
Pointcuts and Advice in Higher-Order Languages
�

David B. Tucker and Shriram Krishnamurthi
Department of Computer Science

Brown University
� dbtucker, sk � @cs.brown.edu

ABSTRACT
Aspect-oriented software design will need to support languages
with first-class and higher-order procedures, such as Python, Perl,
ML and Scheme. These language features present both challenges
and benefits for aspects. On the one hand, they force the designer
to carefully address issues of scope that do not arise in first-order
languages. On the other hand, these distinctions of scope make it
possible to define a much richer variety of policies than first-order
aspect languages permit.

In this paper, we describe the subtleties of pointcuts and advice
for higher-order languages, particularly Scheme. We then resolve
these subtleties by alluding to traditional notions of scope. In par-
ticular, programmers can now define both dynamic aspects tradi-
tional to AOP and static aspects that can capture common security-
control paradigms. We also describe the implementation of this lan-
guage as an extension to Scheme. By exploiting two novel features
of our Scheme system—continuation marks and language-defining
macros—the implementation is lightweight and integrates well into
the programmer’s toolkit.

1. INTRODUCTION
Current programming languages offer many ways of organizing
code into conceptual blocks, whether through functions, objects,
modules, or some other mechanism. However, programmers of-
ten encounter features that do not correspond well to these units
of organization. Such features are said to “cross cut” the design
of a system, because the code that implements the feature appears
across many program units. In a procedural language, such a fea-
ture might be implemented as pieces of disjoint procedures; in an
object-oriented language, the feature might span several methods or
even objects. These cross-cutting features inhibit software develop-
ment in many ways. For one, it is difficult for the programmer to
reason about how the disparate pieces of the feature interact. Also,
they break modularity: the programmer cannot simply add or delete
these features from a program, since they are not separable units.
�
This research was partially supported by NSF grants ESI-0010064

and ITR-0218973.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AOSD 2003 Boston, MA USA
Copyright ACM 2003 1–58113–660 –9 /03/002...$5.00

Recently, many researchers have proposed aspect-oriented software
development (AOSD) as a method for organizing cross-cutting fea-
tures [12, 4, 10, 17, 2, 16, 18]. In particular, Kiczales et al. have
presented aspect-oriented programming (AOP); in this paradigm,
the pieces of each feature combine to form a separate component,
called an aspect. In addition to containing the code necessary for a
feature, the aspect must indicate when this code should be run dur-
ing program execution. Kiczales et al. also implemented a practical
aspect-oriented extension to Java, called AspectJ, which allows the
programmer to define pointcuts and advice and integrates them into
a program [11].

Current languages that support AOP, such as AspectJ, have been
built as extensions to object-oriented and first-order procedural lan-
guages. The goal of our work is to understand the relationship be-
tween AOP and functional programming. Two reasons motivate
our investigation of this topic. On one hand, there are many widely
used functional languages that could benefit from AOP. In addi-
tion to conventional functional languages like ML, Scheme, and
Haskell, many new languages, in particular “scripting” languages
such as Perl and Python, now include anonymous and higher-order
functions. As more and more functional languages emerge, we
need to understand the feasibility and utility of aspect-oriented pro-
gramming is these languages. On the other hand, we can ask wheth-
er the greater abstractive power of functional programming enhanc-
es AOP. We might be able to simplify the specification of aspects
because the underlying language provides a stronger framework for
defining linguistic extensions. Also, we might use parametricity to
define more general aspects, and develop aspect combinators by
employing higher-order functions. Clearly, the interaction between
AOP and functional programming merits careful investigation.

The two main challenges to adding AspectJ-style aspects to a func-
tional language are the specification of aspects and the defining the
scope of an aspect’s applicability. First, we need to decide how to
specify pointcuts and advice. Are they new kinds of values? Do we
need a sublanguage for describing when aspects are to be invoked?
Second, we must address the issue of scope. Unlike a first-order
language, where all procedures and aspects are declared at the top
level and have global scope, definitions in a higher-order language
can be introduced at any point and have more specific scope. We
must decide the scope in which an aspect can affect program exe-
cution.

We will address these challenges by defining an aspect-oriented ex-
tension to a functional language. Section 2 presents background on
AspectJ, and puts forth our aspect-oriented extension to Scheme.
Section 3 gives examples of pointcuts and advice in our language,

158

and discusses the synergy between AOP and functional program-
ming. Section 4 informally presents the semantics for our exten-
sion. In Section 5, we describe in detail a lightweight implemen-
tation of aspects. Section 6 discusses related work, and section 7
concludes.

2. DEFINING POINTCUTS AND ADVICE
This section first describes AspectJ’s model of aspect-oriented pro-
gramming. We then present our formulation of AspectJ-style point-
cuts and advice in a higher-order language, and then address the
issue of obliviousness with respect to our system.

2.1 A Brief Overview of AspectJ
AspectJ allows the programmer to modify a program’s behavior at
certain points during its execution, called join points. In Java, these
points include method calls, variables accesses, exception throws,
and object or class initialization. We will focus on method call join
points because they are sufficient for demonstrating the utility of
AspectJ.

Each join point presents an opportunity for an aspect to affect the
computation. The effect might be as simple as writing some trace
message to output, or as complex as replacing the next computa-
tion before it occurs. The specification of an aspect has two com-
ponents: the pointcut descriptor (or pcd), which determines when
the aspect should apply, and the advice, which describes what com-
putation to perform.

