
A Threads Tutorial†

Thomas W. Doeppner Jr.
Department of Computer Science

Brown University
Providence, RI 02912

March 30, 1987
Revised December 16, 1987 and September 16, 1988

Technical Report CS-87-06

������������������������������������
†This work has been partially supported by grants from the Digital Equipment Corporation and by the Encore Computer Cor-

poration.

1. Introduction

Threads is a system for the efficient support of concurrency. It runs on either single-processor or

multiprocessor computers and presents to the programmer the same ‘‘view of the world’’ no matter how

many processors are available for use. This view is that a number of concurrentthreads of control are exe-

cuting in a single shared address space and share a common view of which files are open. Thus threads

may communicate very efficiently through this shared memory and all threads may participate in I/O on

any file.

In this paper we discuss the most important routines provided by the Threads system and give exam-

ples of their use. Where possible, we try to give ‘‘realistic’’ examples, but often realism is sacrificed in

favor of toy examples intended to demonstrate a feature simply.

Threads is still an evolving system. We would appreciate any form of feedback on either the con-

tents of this document or the system itself.

2. Creating Threads

The Threads systems is initiated by callingTHREADgo:

int
THREADgo(nr_procs, data_size, func, args, argsize, stacksize, priority)
int nr_procs;
int data_size;
void (*func)();
int *args;
int argsize;
int stacksize;
int priority;

This allocatesnr_procs processors for use by the Threads system. It sets an upper bound ofdata_size

bytes for representing additional threads and the shared heap (in addition to the UNIX data space already

owned by the caller; the UNIX stack segment is not available to the user of Threads). (Thenr_procs and

data_size arguments are ignored on the uniprocessor implementations: there will of course be only one pro-

cessor; the size of the heap will be limited by whatever constraints there are on the size of the data region

of the underlying UNIX process.)

The (single) initial thread starts execution by callingfunc. It is passed a single argumentargs (which

might be either a value or a pointer to a value or set of values). Ifargsize is zero, thenargs is passed to the

thread unchanged. However, ifargsize is nonzero, thenargsize bytes of data pointed to byargs are placed

on the new thread’s stack and the thread is passed a pointer to this location instead of the original value of

args. (Thus if arguments are copied to the thread’s stack, they will be private to that thread, but if they are

not copied, they are accessible by other threads.

The newly created thread is given a stack of maximum sizestacksize. Unlike stacks for UNIX

processes, there is no hardware assistance in monitoring the growth of a thread’s stack, and there is no

mechanism for growing a stack once it has achieved its maximum size. The Thread runtime does check the

extent of a thread’s stack ‘‘when convenient,’’ but it is unlikely to detect an overextended stack until well

after it has overextended. Thus it is a good idea to be liberal in estimatingstacksize (library routines such

asprintf use a surprising amount of stack space).

Finally, the new thread is given a runtime priority ofpriority. Priorities range from 0 to 31, with 0

being the best priority.

Any thread may create a new thread with theTHREADcreate call:

THREAD
THREADcreate(function, args, argsize,detached, stacksize, priority)
int (*function)();
int *args;
int argsize;
char detached;
int stacksize;
int priority;

This call creates a new thread and returns that thread’shandle, of type THREAD. (The handle is used to

refer to a thread in many of the routines that follow; a thread’s own handle will always be inTHREAD-

current.) The argumentsfunc, args, argsize andpriority are the same as inTHREADgo. The additional

argumentdetached determines if the new thread’s termination is to be synchronized with its creator (i.e.

parent). Ifdetached is 1, then the child thread bears no relation to its parent: it is totally independent. If

detached is 0, then the parent-child relationship is maintained. The parent will not be able to terminate

until the child terminates, and the parent may execute a call to wait until the child terminates

(THREADwaitforchild). Furthermore, when the child terminates it may return a value to its parent (which

the parent obtains by callingTHREADreturnvalue). Finally, after the return value has been obtained, the

storage occupied by the thread should be freed by a call toTHREADeliminatechild.

Threads Tutorial 2

Thus, the proper way for a parent to synchronize with a nondetached terminating child is as follows:

THREAD child;
int returnvalue;

.

.

.
child = THREADwaitforchild();
returnvalue = THREADreturnvalue(child);
THREADeliminatechild(child);

One should be careful when creating threads on a multiprocessor system; it is likely that a child

thread will have begun execution before the parent thread returns from theTHREADcreate call. If this

could result in a race condition, then some explicit form of synchronization should be used in the two

threads.

A thread terminates when it returns from its first function.THREADmurder may be used to kill off a

thread (either the caller or any other thread that is not an ancestor of the caller).

In the following (simplistic) example, we use multiple processors for multiplying matrices.

