or received £ m):

s=. | 4+4m—s | —-m—s

The adversary in the strand semantics is essentially thevPdo adversary [5].
Since a strand merely specifies what messages are sent antedeather than how
they are constructed, where they are sent, or from whengetirae, the adversary has
maximal power to manipulate the protocol by modifying, redting, and generating
messagesx nihilo. This ensures that proofs built on the semantics are senuteei
face of a powerful adversary.

The basic abilities of adversary behavior that make up tHexB¥ao modelinclude:
transmitting a known value such as a name, a key, or wholeagessransmitting an
encrypted message after learning its plain text and key;ti@mgmitting a plain text
after learning a ciphertext and its decryption key. The ash#g can also manipulate the
plain-text structure of messages: concatenating and apgmessage components,
adding and removing constants, etc. Since an adversargiticagpts or decrypts must
learn the key from the network, any key used by the adversapmpromised keys—
have always been transmitted by some participant.

A useful concept when discussing the adversary isw@guely originating value
This is a value that enters the network at a unique locationally produced noncés
are uniquely originating unpredictable values. By defimitithe adversary cannot know
these values until they have been sent in an unprotecteebdont

4 Numbers usednce



3 Analysis

In this section we present our analysis that determines wiere is a message that
could be accepted by two sessions of two protocols. Thisyaisatan then be applied
to the case of two sessions of one protocol by comparing agobwith itself.

The strand space model of protocols is aptly suited for thiblem. From the
strand, we can read off each message pattern the protoagptacéor example, the
strand+m; — —mp — —Mmg — . accepts messages with pattempsandms. We denote
this set of message patternssdgs) for strands.

Each message pattenmdescribes an infinite set of messages (one for each instan-
tiation of the variables im) that would be accepted at that point of the protocol. If we
could compare the sets of two patterns, then we could eaftithis analysis to two
protocolssands’ by checking each pattern iir (s) against each pattern it (s'). The
essence of our problem is therefore determining when a megsterrm “overlaps”
with another message pattem i.e., when there is an actual messag¢hat could be
matched by botim andnt. We call this analysigatch.

3.1 Definingmatch

We have multiple options when definimgatch. We could assume that tistructureof
message patterns are potentially ambiguous. That is, wiel e@ssume thatmy, mp)
could possibly overlap witlhasiimg) or {ma}x. We will not do this. We assume that
messages are encoded unambiguously. Concrete protodehiraptations that do not
conform to this assumption may have type-flaw attacks [214]L,

This initial consideration shrinks the design spacenafch: message patterns must
have identical structure for them to possibly overlap. Ereme two important caveats:
variables with typensgand bind patterns<{ v=m>). In the first, we treat such vari-
ables as “wildcards” because they will accept any messagswhked in a pattern. In
the second, we ignore the variable binding and use the stibrpa in the comparison.

With this structural means of determining when two messagtems potentially
overlap, all that remains is to specify when to consider tadables as potentially
overlapping. The simplest strategy is to assume that ifyiped of two variables are the
same, then it is possible that each could refer to the sanue Véle call this strategy
type-based and write ihatchy.

Correctness.matchy is correct if it soundly approximates message space overlap
i.e., if = match; m m then there is no overlap between the possible messagesedcep
by patterrmand patterm. This implies thatnatch; m i should not be read as “every
message accepted oy is accepted byn” (or vice versa), because there are some
environments (and therefore protocol sessions) where tter be no overlap between
messages. For example, the pattedoes not overlap witly if x is bound to 2 ang is
bound to 3. But there is at least one environment pair thabionat least one message
thatis accepted by both: whenandy are bound to 2 and the message is 2.

Evaluation. The theorem prover can tell usnfatchy is correct, but it cannot tell us
if the analysis is useful. We address the utility of the agsialyy running it on a large
number of protocol role pairs.



We have encoded 121 protocol roles from 43 protocol defimtimund in the Se-
curity Protocols Open RepositorgfoORg [15] in cPPL For each role, our analysis
generates every possible strand interpretation of the ttede compares each message
pattern with those of another role. Analyzing all possitde@ponly takes a few seconds
and we find that when usingatchy, 15.7% of protocol role pairs are non-overlapping
(i.e., for 843% of the pairs there is a message that is accepted by bothinoderun.)
This is an extravagantly high number.