AspectJ provides several primitive pointcut descriptors; two im-
portant pcd’s are call(m), which matches calls to method m, and
cflow(p), which matches any join point within the dynamic extent
of a join point matching p.

An aspect’s advice specifies what computation to perform at those
join points denoted by the pcd. The programmer can define dif-
ferent kinds of advice depending on how execution should proceed
with respect to a given join point. The three basic kinds of advice
are before, after, and around. Before advice executes before con-
trol enters a join point; after advice executes when control returns,
possibly due to a thrown exception. Around advice replaces the
current join point but can reinstate the displaced computation via
the keyword proceed.

The pcd and advice are not strictly independent entities in AspectJ.
The pcd may pattern match against values in the join points it spec-
ifies; these values can then be referenced in the advice code. As-
pect definitions often use this facility to capture the arguments to a
method call.

2.2 Definitions in Higher-Order Languages
We support pointcuts and advice in the presence of higher-order
functions, while retaining the essential features of AspectJ. We
chose PLT Scheme as the sandbox for our experimentation be-
cause it provides strong support for linguistic extensibility: higher-
order functions, dynamic types, and a powerful macro system. PLT
Scheme makes it particularly easy to define new languages us-
ing the macro system, a feature we will rely on for developing a
lightweight implementation of aspects.

The fulcrum of our approach is that like functions, both pointcuts
and advice should be first-class entities. This decision is consistent
with the design of functional languages, and enables us to exper-
iment with defining more general aspects. For example, we can

define aspects that are parameterized over some set of variables, or
write aspect transformers or combinators using higher-order func-
tions; we will demonstrate several such examples. First, though,
we must answer the question: what are first-class pointcuts and ad-
vice?

Recall the defintion of a pointcut descriptor: it describes a set of
join points over which an aspect’s advice applies. In a higher-order
language, the natural way to describe a set is by an inclusion pred-
icate. Thus, we represent a pcd as a function that consumes the list
of join points in the dynamic context and returns true or false. To
test whether the current join point represents a call to the function
f , the predicate would be:

(lambda (jp)
(eq? f (first jp)))

where jp is the list of dynamic join points. The first element in
this list is the most recent join point, the second element is the next
most recent join point we have not exited, and so forth.

This code illustrates two key points about our specification of pcd’s.
A pcd is first-class: it can be any Scheme expression that evaluates
to a predicate over a list of join points. Also, to test whether two
functions are identical, we use the built-in Scheme predicate eq?.
This predicate tests for equality on procedures by verifying that
these two conditions hold: the two procedures were defined in the
same source location, and the environments stored in their closures
are identical.

This definition of procedure equality differs notably from the defi-
nition used in first-order languages. In a first-order language, every
procedure has a global name, and can be unambiguously identi-
fied by that name. However, in Scheme and most higher-order
languages, functions are inherently nameless. Futhermore, since
higher-order functions close over variables external to their defi-
nitions, a single function may be instantiated in two different envi-
ronments. Clearly, these two instantiations are not equivalent, since
they produce different results for a given input. Scheme’s eq? pro-
vides a useful and fast conservative approximation of observational
equivalence between functions.

Of course, a pointcut descriptor can look further than the most re-
cent join point. To match all direct calls from g to f , we write:

(lambda (jp)
(and (eq? f (first jp))

(eq? g (second jp))))

Or we can match any calls to f within the dynamic extent of g:

(lambda (jp)
(and (eq? f (first jp))

(memq g (rest jp))))

Using this formulation, we can define the standard pcd builders call
and within as follows:

(call f) � (lambda (jp) (eq? f (first jp)))

(within f) � (lambda (jp) (and (not (empty? (rest jp)))
(eq? f (second jp))))

159

We can also define the pcd operators cflow and &&:

(cflow pcd) � (lambda (jp)
(and (not (empty? jp))

(or (app/prim pcd jp)
(app/prim (app/prim cflow pcd)

(rest jp))))))
(&& pcd1 pcd2) � (lambda (jp)

(and (app/prim pcd1 jp)
(app/prim pcd2 jp))))

The syntactic form app/prim performs a “primitive application”;
that is, it applies a function to an argument without examining
whether aspects apply. If we had instead defined cflow using (pcd
jp), that call would itself invoke aspect weaving, which in turn
would evaluate the same cflow pcd, leading to an infinite loop.

Now that we have defined pcd’s as first-class values, we turn to
defining advice. We will focus on around advice, since it is strictly
more general than both before and after. We consider a slightly
simpler form of around advice than what AspectJ allows—we view
it as a transformation on the current join point. Specifically, we de-
fine advice as a function transformer that consumes the original
function to be executed, and returns a function to use in its place.
This formulation of advice is similar to the denotational semantics
of advice given by Wand et al. [20] for a first-order procedural
language. For example, we can define the following advice:

(lambda (p)
(lambda (a)

(printf "aborted call to ˜s with args ˜s" p a)
17))

The first parameter, p, is the function to transform; the second pa-
rameter, a, is the argument passed to that function. When this ad-
vice captures the function call, it prints an error message and re-
turns the value 17 without calling the original function. More in-
terestingly, we can define advice that changes the argument to the
captured function:

(lambda (p) (lambda (a) (app/prim p (� a 83))))

This advice adds 83 to the argument before calling the function.
We employ app/prim to capture the behavior of AspectJ’s pro-
ceed, which applies the original function without performing any
additional aspect weaving.