#include <thread.h>
#include <stdio.h>

int A[9] = {1, 2, 3,
4, 5, 6,
7, 8, 9};

int B[9] = {9, 8, 7,
6, 5, 4,
3, 2, 1};

int C[9];

main(argc, argv)
int argc;
char *argv[];
{

extern void startup();

if (argc != 2) {
fprintf(stderr, "usage: tst #processors\n");
exit(1);

}

THREADgo(atol(argv[1]), 2*1024*1024,startup, 0, 0, 20*1024, 2);
}

void
startup()

Threads Tutorial 3

{
extern void mult();
struct {

int i;
int j;

} ij;

for (ij.i=0; ij.i<3; ij.i++)
for (ij.j=0; ij.j<3; ij.j++)

THREADcreate(mult, &ij, sizeof(ij), 0, 20*1024, 2);

while(THREADwaitforchild())
;

printf("%3d %3d %3d\n %3d %3d %3d\n %3d %3d %3d\n",
C[0], C[1], C[2], C[3], C[4], C[5], C[6], C[7], C[8]);

}

void
mult(ij)
struct {

int i;
int j;

} *ij;
{

register int i;
register int t=0;
register int col = 3 * ij->i; /* row i, col 0 */
register int row = ij->j; /* row 0, col j */

for(i=0; i<3; i++) {
t += A[col] * B[row];
col++;
row += 3;

}

C[3*ij->i + ij->j] = t;
}

3. Synchronization

3.1. Monitors

Monitors are the standard synchronization mechanism in this version of Threads. We do not provide

any syntactic support for monitors; instead, we provide a set of function calls which form the runtime sup-

port for monitors.

A monitor must be created by a thread before any thread can use it. This is done by a call to

THREADmonitorinit:

Threads Tutorial 4

THREAD_MONITOR
THREADmonitorinit(conditions, resetfunc)
int conditions;
void (*resetfunc)();

Thecondition argument gives the number of condition queues (inside the monitor) to be created;resetfunc

is called if an exception (see below) is raised in a thread that is active in the monitor (it may be set to

NULL). THREADmonitorinit returns a handle for the newly created monitor, of type

THREAD_MONITOR, which is used to identify the monitor.

In its simplest form, a monitor may be used to provide mutually exclusive access to a shared data

structure. To achieve this, a thread callsTHREADmonitorentry before accessing the data structure and

THREADmonitorexit afterwards:

void
THREADmonitorentry(monitor, manager)
THREAD_MONITOR monitor;
THREAD_MANAGER manager;

void
THREADmonitorexit(monitor)
THREAD_MONITOR monitor;

Heremonitor is the handler of the monitor that has been created to protect the data structure.manager is

the address of a data structure of typeTHREAD_MANAGER that may be used by the monitor to help it deal

with exceptions. (Managers are used strictly by the Thread runtime, they are not directly used by users of

threads. The only reason they appear to the user at all is that the user can often allocate them more

efficiently than can the runtime code.) If the address is NULL, then the Thread runtime allocates this data

structure from the shared heap. For fastest performance, the caller should allocate it on its stack, passing

the address to THREADmonitorentry. manager is a pointer to an area of type

THREAD_MANAGER_BLOCK; this storage needs a lifetime long enough that it will still exist when

THREADmonitorexit is called.

Good programming style dictates that the thread functions supporting monitors should be used as if

the language supported the monitor concept− an abstract data type consisting of shared data, initialization

code, and a set of access functions. Each of these access functions should start with a call toTHREAD-

monitorentry and end with a call toTHREADmonitorexit. The following is a simple example of the use of

Threads Tutorial 5

a monitor to prompt for data on a terminal and read it.

#include <thread.h>
#include <stdio.h>

extern void promptandread(), output();
THREAD_MONITOR prmonitor;

main(argc, argv)
int argc;
char *argv[];
{

extern void startup();

if (argc != 2) {
fprintf(stderr, "usage: tst #processors\n");
exit(1);

}

THREADgo(atol(argv[1]), 1024*1024, startup,0, 0, 20*1024, 2);
}

void
startup()
{

extern void child();

prmonitor = THREADmonitorinit(0, NULL);

THREADcreate(child, "prompt1 ", 0,0, 20*1024, 2);
THREADcreate(child, "prompt2 ", 0,0, 20*1024, 2);

}

void
child(prompt)
char *prompt;
{

char buf[80];

promptandread(prompt, buf, 80);
output(buf, strlen(buf));
promptandread(prompt, buf, 80);
output(buf, strlen(buf));

}

void
promptandread(prompt, buf, buflen)
char *prompt;
char *buf;
int buflen;
{

THREAD_MANAGER_BLOCK manager;

THREADmonitorentry(prmonitor, &manager);

write(1, prompt, strlen(prompt));

Threads Tutorial 6

read(0, buf, buflen);

THREADmonitorexit(prmonitor);
}

void
output(buf, len)
char *buf;
int len;
{

THREAD_MANAGER_BLOCK manager;

THREADmonitorentry(prmonitor, &manager);

write(1, buf, len);

THREADmonitorexit(prmonitor);
}

Monitors provide more than just simple mutual exclusion. It is often necessary for a thread to

modify the monitor-protected shared data only if certain conditions are true, where the condition itself must

be checked inside the monitor. This is accomplished by using a condition queue: a thread enters a monitor

and checks a condition (in mutual exclusion). If the condition is true the thread continues, otherwise the

thread suspends itself (by callingTHREADmonitorwait). After some second thread has satisfied the condi-

tion that the first thread was waiting for, this second thread may wake up the first thread as it exits the mon-

itor by callingTHREADmonitorsignalandexit instead ofTHREADmonitorexit. There are often times when

it is necessary for a thread which is about to suspend itself in a monitor to signal a condition before

suspending itself. This is done via a call toTHREADmonitorsignalandwait.