If we actually look at the source of many protocolsippPL, we learn why there are
such poor results withatchy. It turns out that many protocols have the following form:

1 recv chan (m_1, mimsg) -> _ then

n match m m_2 then

wherem; andm, are particular patterns, such @sice, p) or {my }k.

Consider howmatch; would compare this message with another: Because it con-
tains a wildcard message (with typesg, it is possible fomnymessage to be accepted.
This tells us that the specificity of the protocol role dedpipacts the efficacy of our
analysis. In the next section, we develop a transformatioprotocol roles that in-
creases their specificity. This greatly improves the penorce oimatchy.

3.2 Message Specificity
Suppose we have a protocol with the following protocol role:

1 recv ch (ml, a) > _
2 then let nc = new nonce in
3 match ml {|b, K|} k > _

If this role were slightly different, then we could executith more partners:

1" recv ch (<ml={|b, K|} k>, a) > _
2 then let nc = new nonce in
3 match ml {|b, K|} k > _

In this modified protocol, the wildcard messageon line 1 is replaced by more
specifigpattern on line 1 We say that message pattemnis more specific than message
patternny, if for all messagesm, match; my mimpliesmatch; mp m(i.e., every message
that is accepted byy is accepted byr,.)

Our transformation, calleébldm, increases the specificity of message patterns. It
works as follows: for each message reception point whersagem is receivedfoldm
records the environment before receptiomasinspects the rest of the role for pattern
points where identifieiris compared with patterpsuch thao, -, p, and replaces each
occurrence of in mwith < i = p >, thereby increasing the specificity i

We prove the following theorems about this transformation:

Theorem 1 If - p then foldm p.



Theorem 2 Every pattern in p has a corresponding more specific pattefaldm p.

Preservation.We must also ensure that this transformation preservegtharstics
of the protocol meaningfully. However, since we are cleahgnging the set of mes-
sages accepted by the protocol (requiring them to be momfig)ethe transformed
protocol does not have the same meaning.

The fundamental issue is whether the protocol meaningferdifit. Recall that the
meaning of a protocol is a set of strands that represent fatenns. This is smaller
after the transformation. However, if we consider only thes that end in success—
those runs in which a message matching patfers provided when expected—then
there is no difference in protocol behavior.

Why? Consider the example from above. Suppose that a meskaggching the
patterniml, a) is provided at step 1 in the original protocol and that theaégrotocol
executes successfully. Them mustmatch the patterfib, k| } k, and, the message
M must match the pattefgml1={|b, k| } k>, a) . Therefore, if the same message
was sent to the transformed protocol, the protocol wouldtetesuccessfully. This
holds in every case because the transformalamysresults in more specific patterns
that have exactly this property.

What happens to runs that fail in the original protocol? Tbegtinue to fail in the
transformed protocol, but may falifferently Suppose that a messagds delivered to
the example protocol at step 1 and the protocol fails. legithils at step 1 or step 3. If it
fails at step 1, then it does not match the pat{erha) orthe patterg<ml={|b, k| }
k>, a) . Therefore it fails at step 1 in the transformed protocol afi.\f it fails at step
3, then the left component of the messageloes not match the patteftb k| } Kk,
and, the transformed protocol will fail at step 1 for the veayne reason.

In general, then, the transformed protocol’'s behaviorémtitalmodulo failure If
the same sequence of external messages is delivered tastotraad role, then it will
either (a) succeed like the untransformed counterpart ofa{bearlier because some
failing pattern matching was moved earlier in the proto&dmantically, this means
that the set of strand bundles that a protocol can be a pastsofialler.

The transformed protocol must actually be used in deployrdwerthe analysis to
be sound. If not, a message may be delivered to the wrongeatiWorse, this mis-
delivery will only be apparent later when the principal atf#s a deeper pattern match.
Since the more specific pattern was not matched initiallg,dkeep match will fail and
signal an error.

Adversary. This transformation either decreases the amount of harnadier-
sary can do or does not change it. Since the only differentelvavior is that faulty
messages are noticed sooner, whatever action the pringqdtl have taken before
performing the lifted pattern matching is not done. Therefthe principal doekess
before failing, and therefore the “hooks” for the adversagdecreasedOf course, for
any particular protocol, these hooks may or may not be usedfisin general there are
fewer hooks.