Having seen how both pcd’s and advice are specified as first-class
entities, we now need a way to install them in the computation. To
that end, we introduce a new term in our language named around:

(around pcd advice body)

Informally, the semantics of this expression is to evaluate body un-
der the aspect defined by pcd and advice. A simple example of its
use is:

(define (double x) (� x x))
(around (call double) (lambda (p)

(lambda (a)
(printf "calling double")
(app/prim p a)))

(double 143))

When executed, this program prints a string to standard output, and
returns the value 286.

While the around construct may ostensibly seem straightforward,
we have blithely ignored a critical issue: the extent of an aspect’s
jurisdiction. In defining around, we need to be more specific about
when the aspect will be active, especially in the presence of higher-
order functions. Fortunately, the problem of reasoning about the
extent is a familiar one: we encounter it in defining whether vari-
ables should be statically or dynamically scoped. In a first-class
procedural value, statically-scoped variables get their values from
the environment of the procedure’s definition; dynamically-scoped
variables get their values from the environment of the procedure’s
invocation.

We exploit this distinction for defining aspects also. A static aspect
declaration applies to an expression no matter where it is used. If
the body of the declaration is a procedure, then the aspect applies in
the use of the procedure. In contrast, a dynamic aspect applies only
in its dynamic extent, which is the body of the aspect declaration.
When the body finishes computing, the aspect no longer applies.
Any procedures defined in the body do not apply the aspect outside
that extent.

The around construct creates static aspects; we also support a con-
struct fluid-around which creates dynamic aspects. To understand
the difference, consider these definitions:

(define (add2 x) (� x 2))
(define trace-advice (lambda (p)

(lambda (a)
(printf "calling add2")
(app/prim p a))))

Consider each of the following uses of this advice:

((around (call add2) trace-advice (lambda (v) (add2 v))) 7)

applies the aspect statically. Therefore, the aspect is in force when
the procedure is applied to 7. As a result, it prints a message before
returning 9. In contrast, in the following use,

((fluid-around (call add2) trace-advice (lambda (v) (add2 v))) 7)

the extent of the fluid-around terminates before the procedure is
applied, resulting in no console output.

Now suppose we define the following function as well:

(define (apply-to-4 f) (f 4))

Suppose we now attempt to apply trace-advice:

(around (call add2) trace-advice
(apply-to-4 add2))

apply-to-4 has no aspects present as its definition. Therefore, the
advice is never invoked. In contrast, applying the advice dynami-
cally

(fluid-around (call add2) trace-advice
(apply-to-4 add2))

results in console output.

160

2.3 Obliviousness
Consider the following Java program:

public class Point
�

int x, y;
Point (int x, int y)

�
this � x � x � this � y � y ���

int getX()
�

return x �	�
int getY()

�
return y ���

public static void main(String args[])
�

Point p � new Point(3, 4);
p.getX() ���
�

By writing the following AspectJ code, we can trace all calls to
getX():

public aspect Trace
�

before() : call(int getX())
�

. . . �
�

This alteration has the key property that the programmer did not
have to anticipate any future changes. This property is called obliv-
iousness [7]; it ensures that aspects can affect the behavior of a
program whose original source does not contain any references to
aspects.

Consider the following transliteration of the above Java program
into Scheme:

(define (new-point x y) . . .)
(define (point-get-x pt) . . .)
(define (point-get-y pt) . . .)

(define (main)
(let ([p (new-point 3 4)])

(point-get-x p)))

The programmer can now separately write the following aspect:

(fluid-around (call point-get-x) (lambda (p) (lambda (a) . . .))
(main))

Notice that we were able to modify the behavior of the original
program without leaving any hooks in it. Based on examples such
as this, we therefore believe our version of pointcuts and advice
have the same power of obliviousness as AspectJ.

The degree of obliviousness depends on the ability to name entities.
Some of these entities are first-order (and named), such as classes in
Java and top-level definitions in Scheme. For these, it is relatively
easy to obliviously modify their behavior—both AspectJ and our
system provide comparable power.

Other entities are often anonymous and first-class. Examples of
these include both closures in Scheme and objects in Java. The
anonymity makes it is difficult to modify their behavior primarily
because it is difficult to identify them in the first place. We can nev-
ertheless name an expression such as new . . . in Java using static
distance coordinates. However, this does not give us a way to dis-
tinguish among the potentially infinite number of objects generated
at this creation site.

Some closures in Scheme are analogous to objects in Java. A pro-
cedure that is nested within another procedure is not instantiated

until the outer procedure is invoked, and may result in a potentially
infinite number of closures at run time. Obliviously modifying the
behavior of these procedures therefore poses the exact same prob-
lems as doing it for objects in Java.

3. PROGRAMMING WITH
ASPECTS IN SCHEME

We have seen the language features necessary for adding pointcuts
and advice to a functional language. In this section, we present ex-
amples demonstrating the interaction between functional program-
ming and aspect-oriented programming. First, we give a simple
program that benefits from the use of both static and dynamic as-
pects. Second, we show examples of how higher-order aspects are
both feasible and useful.

3.1 Static and Dynamic Aspects
To study the utility of aspects in a functional language, we will look
at an example of how we can implement a security model using a
combination of static and dynamic aspects. Consider this scenario:
we want to provide a simple operating system API to an untrusted
client program. This API contains three functions: read-file, write-
file, and run-program. The original code is organized by function,
with security checks scattered throughout:

(define (read-file f)
(if (no-read-permission? user)

(raise ’no-permission-exception)
(let ([p (open-file f)])

. . .)))

(define (write-file f)
(if (no-write-permission? user)

(raise ’no-permission-exception)
(let ([p (open-file f)])

. . .)))