int
THREADmonitorwait(monitor, condition)
THREAD_MONITOR monitor;
int condition;

int
THREADmonitorsignalandexit(monitor, condition)
THREAD_MONITOR monitor;
int condition;

int
THREADmonitorsignalandwait(monitor, signalcondition, waitcondition)
THREAD_MONITOR monitor;
int signalcondition, waitcondition;

condition identifies the condition queue to which the thread is referring (numbering starts at 0). A thread

calling THREADmonitorwait is suspended and placed at the end of the queue of the specified condition. It

Threads Tutorial 7

is resumed when it is first in that queue and a signal is sent for that condition (by some thread executing

THREADsignalandexit or THREADsignalandwait). A thread callingTHREADsignalandwait signalssig-

nalcondition and then is suspended and placed on the condition queue specified bywaitcondition.

For an example, we give a solution tothe standard producer-consumerproblem. In our solution, a

producer may supply more than the buffer can hold and the consumer may request more than the buffer can

hold, so transfer might be incremental.

#include <thread.h>
#include <stdio.h>

#define BUFSIZE 80

struct buffer {
THREAD_MONITOR mon;
char xbuf[BUFSIZE];
char *in, *out;
int nempty, nfull;
int alldone;

};

extern void produce(), flush();
extern int consume();
extern struct buffer *prodconinit();

main(argc, argv)
int argc;
char *argv[];
{

extern void startup();

if (argc != 2) {
fprintf(stderr, "usage: tst #processors\n");
exit(1);

}

THREADgo(atol(argv[1]), 1024*1024, startup,0, 0, 20*1024, 2);
}

void
startup() {

extern void pro(), con();
THREAD producer, consumer;
struct buffer *buffer;

buffer = prodconinit();

producer = THREADcreate(pro,buffer, 0, 0, 12*1024, 2);
consumer = THREADcreate(con,buffer, 0, 0, 12*1024, 2);

}

Threads Tutorial 8

void
pro(buffer)
struct buffer *buffer;
{

int count;
char buf[80];

for (;;) {
if ((count = read(0, buf, 80)) <= 0)

break;
produce(buffer, buf, count);

}
flush(buffer);

}

void
con(buffer)
struct buffer *buffer;
{

int count;
char buf[4];

for (;;) {
if ((count = consume(buffer, buf, 4)) == 0)

return;
write(1, buf, count);

}
}

/* The "monitor" starts here */

/* this is the initialization and data structure part */

struct buffer *
prodconinit()
{

struct buffer *b;

b = (struct buffer *)malloc(sizeof(struct buffer));
b->mon = THREADmonitorinit(2, NULL);
b->nfull = b->alldone = 0;
b->in = b->out = b->xbuf;
b->nempty = BUFSIZE;
return(b);

}

int
consume(buffer, buf, n)
struct buffer *buffer;
char *buf;
int n;
{

register int count, count2;
register int totcount = 0;
register char *lin = buf;
THREAD_MANAGER_BLOCK manager;
register int bytesleft;

Threads Tutorial 9

THREADmonitorentry(buffer->mon, &manager);

bytesleft = (int)(BUFSIZE - (buffer->out - buffer->xbuf));
/* bytesleft is the size of that portion of the buffer beyond the

pointer "out" */

while (n > 0) { /* does the caller want more? */
while (buffer->nfull <= 0) { /* are there more bytes in the buffer? */

if (buffer->alldone) { /* will thereever be more bytes? */
THREADmonitorexit(buffer->mon);
return(totcount);

}
THREADmonitorsignalandwait(buffer->mon, 1, 0);

/* wait for bytes to appear */
}
/* how many bytes can we take now? */
count = (buffer->nfull <= n) ? buffer->nfull : n;
if (count > bytesleft) { /* does the buffer "wrap around"? */

bcopy(buffer->out, lin, bytesleft);
count2 = count - bytesleft;
bcopy(buffer->xbuf, lin+bytesleft,count2);
buffer->out = buffer->xbuf + count2;
bytesleft = BUFSIZE - count2;

} else {
bcopy(buffer->out, lin, count);
buffer->out += count;
bytesleft -= count;

}
buffer->nfull -= count;
buffer->nempty += count;
lin += count;
totcount += count;
n -= count;

}
THREADmonitorsignalandexit(buffer->mon, 1);
return(totcount);

}

void
produce(buffer, buf, n)
struct buffer *buffer;
char *buf;
int n;
{

register int count, count2;
register char *lout = buf;
THREAD_MANAGER_BLOCK manager;
register int spaceleft;

THREADmonitorentry(buffer->mon, &manager);

spaceleft = (int)(BUFSIZE - (buffer->in - buffer->xbuf));
/* spaceleft is the size of that portion of the buffer beyond the

pointer "in" */

while (n > 0) { /* is there more to transfer? */
if (buffer->nempty <= 0) /* is there room for it? */

Threads Tutorial 10

THREADmonitorsignalandwait(buffer->mon, 0, 1);
/* how much shall we transfer? */
count = (buffer->nempty <= n) ? buffer->nempty : n;
if (count > spaceleft) { /* does the buffer "wrap around"? */

bcopy(lout, buffer->in, spaceleft);
count2 = count - spaceleft;
bcopy(lout+spaceleft, buffer->xbuf, count2);
buffer->in = buffer->xbuf + count2;
spaceleft = BUFSIZE - count2;