Evaluation. When we applyfoldm to our test suite of 121 protocol roles and then
run thematch; analysis, we find within seconds that the percentage of menkapping
role pairs increases from IB% to 61%. This means that for 61% of protocol role pairs
from our repository, it is always possible to unambiguodsliver a message to a single



protocol handler. However, when we look just at the spe@akof comparing a role
with itself (i.e., determining if it is possible to dispatth sessions correctly) we find
that none of the roles have this property accordingtch;.

This is an unsurprising result. Every message pafasrexactly the same as itself.
Therefore match; will resolve thatp has the same shape psand could potentially
accept the same messages. The problem isrth@h; looks only at the two patterns.
It does not consider the context in which they appear: a ographic protocol that
may make special assumptions about the values bound toncest@ables. In partic-
ular, some values are assumed to be unique. For example,ny pnatocols, nonces
are generated randomly and used to prevent replay attadksomauct authentication
tests [7]. In the next section, we incorporate uniquendssaar analysis.

3.3 Relying on Uniqueness

In the Andrew Secure RPC role (Fig. 2), the message receivéid®6 must match the
pattern{|nb| }kan, Wherenbis a nonce that was freshly generated on line 4. This means
thatno two sessionsf this role could accept the same message at line 6, becaake e
is waiting for adifferentvalue fornb.

We call the version of our analysis that incorporates infation about uniqueness
matchs. Whenever the analysis compares a variabiieom protocola and a variable
v from protocol, if uis in the set of unique values generatedobyr v is in the set
of unique values generated Bythen the two are assumed not to match, regardless of
anything else about the variables. In all other cases, twiables are assumed to be
potentially overlapping. In particular, the types are iggth unlikematchy.

Evaluation. When we applymatchg to our test suite, we find that the percentage
of non-overlapping sessions is896. After applying theoldm transformation, this in-
creases to 18%. There is no degradation to the performance of the asadytsier: the
entire test suite results are available almost instantasigo

If we look at the other 82% of the protocols, is there anything more that can
be incorporated into the analysis? There is. The first actfonany protocol roles is to
receive a particular initiation message. Since this iditeething the role does, it cannot
possibly contain a unique value generated by the role. Thergthematchs analysis
will not be able to find a unique value that distinguishes #gsion that the message is
meant for. In the next section, we will discuss how to get acbthis difficulty.

3.4 Handling Initial Messages

The first thing the Andrew Secure RPC role (Fig. 2) does (shomine 3) is receive a
certain messagéa, {|nal }kap). Since this message does not contain any value uniquely
generated for the active session role, it seems that thalinmiessages of two sessions
can be confused. However, a little reflection reveals thiislrmessagesreate ses-
sions, so by definition they may not be confused across sessio

Therefore, we can safely ignore the first message of a prbtots if it is not
preceded by any other action, for the purposes of detergihi@ dispatchability of a
protocol role’s sessions. We must, of course, compare thialimessage with albther



|matche|matchs|matchy 5 |matche|matchs|matchy 5

initial| 15.7%| 10.0%| 15.8% initial | 0.0% | 00.8%| 00.8%
foldm|61.0%|55.2%| 62.1% foldm | 0.0% |14.8%| 14.8%
| +foldm|31.4%|62.8%| 62.8%

(a) Non-overlapping Protocol Role Pairs (b) Non-overlagpProtocol Role Sessions

Table 1. Analysis Results

messages to ensure that the initial message cannot be ednfith, for example, the
third message, but we do not need to compare the initial rgessih itself. When we
use this insight with thenatchs analysis, we write it amatch, (g).

Evaluation. Table 1a presents the results when analyzing each pair ¢dquio
roles. Interestingly, unique values aret very useful when comparing roles, although
they do increase the coverage slightly. We have inspectegriftocols not handled by
match; 5 to determine why the protocol pairs may potentially accepsiame message.

1. Protocols with similar goals and similar techniques fdriaving those goals typ-
ically have the same initial message. Examples include gaahnn Stubblebine,
Kao Chow, and Yahalom protocol families.

2. Different versions of the same protocol will often havepgimilar messages, typ-
ically in the initial message, though not always. Often ¢heiotocols are modified
by making tiny changes so that the other messages remaiticaleA good exam-
ple is the Yahalom family of protocols.

3. Some protocols have messages that cannot be refinéddby because the key
necessary to decrypt certain message components mustdigereérom another
message or from a trust management database query. Thés laaiessage com-
ponent that will match any other message, so such protoaatsat be paired with
a large number of other protocols. One example isSthade of Yahalom.