(define (run-program p)
(if (no-run-permission? user)

(raise ’no-permission-exception)
(load&run p)))

(list read-file write-file run-program) ;; export three functions

First, we would like to factor out the permission-checking code into
aspects:

(define (read-file f)
(let ([p (open-file f)])

. . .))

(define (write-file f)
(let ([p (open-file f)])

. . .))

(define (run-program p)
(load&run p))

(define read-pcd (&& (call open-file) (within read-file)))
(define read-adv (lambda (p) (lambda (a)

(if (no-read-permission? user)
(raise ’no-permission-exception)
(app/prim p a)))))

161

(define write-pcd (&& (call open-file) (within write-file)))
(define write-adv (lambda (p) (lambda (a)

(if (no-read-permission? user)
(raise ’no-permission-exception)
(app/prim p a)))))

(define run-pcd (call load&run))
(define run-adv (lambda (p) (lambda (a)

(if (no-run-permission? user)
(raise ’no-permission-exception)
(app/prim p a)))))

(around read-pcd read-adv
(around write-pcd write-adv

(around run-pcd run-adv
(list read-file write-file run-program))))

Since we use static aspects to encapsulate the permissions feature,
the aspect will be used when evaluating the bodies of the function,
wherever that may occur. Thus, we can safely export these three
functions from our library. Second, we would like to add an extra
security measure to the run-program function. The argument p is
some client-supplied program, and we may to restrict its access to
certain resources. For example, we can ensure that the client pro-
gram does not open any network connections by using a dynamic
aspect. This aspect will dictate that any call to open-socket that oc-
curs in its dynamic extent should fail. We add this dynamic aspect
in the advice that governs run-program:

(define no-socket-adv (lambda (p) (lambda (a)
(raise ’no-socket-allowed))))

(define run-adv (lambda (p) (lambda (a)
(if (no-run-permission? user)

(raise ’no-permission-exception)
(fluid-around (call open-socket)

no-socket-adv
(load&run p))))))

This security example illustrates the utility of both static and dy-
namic aspects. Static aspects allow us to encapsulate cross-cutting
features of library functions, and export the functions so that they
use the aspect when applied. Dynamic aspects give us control of
whatever computations occur within some dynamic extent: in this
case, we could catch certain function calls in the extent of an un-
trusted client’s program.

3.2 Reusing Aspects
In this section, we study examples of how first-class pointcuts and
advice allow greater reuse. First, we examine the difference be-
tween pointcut descriptors in our language, and those of AspectJ.
In our formulation, pcd’s are first-class values: they are predicates
over a list of join points. Like all values in a functional language,
they can be passed to and returned from functions. In AspectJ,
however, the programmer cannot abstract over pcd’s; Kiczales et
al. explicitly state: “Pointcuts are not higher order, nor are pointcut
designators parametric.” [11] Are there any advantages to having
first-class pointcuts?

Consider a pcd that describes the following join point: any call to
the function func1 where control flowed through functions f , g, and
h in that order. This situation might arise when the programmer

registers func1 as a callback function, and she wishes to examine
those calls to it that originated from control flow sequence f , g, h
in the library. We can write this pcd as follows:

(&& (call func1)
(cflow (&& (call f)

(cflow (&& (call g)
(cflow (call h)))))))

Now let’s describe the same scenario, but for the function func2
instead of func1. In AspectJ, we would have to write the entire pcd
again, due to the lack of parametricity. This duplication of code not
only makes the programmer’s task more difficult, but likely will
induce errors when modifying the code. In our language, on the
other hand, we can parameterize the pcd over the function:

(define (thru-fgh a-function)
(&& (call a-function)

(cflow (&& (call f)
(cflow (&& (call g)

(cflow (call h))))))))

Thus thru-fgh consumes a function and returns a pointcut descrip-
tor. We can use thru-fgh to create a pcd for both func1 and func2,
or indeed for any function:

(thru-fgh func1)
(thru-fgh func2)

By making pcd’s first-class entities in a functional language, we
automatically get the greater abstractive capability afforded by pa-
rameterization.

We can take this abstraction one level further. In the example
above, we used a chain of cflows to represent a path of control flow.
We will likely use this control flow pattern beyond just the func-
tions f , g, and h, so we would would like to define a more general
pointcut operator: one that takes a list of pcd’s and produces a new
pcd representing any join point where control flowed successively
through each pcd in the list. We’ll call this operator cflow � . In our
language, we can define cflow � as a recursive function in terms of
cflow:

(define (cflow � lis)
(if (empty? lis)

(lambda (jp) true)
(cflow (&& (first lis)

(cflow � (rest lis))))))

Alternatively, we could define the function using foldr:

(define (cflow � lis)
(foldr (lambda (this-pcd rest-true)

(cflow (&& this-pcd rest-true)))
(lambda (jp) true)
lis))

We can rewrite our above example thru-fgh as follows:

(define (thru-fgh a-function)
(&& (call a-function)

(cflow � (list (call f) (call g) (call h)))))

162

The operator cflow � is higher-order pointcut descriptor: it con-
sumes a list of pcd’s and produces a new one. Again, the power
to define such operator comes for free from defining pcd’s as first-
class entities in a functional language. We believe this abstractive
power represents a significant improvement over the capabilities of
AspectJ.