} else {
bcopy(lout, buffer->in, count);
buffer->in += count;
spaceleft -= count;

}
buffer->nempty -= count;
buffer->nfull += count;
lout += count;
n -= count;

}
THREADmonitorsignalandexit(buffer->mon, 0);

}

void
flush(buffer)
struct buffer *buffer;
{

THREADmonitorentry(buffer->mon, NULL);

buffer->alldone++;

THREADmonitorsignalandexit(buffer->mon, 0);
}

3.2. Semaphores

Threads supplies an alternative synchronization mechanism in the form of semaphores. The use of

semaphores is not strongly encouraged; being the ‘‘go to’’ of concurrent programming, they are not terri-

bly well-structured, and furthermore (in this implementation) they are not safe for use with exceptions, as

monitors are. However, semaphores are implemented very efficiently and perhaps should be used where

simple mutual exclusion is required and speed is of the essence.

To create a semaphore, one callsTHREADseminit:

SEMAPHORE
THREADseminit(initialvalue)
int initialvalue;

initialvalue is the initial value given to the semaphore. The value returned is the handle for referencing the

semaphore and is of typeSEMAPHORE. P and V operations on semaphores are performed using

Threads Tutorial 11

THREADpsem andTHREADvsem:

void
THREADpsem(sem)
SEMAPHORE sem;

void
THREADvsem(sem)
SEMAPHORE sem;

sem is the handle of the relevant semaphore.THREADpsem decrements the value of the semaphore by 1 if

the result will be nonnegative; otherwise the caller is suspended and is queued at the end of a queue associ-

ated with the semaphore.THREADvsem releases the first thread on the semaphore’s queue, if there is one;

otherwise, it increments the value of the semaphore by 1.

In the following simple example, a number of threads should execute a loop for a total (over all

threads) of 1000 times:

#include <thread.h>
#include <stdio.h>

SEMAPHORE sem;
int count;

main(argc, argv)
int argc;
char *argv[];
{

extern void startup();

if (argc != 2) {
fprintf(stderr, "usage: tst #processors\n");
exit(1);

}

THREADgo(atol(argv[1]), 1024*1024, startup,0, 0, 20*1024, 2);
}

void
startup()
{

extern int child();
THREAD tcb;
int i;
int total_iterations = 0;

sem = THREADseminit(1);

for (i=0; i<10; i++)
THREADcreate(child, 0, 0, 0, 20*1024, 2);

Threads Tutorial 12

while((tcb = THREADwaitforchild()) != NULL) {
/* wait for the children to terminate */
total_iterations += THREADreturnvalue(tcb);
THREADeliminatechild(tcb);

}

printf("count = %d, total iterations = %d\n", count, total_iterations);
fflush(stdout);

}

int
child()
{

int i;

for(i=0;;i++) {
THREADpsem(sem);
if (count >= 1000)

break;
count++;
THREADvsem(sem);

}
THREADvsem(sem);
return(i);

}

4. Thread Control Blocks

As has been discussed, associated with every thread are a stack and a thread control block. The

thread’s handle is actually a pointer to the thread control block, in which a fair amount of per-thread infor-

mation is stored. The application programmer may also store per-thread information. To do this, one must

request that a certain amount of additional space be allocated in each thread control block and must provide

a set of functions for initializing and cleaning up this space. To accomplish this, the function

THREADtype1_register must be called (beforeTHREADgo is called). It may be called any number of

times.

int
THREADtype1_register(size, threadinitfunc, threadterminatefunc,

systeminitfunc, systemterminatefunc)
int size;
void (*threadinitfunc)();
void (*threadterminatefunc)();
void (*systeminitfunc)();
void (*systemterminatefunc)();

size is the amount of additional space needed in each thread control block. The first two functional

arguments are called as each thread is created and terminated; the second two functional arguments are

Threads Tutorial 13

called as the system is initialized and shut down.threadinitfunc is called in the context of the creating

(parent) thread with a single argument− the handle of the newly created thread.threadterminatefunc is

called in the context of whichever thread is causing this thread to terminate; it is passed the handle of the

dying thread.

The value returned byTHREADtype1_register is the offset within the thread control block of the

location where the application information resides. To convert this offset into a pointer, one calls

THREADdynamic:

char *
THREADdynamic(tcb, offset)
THREAD tcb;
int offset;

Normally this is called as part of a programmer-defined macro, as seen below.

In the following example, each thread is given its own private storage (heap), which is found by

looking in an area registered in the tcb.