4. For many protocols, there is dependence among the patigtching in the con-
tinuation of message reception. (One example iPtree of the Woo Lam Mutual
protocol.) As a result, only the independent pattern is tuibsd into the original
message reception pattern. This leaves a variable in therpahat matches all
messages.

Table 1b presents the results when analyzing the sessiarechfprotocol role. It
may seem odd that theatch, ) analysis is able to verify any sessions, given our argu-
ment againsiatch;. Why should removing the initial message make any diffee€nc
In 31.4% of the protocols, the protocol receivasly a single, initial message. We have
also inspected the protocols that the most permissivesessised analysis rules out.

1. Some messages simply do not contain a unique value. A pesrhéxample is the
Arole of many variants of the Andrew Secure RPC protocol.

2. Some roles have the same problems listed above as (3) arat¢épt that in these
instances the lack of further refinement hides a unique v&uae example is thé
role of the Splice/AS protocol.

Performance.Computing these tables takes about two minutes.



4 Dispatching

Our analysis determines when there is no message that ceuldrifused during any
run of two protocols. We can use this property to build a digpag algorithm. The
algorithm is very simple: forward every incoming messageuery protocol handler.
(For sessions, we must recognize the initial message amatkecaenew session; other-
wise, forward the message to each session.)

This algorithm is correct because every message that ipeatbysomeprotocol
(session) is only accepted byeprotocol (session), according to the overlap property.
This (absurd) algorithm makes no attempt to determine whpidhocol an incoming
message is actually intended for. This is clearly ineffitiafet, it shows that distinct
message spaces are sufficient for dispatching.

In a network load-balancing setting, where “forwarding sssage” actually corre-
sponds to using network bandwidth, this algorithm betragdntent of load-balancing.
On a single machine, where “forwarding a message” corredptminvoking a han-
dling routine, there are two major costs: (1) a linear se#inobugh the various proto-
col/session handlers; and, (2) tbeu cost associated with each of these handlers. In
some scenarios, cost 2 is negligible because most networérseare notpPu-bound.
However, since we are dealing witltyptographicprotocols, the cost of performing
decryption only to find an incorrect nonce, etc., is likelo®prohibitive.

A better algorithm would keep a mapping from input messageepss to underly-
ing sessions and efficiently compare new messages withrpsiftethe mapping prior
to delivery. The main problem with this mapping algorithrthat it requiregrustin the
dispatcher: the dispatcher must look inside encrypted corapts of messages to de-
termine which protocol (session) they belong to. In the sextion we discuss how to
(a) minimize and (b) characterize the amount of trust thagtrbe given to a dispatcher
of this sort to perform correct dispatching.

5 Optimization

Our task in this section is to determine how much trust, infthen of secret data (e.qg.,
keys), must be given to a dispatcher to inspect incoming agessto the point that
they can be distinguished. First, we will formalize how deegispatcher can inspect
any particular message with a certain amount of informat@tond, we will describe
the process that determines the optimal trust for any paaratocols (or any pair of
sessions of one protocol.) Finally, we formalize the seguepercussions of this trust.
The end result of this section is a metric of how efficient disping can be for a
protocol; all protocols should aspire to require no trughimdispatcher.

Message RedactionSuppose that a message is described by the pa#gfii| }«).
If the inspector of this message does not know kethen in generalthis message is
not distinguishable fronfa, x). We call this theedactionof pattern(a, {|b| }x) under an
environment that does not contdinwe writem | ° to denote the redaction of message
mundera. This is defined in Figure 4.

5 There are kinds of encryption that allow parties withoutwlezige of a key to know that some
message is encrypted byat key but still not know the contents of the message.
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Fig. 4. Message Redaction

Theorem 3 A receiver in environment can interpret m,°: for all c and m,g - m | °.
Theorem 4 Every message that is matched by m is matched BY. fSec. 3.2)
Theorem 5 o F m implies m/°=m.

These theorems establish that® captures the view that a dispatcher, that is trusted
with o only, has of a messaga. The next task is to minimize while ensuring that
match can rule out potential message confusion.

Minimizing o. Suppose we compane= ({|b| }, {|c|};) with m' = ({|b'|}. {|¢'| }}),
whereb andb’ are unique values of their respective protocols, withtch, 5. Be-
causeb andb’ are unique, the analysis, and therefore the dispatchedsneelook
atb andb’ only to ensure that these message patterns cannot deseilsarne mes-
sages. This means that even though the patterns mentioeys& knd j (k' andj’),
only k (K') is necessary to distinguish the messages. Another way tifigttis is that
m | = ({|b|}«, *) does not overlap withi | K} = ({|b/|}\, %), according tonatchy, .