Not only can we define higher-order pointcuts, but we can define
higher-order advice. We illustrate one scenario where this ability is
useful. Consider the circumstance where we have two aspects: one
that logs calls to a function, and one that filters calls to a function
based on its argument. The advice for the logging aspect prints out
a message before and after the join point:

(lambda (p)
(lambda (a)

(begin
(printf "entering fn")
(app/prim p a)
(printf "exiting fn"))))

The filtering aspect may or may not enter the join point, depending
on the value of the argument; its advice is defined as follows:

(lambda (p)
(lambda (a)

(unless (zero? a)
(app/prim p a))))

What happens if these two aspects both apply to the same join
point? There are two possibilities:

1. The filtering advice executes first, and its call to p invokes the
logging advice. When a is zero, it does not call the logging
advice (and thus the original function), so nothing is printed.

2. The logging advice executes first, and its call to p invokes
the filtering advice. When a is zero, the logging advice still
prints out its messages, even though the pruning advice does
not call the original function.

Given these two choices, we probably desire the behavior of the
first. How can we ensure this behavior? In AspectJ, the order of as-
pect weaving depends on the order of their definitions in the source
file (though we could use the dominates modifier to specify order
more precisely). A safer approach would be to combine these two
pieces of advice ourselves, so that we have absolute control over
their order, and do not have to rely on the implicit ordering of the
system. Thus we could write a function that consumes these two
advice functions and returns their combination:

(define (sequence-advice advice1 advice2)
(lambda (p)

(lambda (a)
((advice1 (advice2 p)) a))))

This function sequence-advice is higher-order advice: it consumes
two pieces of advice and produces new advice. For more complex
aspects, we would need more detailed ways of combining them.
In AspectJ, we cannot define new combinators without modifying
the internals of aspect weaving. In our language, we have complete
control over how to combine multiple aspects that apply to the same
join point.

4. SEMANTICS
We have developed a formal semantics for pointcuts and advice
in a higher-order language, which we will briefly describe here.
The important element of these semantics is an aspect environment,
which maintains a list of active aspects. The constructs around and
fluid-around extend the aspect environment, while function appli-
cation examines the environment to apply relevant aspects. The
remaining parts of the language are standard, except that functions
close over both the variable and aspect environments.

The aspect environment is a list of triples �
�������	����������� ����� �"!$#$%'&
(,
where �)����� and �������
�*��� are (procedure) values, and the �"!�#"%'& tag is
either +-,/.
,/0	1 or 2	3�45.7680	1 . The expression (around 9:�$���;9<�����
�*���
9<=�>
��?) evaluates its first two components, adds the resulting values
to the aspect environment with a +-,@.
,50	1 tag, and then evaluates the
body in this extended environment. The semantics of fluid-around
is similar, except that the scope tag is 2	3�45. 6�0	1 .

Next we turn to function application. Recall that our language has
two such constructs: the default one, which weaves aspects into
the computation, and a “primitive” application, which does not ob-
serve aspects. Although app/prim does not invoke aspects, it must
create the correct aspect environment in which to evaluate the body
of the function. Let A �B��� be the aspect environment present at the
call site, and let ADCFE$G be the environment extracted from the func-
tion’s closure. The aspect environment for evaluating the function
body then comprises the 2�3�45. 680�1 aspects in A �B��� and the +-,/.
,/0	1
aspects from A C�E�G .

Finally we come to the heart of our semantics: how to inject aspects
into the computation during function application. This process of
“aspect weaving” contains three steps:

1. Record the join point. We record that we have entered a
new join point by placing a mark on the stack. This mark has
no direct effect on the computation; it is simply discarded
when the function returns.

2. Compute the current join points. We compute the list of
current join points, which each pcd takes as an argument.
This list can be created by a function over (some concrete
representation of) the current continuation.

3. Check each aspect. We check each aspect in the aspect en-
vironment: if the pcd holds, we apply the advice to the func-
tion. After checking all aspects, we apply the resulting func-
tion to the original argument. If no pcd evaluates to true,
this function application reverts to app/prim. For each as-
pect that holds, the application of the advice to the function
also invokes aspect weaving.

We give the formal specification of these semantics as a variation
on the CEKS machine [6]; full details will be available in a forth-
coming technical report [19].

5. IMPLEMENTATION
We demonstrated that we can support several key elements of aspect-
oriented programming in a functional language by adding three lan-
guage constructs. In this section, we will present these constructs
as syntactic extensions to the Scheme language. To do this, we
will need to employ Scheme’s macro system, along with the PLT
Scheme facilities for creating new languages. We will also describe
continuation marks, and use them to define our language constructs.

163

5.1 Background on PLT Scheme
In Scheme, we can easily define language extensions using its mac-
ro system. Scheme macros are effectively functions that rewrite
syntax trees; they are more powerful than lexical macros, such
as those provided by the C preprocessor, which operate only on
strings. Hygienic macros ensures that the syntax tree resulting from
a transformation does not accidentally capture any variables from
the surrounding context [13, 15]. To define macros in PLT Scheme
[8], we will use the syntax-case form [5], which allows pattern-
matching [14] and creates hygienic macros.

Macros themselves are not sufficient for defining our aspect-orient-
ed extensions. As we saw earlier, we must redefine the behavior
of function application so that it performs aspect weaving; thus,
we are really creating a new language, not merely an extension
to Scheme. Fortunately, PLT Scheme’s module system provides
an easy way to create a new language: the programmer defines a
module that exports the syntax definitions for every construct in
the language [9]. Our implementation exports the default language
constructs from Scheme with a few changes. We define and export
the new syntactic forms around and fluid-around. We also define
app/weave, the form of function application that weaves aspects,
and export it as the default application. We then export Scheme’s
default function application as app/prim.