#include <thread.h>
#include <stdio.h>

#define HEAPSIZE 1024
int heap_offset;
#define heap(tcb) ((char **)THREADdynamic(tcb, heap_offset))

main(argc, argv)
int argc;
char *argv[];
{

extern void startup();
extern voidallocate_heap(),free_heap();

if (argc != 2) {
fprintf(stderr, "usage: tst #processors\n");
exit(1);

}

heap_offset = THREADtype1_register(sizeof(char *),
allocate_heap, free_heap, NULL, NULL);

THREADgo(atol(argv[1]), 1024*1024, startup,0, 0, 20*1024, 2);
}

void
allocate_heap(tcb)
THREAD tcb;
{

Threads Tutorial 14

char **heapaddr = heap(tcb);

*heapaddr = (char *)malloc(HEAPSIZE);
}

void
free_heap(tcb)
THREAD tcb;
{

free(*heap(tcb));
}

void
startup()
{

extern int child();
THREAD tcb;

THREADcreate(child, 0, 0, 0, 10*1024, 2);
THREADcreate(child, 0, 0, 0, 10*1024, 2);

}

int
child()
{

char *privateheap= heap(THREADcurrent);

/* Replace this line with code that uses the thread’s private storage */
}

5. Exceptions and Interrupts

Interrupts are causes and exceptions are effects, though interrupts do not always cause exceptions

and exceptions are not always the effect of interrupts. In Threads, interrupts are the manifestation of UNIX

signals; exceptions are the forced response in a thread to interrupts and certain actions of other threads.

5.1. Exceptions

The programmer may establish an exception handler for each ‘‘module’’ through which a thread

passes. When an exception is raised in a thread, that thread’s stack is popped back to the point at which the

exception handler was established, the handler is called from that point, and, on return from the handler,

control resumes (at that point). The idea is that a failure in a module makes control roll back to a ‘‘safe

point,’’ the exception handler is called to clean up, and then normal execution resumes.

An exception handler is established by callingTHREADsetexception:

Threads Tutorial 15

int
THREADsetexception(handler, oldstate)
int (*handler)();
EXCEPTION *oldstate;

handler is the address of the routine which is to be called in the event of an exception.THREADsetexcep-

tion, much likesetjmp, returns 0 when it is called and returns 1 when control resumes after the exception

handler has been called in response to an exception. The exception handler itself may return a value; this

may be obtained after it returns by callingTHREADgetexceptionreturn. oldstate is the address of an area

of memory into which will be placed information describing the previous exception handler. This space

can be allocated by callingTHREADgetexceptionspace and freed by callingTHREADfreeexceptionspace.

A saved exception handler may be reinstated by callingTHREADrestoreexception:

void
THREADrestoreexception(oldstate)
EXCEPTION oldstate;

This allows one to have adynamic chain of exception handlers: as a thread enters a module, it saves the old

exception handler, pushing it onto a stack, and establishes a new handler. When the thread leaves the

module, it reestablishes the old handler, popping it off the stack.

When an exception handler is called, it is passed a single argument which represents thetype of the

exception. This type is completely uninterpreted by Threads, other than that it must be greater than zero,

and that types 1 through 31 may represent UNIX signals. A thread may explicitly raise an exception in any

thread (including itself) by callingTHREADraiseexception:

int
THREADraiseexception(tcb, param)
THREAD tcb;
int param;

tcb is the handle of the thread in which the exception is to be raised;param is the ‘‘exception type,’’ the

parameter which is passed to the exception handler.

If a monitor is being executed when an exception occurs, then the system state of the monitor is

cleaned up (i.e., the internal queues of threads are brought to a consistent state so that normal use of the

monitor may continue) and, if the programmer has defined a reset function in the original call toTHREAD-

monitorinit, then this function is called with its argument set to the handle of the monitor. This routine’s

Threads Tutorial 16

purpose is to clean up the user-defined monitor state (e.g. it might reset the values of monitor-protected

data structures).

In the following example, we create a chain of exception handlers as the child thread calls module1

and then module2, which is a monitor.

#include <thread.h>
#include <stdio.h>

THREAD_MONITOR tmonitor;

main(argc, argv)
int argc;
char *argv[];
{

extern void startup();

if (argc != 2) {
fprintf(stderr, "usage: tst #processors\n");
exit(1);

}

THREADgo(atol(argv[1]), 1024*1024, startup,0, 0, 20*1024, 2);
}

void
startup()
{

extern void child();
extern void monitorreset();
THREAD tcb;
int i;

tmonitor = THREADmonitorinit(0, monitorreset);

tcb = THREADcreate(child, 0,0, 0, 10*1024, 2);

/* idle for a bit, then raise an exception in the child */

for (i=0; i<2000; i++)
;

if (THREADraiseexception(tcb, 17) == 0) {
printf("raiseexception failed\n");

}
}

void
child()
{

extern int handler1();
extern void module1();
int i;

Threads Tutorial 17

if (THREADsetexception(handler1, NULL)) {
printf("return from handler1, return value = %d\n",

THREADgetexceptionreturn());
return;

}

for (i=0; i<200; i++)
;

module1();
}

void
module1()
{

EXCEPTION oldhandler= THREADgetexceptionspace();
extern int handler2();
extern void module2();
int i;

if (THREADsetexception(handler2, oldhandler)) {
printf("return from handler2, return value = %d\n",

THREADgetexceptionreturn());
return;

}

for (i=0; i<20; i++)
;

module2();

THREADrestoreexception(oldhandler);
THREADfreeexceptionspace(oldhandler);

}

void
module2()
{

EXCEPTION oldhandler= THREADgetexceptionspace();
extern int handler3();
THREAD_MANAGER_BLOCK manager;
int i;

if (THREADsetexception(handler3, oldhandler)) {
printf("return from handler3, return value = %d\n",