We prove that ifm andn' cannot be confused accordingrtatch, then there is a
computable smallest set such tham | © also cannot be confused withi |° according
to match. We prove this by first showing that for ati, there is a set/y, such that for
all g, m|"m“9— m | ¥m_In other words, there is a “strongest” set fothat cannot be
improved. This set is the setsuch thato -, m. Our brute-force search construction
algorithm then considers each subsetf (7,y) and selects the smallest subset such
that the two messages are still distinct affer

We have run this optimization on our test-suite of 121 protoacles; it takes about
one minute total to complete. Figure 5a breaks down profuaios according to the per-
centage of their keys required to establish trust. Thislysdgows that 43% of protocol
pairs do not requiranytrust to properly dispatch. The other end of the graph shbais t
only 18% of all protocol pairs require complete trust in thepatcher. Figure 5b shows
the same statistics for protocol sessions. In this sitnabd% of the protocol roles do
not require any trust for the dispatcher to distinguishisess while 37% require com-
plete trust. These results were calculated.Biriinutes and 5 seconds respectively.
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These experiments indicate that it is very fruitful to pwsptimizing the amount
of trust given to a dispatcher. However, we have not yet ataraed the security con-
siderations of this trust. We do so in the next section.

Managing Trust. In previous sections, we have discussed how much trust ® giv
to a load-balancer so it can dispatch messages correctlyisisection, we provide a
mechanism for determining the security impact of that trust

Recall that a protocol is specified asteand a list of messages to send and receive.
We have formalized “trust” as a set of keys (and other datdéetshared with a load-
balancer. We define a strand transformatjérthat transforms a strarsisuch that it
sharesk by sending a particular message contairkrag soon as possible. (It is trivial
to lift 1% to share multiple values.) We definéX as follows:

(sd— s) ¥ =sd— +(LB,v) — sif k € boundsd)
(sd—s) 1¥ = sd— (s 1) if k ¢ boundsd)
k=

(This definition clearly preserves well-formedness andaguers its task.) In this defini-
tion the tag_B indicates that this value is shared with the load-balangsome means.
Depending on the constraints of the environment, this meande assumed to be per-
fectly secure or have some specific implementation (e.gusiyg a long-term shared
key or public-key encryption.)

Sinces 1K is a strand, it can be analyzed using existing tools and tqaka [4, 6,
10, 16] to determine the impact of an adversary load-batance

6 Insights

The development of the message space overlap analysisatrdshoptimization give
us insight intowhyandhowcryptographic protocol message spaces do not overlap.

The effectiveness ahatch; for pairs of protocols demonstrates that it is primar-
ily shapethat prevents overlap between different protocols. Thisesponds with our
intuitions, because protocols typically use dissimilanfats.



The disparity betweematch; and matchs demonstrates that for pairs of protocol
sessions, it is uniquely originating values that prevemtriap. Again, this corresponds
with our intuitions, because nonces are consciously dedigm prevent replay attacks
and ensure freshness, which corresponds to the goal offidagtsessions.

The statistical differences between these two analyseffareht settings allow us
to make these conclusions in a coarse way. But the trust @atiion process answers
the real question: “Why do two message spaces not overlap?”

When the trust optimization process redacts a messageginisving the parts of
the message that anot useful for distinguishing that protocol (session). Thisame
that what remainss useful, and therefore the fully redacted messagenig what is
necessary to ensure that there is no message space ovégpfdr any two protocols
(sessions), it is the trust optimization that explains wisre is no overlap.

7 Related Work

Previous Work. In prior work with Guttman and Ramsdell [13], we only addesbs
the question of when a protocol role supports the use of plelessions. In addition,
that approach was significantly different from the one pmé=ehere. Though we pre-
sented a program transformation similarfdtim, we did not formalize the correctness
of the transformation. Second, we used only the naive tlibpay algorithm and did
not investigate a more useful algorithm. Third, we did natsider pairs of protocols.
Therefore, the current presentation is more rigorous tigecand general.