In order to implement aspect-oriented programming, we need one
additional feature of PLT Scheme: continuation marks. Clements,
Flatt, and Felleisen introduced continuation marks as a mechanism
for implementing an algebraic stepper [3]. The stepper inserts a
break point between each evaluation step to show the execution of
a program. At each break point, the stepper prints representations
of both the current value and the current continuation. Clements et
al.’s insight was to mark every computation point with a represen-
tation of its action; the stepper can then reconstruct the structure of
the continuation by examining these marks at break points.

In terms of language design, these marks require the addition of
two primitives. Intuitively, with-continuation-mark adds a mark,
and current-continuation-marks examines the marks. (We will
abbreviate these constructs as w-c-m and c-c-m respectively.) The
expression (w-c-m tag 9IHJ9LK) first evaluates 9IH , then 9LK , and
returns the value of 9LK . The expression (c-c-m tag) looks for in-
stances of (w-c-m tag � . . .) in the current continuation, and re-
turns a list of all such � ’s. For example:

(define (fact n)
(w-c-m ’fact-arg n

(if (zero? n)
(begin

(display (c-c-m ’fact-arg))
1)

(� n (fact (sub1 n))))))

(fact 4)

prints (0 1 2 3 4).

For implementing a stepper, it was critical that continuation marks
preserve tail-call behavior. The semantics of continuation marks
dictate that when two consecutive marks are placed with the same
tag on the stack, the newer one overwrites the older one. Thus, the
accumulator equivalent of the factorial implementation above:

(define (fact n a)
(w-c-m ’fact-arg n

(if (zero? n)
(begin

(display (c-c-m ’fact-arg))
a)

(fact (sub1 n) (� n a)))))

(fact 4 1)

prints a list containing just the number 0, because the continuation
mark created at each recursive call overwrites the previous mark.
Unfortunately, we do not want this overwriting behavior in our uses
of continuation marks. We can ensure that two marks never appear
consecutively by inserting an application of the identity function
before each w-c-m expression. For example, we can transform the
accumulator-style definition of fact so that no marks disappear:

(define (fact n a)
((lambda (x) x)
(w-c-m ’fact-arg n

(if (zero? n)
(begin

(display (c-c-m ’fact-arg))
a)

(fact (sub1 n) (� n a))))))

(fact 4 1)

This expression prints the list (0 1 2 3 4) as desired.

Since our uses of continuation marks always want this behavior,
our code redefines w-c-m to automatically insert an application of
(lambda (x) x) as in the above example. All instances of w-c-m in
the remainder of this paper will use this redefinition.

5.2 Implementation of Dynamic Aspects
How can we use continuation marks to define our aspect-oriented
extension to Scheme? There is one obvious parallel between as-
pects and continuation marks: the dynamic nature of join points.
Recall that the cflow operator allows the programmer to match any
join point in the dynamic context. When we enter a new join point,
we add a continuation mark containing the data for the join point—
in our model, the value of the function. In order to evaluate pcd’s,
we need the list of all active join points, which we retrieve by ex-
amining continuation marks. Both of these events occur during
function application. Figure 1 shows the code for app/weave. The
expression (w-c-m ’joinpoint fun-val . . .) records a join point, and
(c-c-m ’joinpoint) retrieves the current list of join points.

We also need some way to mimic the aspect environment defined in
our semantics. The environment contained both static and dynamic
aspects; for now, we will focus on the dynamic aspects. Contin-
uation marks are in fact an implementation of dynamic environ-
ments: w-c-m extends the dynamic environment with a new value,
and c-c-m returns all values. When we encounter a dynamic as-
pect, we add it to the dynamic environment with the expression
(w-c-m ’dynamic-aspect aspect . . .). When we need to weave as-
pects during function application, we retrieve the list of all dynamic
aspects via (c-c-m ’dynamic-aspect). The definitions of fluid-
around and app/weave exhibit this use of continuation marks.

164

We now have the two pieces of information we need to weave dy-
namic aspects: the list of current join points and the active dynamic
aspects. At function application, we iterate over each aspect. If the
aspect’s pointcut descriptor returns true when applied to the join
point list, we apply the aspect’s advice to the function. The defini-
tion of weave demonstrates the details of this algorithm.

(module aspect-scheme mzscheme
(define-struct aspect-pair (pcd advice))

(define-syntax (app/weave stx)
(syntax-case stx ()

[(f a . . .) (syntax (app/weave/rt f a . . .))]))

(define (app/weave/rt fun-val . arg-vals)
(if (primitive? fun-val)

(apply fun-val arg-vals)
(w-c-m ’joinpoint fun-val

(let � ([jp (c-c-m ’joinpoint)]
[aspects (current-aspects)])

(apply (weave fun-val jp aspects)
arg-vals)))))

(define (current-aspects)
(c-c-m ’dynamic-aspect))

(define (weave fun-val jp aspects)
(if (empty? aspects)

fun-val
(let ([r (weave fun-val jp (rest aspects))]

[a (first aspects)])
(if ((aspect-pair-pcd a) jp)

(lambda vs (apply app/weave/rt
((aspect-pair-advice a) r)
vs))

r))))

(define-syntax (fluid-around stx)
(syntax-case stx ()

[(pcd advice body)
(syntax (w-c-m ’dynamic-aspect

(make-aspect-pair pcd advice)
body))]))

(provide (all-from-except mzscheme #%app)
(rename app/weave #%app)
(rename #%app app/prim)
fluid-around))