THREADgetexceptionreturn());
return;

}

THREADmonitorentry(tmonitor, &manager);

/* body of monitor */

THREADmonitorexit(tmonitor);

THREADrestoreexception(oldhandler);
THREADfreeexceptionspace(oldhandler);

Threads Tutorial 18

}

void
monitorreset(monitor)
THREAD_MONITOR monitor;
{

/* Reset the internal state of the monitor.
This is called if there is an exception in the monitor */

}

int
handler1(type)
int type;
{

printf("exception occurred in handler1; type %d\n", type);

return (1);
}

int
handler2(type)
int type;
{

printf("exception occurred in handler2; type %d\n", type);

return (2);
}

int
handler3(type)
int type;
{

printf("exception occurred in handler3; type %d\n", type);

return (3);
}

5.2. Interrupts

Using theTHREADregistersignal call, the programmer specifies the response to any of the catchable

UNIX signals. This response may be to cause an exception in the current thread, to create a new thread, or

to suspend (freeze) the current thread and execute a handler on that thread’s stack (an action similar to the

way in which signals are handled in UNIX). The type of response is encoded in a structure of type

SIGHANDLER:

typedef struct sighandler {
int type;
THREAD (*whichthread)();
void (*func)();
int stacksize;

Threads Tutorial 19

int priority;
} SIGHANDLER;

/* types: */
#define SIG_EXCEPTION 1
#define SIG_SENDSIG 2
#define SIG_CREATETHREAD 3

TheTHREADregistersignal call is as follows:

int
THREADregistersignal(signo, newhandler, oldhandler)
int signo;
SIGHANDLER *newhandler, *oldhandler;

If a signal occurs which has been registered to be of type SIG_EXCEPTION, then an exception with

parameter equal to the signal number is raised in the current thread.

If a signal occurs which has been registered to be of type SIG_CREATETHREAD, then a new,

detached thread of control is created and is passed one parameter− the signal number. This thread of con-

trol will start execution in the routinefunc which was given as part of theTHREADregistersignal call.

If a signal occurs which has been registered to be of type SIG_SENDSIG, then the routinewhi-

chthread is called. If this routine returns NULL (or the address of the routine is NULL), then nothing hap-

pens. However, if the routine returns a non-NULL value, it is taken to be the handle of a THREAD. This

thread is thenfrozen − it will not be allowed to execute until it is unfrozen, though it may be moved among

the various queues. A new thread of control is created which will executefunc and will be passed the sig-

nal number. This new thread is considered a child of the frozen thread, and uses the stack of its parent.

When this thread of control terminates, the original thread of control will be unfrozen.

This latter behavior was designed to be the analogue of UNIX signal handling. An almost (but not

quite!) analogue of the UNIXkill system call isTHREADfakesignal:

void
THREADfakesignal(thread, func, priority, sig)
THREAD thread;
void (*func)();
int priority;
int sig;

Threads Tutorial 20

This call causesthread to be frozen and a new thread to be created which executesfunc, is passed a single

argumentsig and runs at prioritypriority.

To determine if a particular thread isfrozen, one may callTHREADfrozen:

int
THREADfrozen(thread)
THREAD thread;

It returns1 if the thread whose handle isthread is frozen,0 otherwise.

If a thread has been created as the result of freezing its parent, its parent can be identified using the

call THREADfrozenparent:

THREAD
THREADfrozenparent(thread)
THREAD thread;

The following example illustrates all three types of signal handling. A child thread causes a

floating-point overflow, and this is converted into an exception. If the SIGINT signal is sent, it is handled

via the creation of a new thread. If a SIGQUIT signal is sent, this is handled by freezing the main thread

and then running a new thread on the main thread’s stack.

#include <thread.h>
#include <stdio.h>
#include <signal.h>

THREAD mainthread;

main(argc, argv)
int argc;
char *argv[];
{

extern void startup();

if (argc != 2) {
fprintf(stderr, "usage: tst #processors\n");
exit(1);

}

THREADgo(atol(argv[1]), 1024*1024, startup,0, 0, 20*1024, 2);
}

void
startup()
{

extern void child();
THREAD tcb;

Threads Tutorial 21

SIGHANDLER sigh;
extern void intrhandler();
extern void sigquithandler();
extern THREAD chooser();
int i;

mainthread = THREADcurrent;

sigh.type = SIG_CREATETHREAD;
sigh.whichthread = NULL;
sigh.func = intrhandler;
sigh.stacksize = 10*1024;
sigh.priority = 2;

THREADregistersignal(SIGINT, &sigh, NULL);

sigh.type = SIG_EXCEPTION;

THREADregistersignal(SIGFPE, &sigh, NULL);
sigh.type = SIG_SENDSIG;
sigh.func = sigquithandler;
sigh.whichthread = chooser;

THREADregistersignal(SIGQUIT, &sigh, NULL);

tcb = THREADcreate(child, 0,0, 0, 10*1024, 2);

/* don’t do this if you have only one processor! */
for (i=0; i<1000000; i++)

;
}

void
child()
{

extern void excphandler();

if (THREADsetexception(excphandler, NULL)) {
printf("return from excphandler\n");

} else {
/* cause a SIGFPE */
kill(getpid(), SIGFPE);