Our previous problem was only to inspect protocol role mgsgaatterns for the
presence of distinguishing (unique) values. This is cjeiadorrect in the case of pro-
tocol role pairs. Consider the rokg which accepts the messalgl, then(Na, ), and
role B, which accepts the messadg, then(x,Ny), whereNy is a local nonce fox. Each
message pattern of each role contains a distinguishingyvatuit passes the analysis.
But it is not deployable with the other protocol because itds possible to unambigu-
ously deliver the messaddl,, N,) after the messagés, andM;, have been delivered.

It is actually worse than this. We can encode these two poddaxs one protocol:
accept eitheM, or My, then depending on the first message, acdpt«) or (x,Np).
Our earlier analysis would ignore the initial messages ¢iis problematic in itself if
Ma andMy, overlap), then check all the patterns in each branch, araitrepccess. This
is clearly erroneous because it is possible to confusksession with &8 session.

This work avoids these problems by directly phrasing thélemm in terms of de-
ciding message overlap—the real property of interest rdttaa a proxy to it as distin-
guishing values were. It is useful to point out, however tha earlier work was sound
for protocol roles that did not contain branching, whichrisvary large segment of our
test suite. Our use of Coq ensures that our analysis is ¢daorel| protocols.

Dispatching. The Guttman and Thayer [9] notion of protocol independehmsigh
disjoint encryption and a related work by Cortier et al. [R]dy the conditions under
which security properties of cryptographic protocols amesprved under composition
with one or more other protocols. This is an important problsince it ensures that it is
safeto compose protocols. A fundamental result of the Guttmadysshows that differ-
ent protocols must not encrypt similar patterns by the sagys-k-a similar conclusion



to some of our work. However, our work complements theirstogyng whether it is
possibleto compose protocols and, in particular, how efficient suchudtiplexer can
be. Ideally both of these problems must be addressed bedpieyanent.

Detecting type-flaw attacks [2, 11, 14] is a similar problenotrs. These attacks
are based on the inability of a protocol message receivenambiguously determine
the shape of a message. For example, a nonce may be sent hheeeeiver expects
a key, a composite message may be given in place of a key, méseTattacks are of-
ten effective when they force a regular participant intaagdinown values as if they
were keys. Detecting when a particular attack is a type-flaack, or when compo-
nents of a regular protocol execution may be used as suchmilaisto our problem.
These analyses try to determine when sent message compaaertie confused with
what a regular participant expects. However, in these gistances a peculiar notion of
message matching captures the ambiguity in bit pattermae@malyses use size-based
matching where any messagersbits can be accepted by a pattern expectifmts;
for example, am-bit nonce can be consideredabit key. Others assume that message
structure is discernible but the leaf-types are not, so @@paired with a nonce cannot
be interpreted as single nonce, but it may be interpretednasmee paired with a key.
Our analysis is similar in spirit but differs in the notionmkssage overlap: we assume
that message shapes can be encoded reliably.

Optimization. The problem of optimizing the amount of trust given to a dishas
very similar in spirit to ordering of pattern-matching cé®s [12] and ordering rules in
a firewall or router [1], which are both similar to the decisitbee reduction problem.
However, our domain is much simpler than the general domfainese problems and
the constants are much smallev| is rarely greater than 3 for most protocols), so we
are not afflicted with many of the motivating concerns in thaseas. Even so, these
problems really serve only as guidelines for the actualnoigfition process, not the
formulation of the solution (i.e ).

8 Conclusion

We have presented an analysisafch) that determines if there is an overlap in the
message space of different protocols (or sessions of the pestocol.) We have shown
how it is important to look at real protocols in the develomingf this analysis (in our
case, thespoRErepository [15].) By looking at real protocols, we learnédttit was
necessary to (1) refine protocol specificatiofedd(n), (2) incorporate cryptographic
assumptions about unique valuesafchs), and (3) take special consideration of the
initial messages of a protocahétch, g)).

We have shown how this analysis and the message space opesfagrty can be
used to provide the correctness proof of a dispatching diigor We have discussed the
performance implications of this algorithm and pointed dodvthe essential features
of a better algorithm. We have developed a formalizatifg) ©f the “view” that a
partially trusted dispatcher has of messages. We haveriegsan optimization routine
that minimizes the amount of trust necessaryrfiatch to succeed on a protocol pair.
We have presented the results of this analysis foistherErepository. We have also
formalized the modificationsf) that must be made to a protocol in order to enable



trust of a load-balancer. Lastly, we have discussed howojttisnization explainsvhy
there is no overlap between two message spaces.

The entire work was formally verified in the Coq theorem prasdistant to increase
confidence in our results.
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