Figure 1: Dynamic aspects

5.3 Implementation of Static Aspects
Although continuation marks map well to two features of aspect-
oriented programming—join points and dynamic aspects—they do
not obviously help in implementing static aspects. Consider these
two examples; the latter one was our example in section 2.2 which
demonstrated statically-scoped aspects:

((fluid-around (call add2) trace-advice (lambda (v) (add2 v))) 7)

((around (call add2) trace-advice (lambda (v) (add2 v))) 7)

In the first example, the dynamic aspect is not in scope when add2
is applied to 7. Our macro produces this behavior: the continua-
tion mark corresponding to the fluid-around disappears when the
body (lambda (v) (add2 v)) returns, before the application of add2.
The second example, however, declares a static aspect, which is in
scope whenever the body of (lambda (v) (add2 v)) executes. The
around expression also stores the aspect in a continuation mark,
but that mark will disappear when the body of the around returns;
we will lose the static aspect.

In order to achieve the correct semantics for around, we need to
transform each lambda expression in the program so that it closes
over the aspects at its definition site, and reinstates these aspects
during the execution of its body. Consider a single-argument func-
tion (lambda (x) body); we wish to transform this to an equivalent
function that stores the static aspects:

(lambda (x) (w-c-m ’static-aspect . . . body))

What aspects belong in the elided expression? We want all static
aspects that were active at the site of the function’s definition. We
explain this through an example. Consider the program

(let ([f (around pcd H advice H
(lambda (x)

(around pcd K advice K
(g x))))])

(around pcd M advice M
(f 0)))

The procedure bound to f needs to close over the aspect with the
pcd pcd H . The transformed procedure captures this as follows:

(lambda (x)
(w-c-m ’static-aspect (make-static-env

(list
(make-aspect-pair pcd H advice H)))

(around pcd K advice K
(g x))))

At the time of invoking f , the stack currently contains just one mark
for an aspect, that for pcd M . Invoking f pushes the static environ-
ment onto the stack, so it now has two marks. The original body
of f pushes one more mark, that for pcd K . Because each around
generates a continuation mark for the aspect it declares, invoking
(c-c-m ’static-aspect) at the point of applying g returns

(list (make-aspect-pair pcd K advice K)
(make-static-env (list (make-aspect-pair pcd H advice H)))
(make-aspect-pair pcd M advice M))

Of these, all aspects higher on the stack than the highest static en-
vironment were defined in scopes that extend that of an invoked
procedure (in this case, just pcd K). In contrast, all those lower on
the stack than the highest static environment can no longer be in
scope (by definition of static scoping), and we must therefore ig-
nore them—in this case, that of pcd M . Therefore, the around macro
employs a procedure that elides all aspects beyond the highest static
aspect:

(define (active-static-aspects lis)
(if (empty? lis)

’()
(if (static-env? (first lis))

(static-env-lis (first lis))
(cons (first lis) (active-static-aspects (rest lis))))))

165

Figure 2 defines the macro lambda/static, which implements the
transformation described above. We export lambda/static as the
default lambda for our language. Notice that we also update the
definition of current-aspects, so that it considers static aspects in
addition to dynamic ones.

(define (current-aspects)
(append (c-c-m ’dynamic-aspect)

(active-static-aspects (c-c-m ’static-aspect))))

(define-syntax (around stx)
(syntax-case stx ()

[(pcd advice body)
(syntax (w-c-m ’static-aspect

(make-aspect-pair pcd advice)
body))]))

(define-syntax (lambda/static stx)
(syntax-case stx ()

[(params body . . .)
(syntax
(let ([env (active-static-aspects (c-c-m ’static-aspect))])

(lambda params
(w-c-m ’static-aspect (make-static-env env)

(begin body . . .)))))]))

Figure 2: Static aspects

The definitions given in Figures 1 and 2 are now executable code—
they correctly interpret the examples given in this paper.

6. RELATED WORK
While the earlier work on aspects [12] was defined for languages
like Common Lisp that do offer higher-order programming facil-
ities, the aspects themselves were defined broadly through gener-
alized weavers. This work did not explicitly distinguish between
different scoping mechanisms for aspects. While it is perhaps pos-
sible to define these scopes using particular weavers, the work does
not identify this concern or discuss its potential.

AspectJ [11] is the de facto standard for aspect-oriented program-
ming. It defines a rich set of join points for describing points in the
execution of a program. Since Java is a statically-typed language,
AspectJ also requires and enforces type declarations when defining
aspects. The programmer can also use types in pointcut descrip-
tors, which is extremely useful in conjunction with wildcards. As-
pectJ’s support for software development includes a compiler that
produces standard Java bytecode, and extensions to programming
environments that enable the programmer to browse aspect hierar-
chies.

Wand, Kiczales, and Dutchyn [20] present a denotational semantics
for aspect-oriented programming. Like us, they study an aspect-
oriented extension to an untyped language; however, they only sup-
port first-order procedures. Although we have developed an opera-
tional semantics that includes higher-order functions, many of our
ideas derive from their work, such as the use of an aspect environ-
ment, and the characterization of advice as procedure transformers.

Bauer, Ligatti, and Walker [1] present a model for language-based
security, where an outside program monitors the execution of an

untrusted program. Their security policies have the same structure
as aspects: they comprise a set of actions to intercept in a program’s
execution, and a policy that can modify the computation of these
actions. Furthermore, the security policies are first-class values,
and they give examples of parametric and higher-order policies.
Their system is similar to aspect-oriented programming, except that
they do not support the same range of pointcuts; notably, they do
not provide a means of examining control flow.