}
}

void
intrhandler(sig)
int sig;
{

printf("signal %d\n", sig);
}

void
excphandler(param)
int param;
{

printf("exception; param = %d\n", param);

Threads Tutorial 22

}

THREAD
chooser(sig)
int sig;
{

return(mainthread);
}

void
sigquithandler(sig)
int sig;
{

printf("in sigquithandler\n");
}

6. Shared I/O

One can safely perform I/O in Threads just by making the appropriate system call or Standard I/O

call. (Actually, Threads has ‘‘taken over’’ all I/O system calls and Standard I/O calls. It must make cer-

tain that a single thread never inadvertently blocks a processor by performing a blocking system call and it

must enforce mutually exclusive access to the Standard I/O buffers.) If a computation needs to access one

of several files (e.g. one might want to read from either the keyboard or from a socket, depending upon

which one is ready first), then there are two approaches available. The first is to create separate threads to

deal with each I/O device of interest. The second makes use of the Thread analogue of the UNIXselect

system call.

An example of the first approach is given below in which each I/O request is handled by a separate

thread.

#include <thread.h>
#include <stdio.h>

extern THREAD NBread();
extern THREAD NBwrite();

main(argc, argv)
int argc;
char *argv[];
{

extern void startup();

if (argc != 2) {
fprintf(stderr, "usage: tst #processors\n");
exit(1);

}

Threads Tutorial 23

THREADgo(atol(argv[1]), 1024*1024, startup,0, 0, 20*1024, 2);
}

void
startup()
{

char ibuf[100];
char obuf[200];
THREAD child;

/* start a non-blocking read */
NBread(0, ibuf, 100);

sprintf(obuf, "output message\n");
/* start a non-blocking write */
NBwrite(1, obuf, strlen(obuf));

while ((child = THREADwaitforchild())) {
/* wait for the nonblocking I/O to finish */
THREADeliminatechild(child);

}

sprintf(obuf, "Input was: %s\n", ibuf);
write(1, obuf, strlen(obuf));

}

struct args {
int fd;
char *buf;
int len;

};

THREAD
NBread(fd, buf, len)
int fd;
char *buf;
int len;
{

int Tread();
struct args args;

args.fd = fd;
args.buf = buf;
args.len = len;

return(THREADcreate(Tread, &args,sizeof(args), 0, 20*1024, 1));
}

int
Tread(args)
struct args *args;
{

return(read(args->fd, args->buf,args->len));
}

THREAD
NBwrite(fd, buf, len)

Threads Tutorial 24

int fd;
char *buf;
int len;
{

int Twrite();
struct args args;

args.fd = fd;
args.buf = buf;
args.len = len;

return(THREADcreate(Twrite, &args,sizeof(args), 0, 20*1024, 1));
}

int
Twrite(args)
struct args *args;
{

return(write(args->fd, args->buf,args->len));
}

In the second approach a single thread may wait for any one of many I/O devices to be ready to

transfer and then perform the appropriate transfer request. To avoid any possible race conditions, this is all

done within the confines of a monitor. To do this, one uses an additional monitor call,THREADmoni-

torwaitevent:

int
THREADmonitorwaitevent(monitor, condition, limit, rmask, wmask, xmask,
timeout)
THREAD_MONITOR monitor;
int condition;
int limit;
fd_set *rmask;
fd_set *wmask;
fd_set *xmask;
struct timeval *timeout;

(fd_set is a 4.3-definedtypedef for a bit vector long enough to represent the files of interest. On 4.3 and

Ultrix machines, it is up to 64 bits long (or longer, if the system has been configured for more open files per

user); on an Encore Multimax, it is set for a maximum of 31 open files.) Called from within monitormoni-

tor, the calling thread is suspended until conditioncondition is signaled and the thread is the first one in line

for the signal. The condition will be signaled either if explicitly signaled by some other thread on exiting

the monitor, or if any of the events occur which are described by the last five arguments of the call (these

have essentially the same meaning as the arguments of the UNIXselect system call). The call returns -1 if

Threads Tutorial 25

there was an error. It returns 0 iftimeout points to a value which has expired and none of the events

described by the various masks have occurred. Otherwise it returns a value which is the sum of the number

of events that have occurred plus either 2**30 if a thread has signaled the condition or 0 if not. (N.B.: as

with the other monitor calls, this must be used from within a monitor, i.e., between calls toTHREADmoni-

torentry and eitherTHREADmonitorexit or THREADmonitorsignalandexit.)

In the following example, two ‘‘worker’’ threads are created to do I/O. Each calls a monitor which

checks to see if reading fromstdin or writing to stdout is possible, and if so, does it. If neither is possible

after 10 seconds, it returns with an error indication.