7. CONCLUSION
As aspect-oriented software design grows in popularity, more lan-
guages will need to support this style of development. Recent work
on defining a semantics for pointcuts and advice [20] is especially
valuable, because it explicates the essence of these kinds of aspects,
making it easier to port this style of programming between lan-
guages. Because the semantics is defined for first-order languages,
however, it fails to document how to define AspectJ-like features
for languages with first-class and higher-order procedures. As the
family of languages with these features includes not only academic
languages such as Scheme and ML but also industrially popular
languages such as Python and Perl, defining aspects in this context
takes on immediacy and importance.

Higher-order languages present both challenges and benefits for as-
pects. On the one hand, they force the designer to carefully address
issues of scope that do not arise in first-order languages. Not only
do procedural entities no longer necessarily have names, program-
mers can now distinguish between their loci of definition and of
use. One the other hand, these distinctions of scope make it possi-
ble to define a much richer variety of policies than is possible in a
first-order aspect language. In particular, programmers can now de-
fine both dynamic aspects traditional to AOP and static aspects that
can enforce policies defined within modules, e.g., capture common
security-control paradigms.

In this paper, we present a description of aspects for higher-order
languages. We mimic the operators of AspectJ but implement them
in the context of the Scheme programming language. We also de-
scribe the implementation of this language. The implementation
exploits two novel features of our Scheme system—continuation
marks and language-defining macros—that do not interfere, and
indeed integrate well, with traditional tasks such as separate com-
pilation and the use of the DrScheme development environment
[8]. This makes it very convenient for programmers to exploit as-
pects to improve program designs without changing their program
development methodology. In addition, continuation marks are im-
plemented efficiently, so programmers are not penalized for their
use.

There are many directions for future work. While we have ex-
plained how aspects should behave in higher-order languages, we
have not provided an account of pointcuts and advice in languages
with even richer (and increasingly popular) control primitives such
as continuations. We have also deliberately neglected type system
questions, particularly the kinds of parametric polymorphism that
aspects induce, and other forms of static validation. Finally, we
have paid relatively little attention to the run-time cost of using as-
pects and should seek ways to optimize them (perhaps by shifting
some work to compile-time) to make them minimally intrusive.

Acknowledgements
Thanks to Matthias Felleisen and John Clements for discussions on
this research.

166

8. REFERENCES
[1] Lujo Bauer, Jarred Ligatti, and David Walker. A calculus for

composing security policies. Technical Report TR-655-02, Princeton
University, 2002.

[2] Lodewijk Bergmans and Mehmet Aksit. Composing crosscutting
concerns using composition filters. Communications of the ACM,
44(10):51–57, 2001.

[3] John Clements, Matthew Flatt, and Matthias Felleisen. Modeling an
algebraic stepper. Lecture Notes in Computer Science, 2028, 2001.

[4] Paul Clements and Linda Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2001.

[5] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic
abstraction in Scheme. Lisp and Symbolic Computation,
5(4):295–326, December 1993.

[6] Matthias Felleisen and Matthew Flatt. Programming languages and
lambda calculi.
http://www.cs.utah.edu/plt/publications/pllc.pdf.

[7] Robert E. Filman and Daniel P. Friedman. Aspect-oriented
programming is quantification and obliviousness. In Workshop on
Advanced Separation of Concerns, OOPSLA, October 2000.

[8] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew
Flatt, Shriram Krishnamurthi, Paul Steckler, and Matthias Felleisen.
DrScheme: A programming environment for Scheme. Journal of
Functional Programming, 12(2):159–182, 2002.

[9] Matthew Flatt. Composable and compilable macros: You want it
when? In ACM SIGPLAN International Conference on Functional
Programming, 2002.

[10] Jeff Gray, Ted Bapty, Sandeep Neema, and James Tuck. Handling
crosscutting constraints in domain-specific modeling.
Communications of the ACM, 44(10):87–93, 2001.

[11] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ. In
European Conference on Object-Oriented Programming, 2001.

[12] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect-oriented programming. In European Conference on
Object-Oriented Programming, June 1997.

[13] Eugene E. Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and
Bruce F. Duba. Hygienic macro expansion. In ACM Symposium on
Lisp and Functional Programming, pages 151–161, 1986.

[14] Eugene E. Kohlbecker and Mitchell Wand. Macros-by-example:
Deriving syntactic transformations from their specifications. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 77–84, 1987.

[15] Eugene E. Kohlbecker Jr. Syntactic Extensions in the Programming
Language Lisp. PhD thesis, Indiana University, August 1986.

[16] Karl Lieberherr, Doug Orleans, and Johan Ovlinger. Aspect-oriented
programming with adaptive methods. Communications of the ACM,
44(10):39–41, 2001.

[17] Paniti Netinant, Tzilla Elrad, and Mohamed E. Fayad. A layered
approach to building open aspect-oriented systems: a framework for
the design of on-demand system demodularization. Communications
of the ACM, 44(10):83–85, 2001.

[18] Greg Sullivan. Aspect-oriented programming with reflection and
meta-object protocols. Communications of the ACM, 44(10):95–97,
2001.

[19] David B. Tucker and Shriram Krishnamurthi. A semantics for
pointcuts and advice in higher-order languages. Technical Report
CS-02-13, Department of Computer Science, Brown University,
December 2002.

[20] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A
semantics for advice and dynamic join points in aspect-oriented
programming. appeared in Informal Workshop Record of
Foundations of Object-Oriented Languages 9, pages 67-88, 2002.

167