#include <thread.h>
#include <stdio.h>
#include <time.h>

main(argc, argv)
int argc;
char *argv[];
{

extern void startup();

if (argc != 2) {
fprintf(stderr, "usage: tst #processors\n");
exit(1);

}

THREADgo(atol(argv[1]), 1024*1024, startup,0, 0, 20*1024, 2);
}

THREAD_MONITOR iomonitor;

void
startup()
{

extern void worker();

iomonitor = THREADmonitorinit(1, NULL);

THREADcreate(worker, 0, 0,0, 20*1024, 2);
THREADcreate(worker, 0, 0,0, 20*1024, 2);

}

void
worker()
{

int retcode;
char ibuf[80];
int ilen;
char obuf[80];
int olen;

Threads Tutorial 26

for (;;) {
sprintf(obuf, "... a message ...\n");

ilen = 80;
olen = strlen(obuf);
retcode = iomon(ibuf, &ilen, obuf, &olen);

if (retcode <= 0) {
fprintf(stderr, "timed out\n");
continue;

}

if (ilen > 0) {
/* do something with the input */

}

if (olen > 0) {
/* do something with the knowledge that a message was outputted */

}
}

}

int
iomon(ibuf, ibuflen, obuf, obuflen)
char ibuf[];
int *ibuflen;
char obuf[];
int *obuflen;
{

THREAD_MANAGER_BLOCK manager;
fd_set ivec;
fd_set ovec;
int code;
struct timeval t;

t.tv_sec = 10; /* set a time value of 10 seconds */
t.tv_usec = 0;

FD_ZERO(&ivec); /* this macro clears a vector */
FD_ZERO(&ovec);

FD_SET(0, &ivec); /* this macro sets the bit corresponding to fd 0 */
FD_SET(1, &ovec);

THREADmonitorentry(iomonitor, &manager);

/* wait for no more than 10 seconds for I/O to be doable */
code = THREADmonitorwaitevent(iomonitor, 0, 2, &ivec, &ovec, NULL, &t);

if (code <= 0) {
/* an error or timer expiration occured */
THREADmonitorexit(iomonitor);
return(code);

}

if (FD_ISSET(0, &ivec)) {
/* reading from f.d. 0 is possible */

Threads Tutorial 27

*ibuflen = read(0, ibuf, *ibuflen);
} else

*ibuflen = -2;

if (FD_ISSET(1, &ovec)) {
/* writing to f.d. 1 is possible */
*obuflen = write(1, obuf, *obuflen);

} else
*obuflen = -2;

THREADmonitorexit(iomonitor);
return(code);

}

7. Bugs, Features, etc.

For the most efficient implementation of I/O, Threads sets all file descriptors to benonblocking. This

can cause problems ifstdin has been set this way and Threads crashes− stdin often remains set to non-

blocking and the user’s shell will exit after making twenty attempts to read fromstdin, each one returning

the error codeEWOULDBLOCK. This can be annoying, so the callTHREADsetnononblockinio() is pro-

vided. If this is called beforeTHREADgo is called, then Threads won’t use nonblocking I/O, but instead

will use a slower, but safer technique.

When a thread performs an I/O operation, the thread blocks, but not the underlying UNIX process.

The best implementation of this makes use of the SIGIO signal. This facility did not work in 4.2BSD and,

unfortunately, does not work in many systems derived from 4.2 (in particular, it does not work in SunOs,

up through at least 3.4 and Ultrix up through at least 2.0; SIGIO does work in 4.3BSD and on UMAX 4.2

on the Encore Multimax). For those systems in which SIGIO does not work, Threads is compiled with the

"-DNOSIGIO" option and uses a timer-based polling strategy for I/O, which is slower and less responsive

than the SIGIO-based strategy. Even in those systems in which SIGIO does seem to work, it still doesn’t

work for output to terminals (due to a ‘‘standard’’ kernel bug), so all terminal-oriented output is handled by

timer-based polling. There is still another bug in Berkeley UNIX (related to the problem with nonblocking

I/O mentioned above), in which, when one uses SIGIO on terminals, one is forced to set the process group

of the terminal to include the process which is to receive the SIGIO signal; this means that SIGIO cannot

be used by background processes which use the terminal. Consequently, with the current release of

Threads, do not run Threads in the background unless stdin, stdout and stderr are redirected to something

other than the terminal (this will be fixed in Threads soon, though the ‘‘best’’ fix would be in the Berkeley

Threads Tutorial 28

kernel).

Not all of the C library has been modifiedto be ‘‘thread-safe.’’ The standard I/O library has been

made thread-safe, but other routines have not. For example,gethostbyname is not thread safe because it

returns a pointer to storage that has been statically allocated inside of itself. If two threads attempt to use it

at roughly the same time, they will interfere with each other. The routinesleep is not safe to be used with

Threads because its implementation uses the SIGALRM signal, which is used by the Threads runtime code

for different purposes. If it is desired that a thread sleep for a specified interval, use theselect routine

(specifying null vectors for file descriptors).Select is a system call, but it is ‘‘caught’’ by the Threads

library and made to operate only on the calling thread.

The library and include file for threads is located in the directory $THREADSDIR/$MACHINE in

the files thread.a and thread.h, where $THREADSDIR is directory into which the threads distibution has

been read (/pro/threads at Brown) and $MACHINE is the machine type (e.g. multimax, sun3, sun4, vax)

Any C program which uses threads should include $THREADSDIR/thread.h. A typical command line for

invoking the C compiler and loader at Brown on a vax would look like:

cc -I/pro/threads yourprogram.c /pro/threads/vax/thread.a -o yourprogram

(On the Encore Multimax, it is necessary to append ‘‘-lpp’’ to the end of this line).

Threads Tutorial 29

